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Dylan J. Temples Arfken : Solution Set One

1 Problem #1.

Determine if each series converges conditionally or absolutely.

1.1 Σ∞n=1 = (−5)n
n!

Starting with the definition of absolutely convergent, the absolute value of each term in this series
is given by

|an| =
5n

n!
. (1)

If the series Σ∞n=1 = |an| converges, then the series in question Σ∞n=1 = an converges absolutely. In
order to determine absolute convergence, the ratio

|an+1|
|an|

=
5n+1

(n+ 1)!

n!

5n
=

5

n+ 1
, (2)

was formed. The limit of this ratio as n → ∞ is zero (which is less than one). According to the
ratio test, the series formed by the absolute values of the terms of the original series converges.
Therefore the series in question converges absolutely.

1.2 Σ∞n=0 = n!(2n)!
(3n)!

Each term in this series is positive-definite, which means if it converges, it must converge absolutely.
The ratio test can be used again, with

an+1

an
=

(n+ 1)!(2n+ 2)!

(3n+ 3)!

(3n)!

n!(2n)!
=

(n+ 1)(2n+ 2)(2n+ 1)

(3n+ 3)(3n+ 2)(3n+ 1)
, (3)

which when the numerator and denominator are multiplied out, both show a n3 dependence. Taking
the limit as n→∞ and using L’Hôpital’s Rule three times gives the result 4

27 , which again is less
than one. The ratio test determined this series converges, and must converge absolutely because
all terms in the series are positive.

1.3 Σ∞n=3 = (n−lnn)2
5n5−3n2+1

Again, each term in this series is positive-definite, and by the same reasoning as above, if the series
converges, it does so absolutely. The terms in this series show roughly a n−3 dependence. Consider
the function f(x) = 1

x3
, which for any n > 3

an < f(n) (4)

is true. This is true because they are both monotonically decreasing, and it is true for n = 3. This
allows us to use the integral test, which says if

∫∞
3 f(x)dx is finite, the series of an’s converges.

Evaluation of the integral yields

I =

∫ ∞
3

x−3dx = −1

2
x−2

∣∣∣∣∞
3

= −1

2

[
0− 1

9

]
=

1

18
, (5)

which is finite. This implies the series converges absolutely.
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+ 1
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+ 1

4
+ 1
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− 1
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− 1
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+ . . .

This series can be written
∞∑
n=1

= (−1)n+1an , (6)

where

an =
1

n+ 1
+

1

(n+ 1)2
=

n+ 2

n2 + 2n+ 1
, (7)

note that all an > 0. Furthermore,

lim
n→∞

an = lim
n→∞

n+ 2

n2 + 2n+ 1
= lim

n→∞

1

2n+ 2
= 0 . (8)

It can also be shown that the an’s are monotonically decreasing, an+1 < an, for all n,

an+1 =
n+ 3

n2 + 2n+ 1 + 2n+ 2 + 1
=

n+ 3

n2 + 4n+ 4
<

n+ 2

n2 + 2n+ 1
, (9)

due to the 4n term in an+1 dropping off slightly faster than the 2n term in the an. This series has
been shown to completely satisfy the Leibniz Criterion, and therefore the alternating series con-
verges. However, this series converges conditionally, which can be shown using a limit comparison
test. Consider the harmonic series Σ∞n=1 = bn, where bn = 1

n . The ratio

an
bn

=
n2 + 2n

n2 + 2n+ 1
(10)

converges to a constant in the limit n →∞. Using L’Hôpital’s Rule twice, limn→∞
an
bn

= 1, which
demonstrates the fates of both series are bound. The harmonic series diverges and so must the
series of interest, indicating the series of interest converges conditionally.
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2 Arfken 1.5.3.

Given the series
∞∑
n=1

un(p) =

∞∑
n=1

1

n(n+ 1) . . . (n+ p)
, (11)

and applying a partial fraction decomposition to the first and last terms (as suggested in the Arfken
Supplement),

1

n(n+ p)
=

1

p

[
1

n
− 1

n+ p

]
, (12)

yields

un(p) =
1

p

[
1

n
− 1

n+ p

]
1

(n+ 1) . . . (n+ p− 1)

=
1

p

[
1

n(n+ 1) . . . (n+ p− 1)
− 1

(n+ 1) . . . (n+ p)

]
. (13)

Using the definition of un(p), Equation 11, Equation 13 becomes

un(p) =
1

p
[un(p− 1)− un+1(p− 1)] . (14)

Therefore the sum becomes

∞∑
n=1

un(p) =
1

p

∞∑
n=1

[un(p− 1)− un+1(p− 1)] . (15)

Expanding the sum out shows that each term but the first cancels with the term following it,

∞∑
n=1

[un(p− 1)− un+1(p− 1)] = [u1(p− 1)− u2(p− 1)] + [u2(p− 1)− u3(p− 1)] + . . . , (16)

and the term u1(p− 1) = 1
(1)(2)(3)...[1+(p−1)] = 1

p! , which gives the desired result,

∞∑
n=1

1

n(n+ 1) . . . (n+ p)
=

1

p!p
. (17)
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3 Arfken 1.5.4.

Prove the Euler Transformation,
∞∑
n=0

(−1)ncnx
n , (18)

can be written,

1

1 + x

∞∑
n=0

(−1)nan
x

1 + x

n
, (19)

with an =
∑n

j=0(−1)j
(
n
j

)
cn−j . Upon substituting the an into Equation 19 and writing out the first

few terms of each sums gives,

1

1 + x

{(
x

1 + x

)0[
c0

(
0

0

)]
−
(

x

1 + x

)1[
c1

(
1

0

)
− c0

(
0

0

)]
+

(
x

1 + x

)2[
c2

(
2

0

)
− c1

(
2

1

)
+ c0

(
2

2

)]
−
(

x

1 + x

)3[
c3

(
3

0

)
− c2

(
3

1

)
+ c1

(
3

2

)
− c0

(
3

3

)]
+ . . .

}
. (20)

This expression can be rearranged by gathering terms with the same ci coefficients,

1

1 + x

{
c0

[(
x

1 + x

)0(0

0

)
+

(
x

1 + x

)1(1

1

)
+

(
x

1 + x

)2(2

2

)
+

(
x

1 + x

)3(3

3

)
+ . . .

]
− c1

[(
x

1 + x

)1(1

0

)
+

(
x

1 + x

)2(2

1

)
+

(
x

1 + x

)3(3

2

)
+ . . .

]
+ c2

[(
x

1 + x

)2(2

0

)
+

(
x

1 + x

)3(3

1

)
+ . . .

]
− c3

[(
x

1 + x

)3(3

0

)
+ . . .

]
+ . . .

}
. (21)

Equation 21 can be written as a double sum with both indexes running from zero to infinity,

1

1 + x

∞∑
s=0

(−1)scs

∞∑
p=0

(
x

1 + x

)(s+p)(s+ p

p

)
, (22)

which by splitting the x
1+x

(s+p) term can be written,

∞∑
s=0

(−1)scsx
s

(
1

1 + x

)(s+1) ∞∑
p=0

(
x

1 + x

)p(s+ p

p

)
, (23)

which has the same form as the Euler Transformation, Equation 18, under the condition,(
1

1 + x

)(s+1) ∞∑
p=0

(
x

1 + x

)p(s+ p

p

)
= 1 , (24)
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or alternatively, (
1

1 + x

)−(s+1)

=

∞∑
p=0

(
x

1 + x

)p(s+ p

p

)
= (1 + x)(s+1) . (25)

This can be shown to be true by using an alternative representation of the binomial series, as given
by Wikipedia,

1

(1− z)(β+1)
=
∞∑
k=0

(
β + k

k

)
zk , (26)

and then taking z = x
1+x . This shows that,

1

(1− x
1+x)(s+1)

=
∞∑
p=0

(
s+ p

p

)(
x

1 + x

)p
, (27)

where the left hand side simplifies to,

1

(1− x
1+x)(s+1)

=
1

(x+1−x
x+1 )(s+1)

=

(
x+ 1− x
x+ 1

)−(s+1)

=

(
1

x+ 1

)−(s+1)

= (x+ 1)(s+1) , (28)

which satisfies the condition set in Equation 25. This proves the Euler Transformation by showing
Equation 23 is equivalent to Equation 18.
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4 Problem #4.

The three roots of
0 = x3 − 4.001x+ 0.002 (29)

can be found using perturbation theory, by introducing a small parameter ε,

0 = x3 − (4 + ε)x+ 2ε , (30)

to retrieve the equation of interest, this equation is evaluated for ε = 0.001.

4.1 Zeroth order solution.

To find the zeroth order solution, Equation 30 is solved for x when ε = 0. When this is the case,
the equation simplifies to

0 = x(x2 − 4) , (31)

which has roots x = 2, 0,−2.

4.2 Power Series in ε.

To find the roots of Equation 29 with a higher precision, the form of the answer is assumed to be
a power series of ε,

x(ε) = x0 + aε+ bε2 +O(ε3) , (32)

where x0 is one of the thee roots found in Section 4.1. From this point forward any terms containing
the third, or higher, power of ε will be neglected. If the solution to Equation 29 takes this form,
the function x(ε) can be inserted into Equation 30,

0 = x(ε)3 − (4 + ε)x(ε) + 2ε . (33)

When everything is multiplied through and terms are collected by powers of ε, Equation 30 becomes

0 = ε0[−4x0 + x30] + ε1[2− 4a− x0 + 3ax0] + ε2[−a− 4b+ 3a2x0 + 3bx20] +O(ε3) , (34)

which results in a system of three equations, where each coefficient of an εn term is equal to zero.
These equations can be solved to give values of a, b, and x0. These x0 values should be the same
as the zeroth order roots calculated in Section 4.1, and will serve as a way to check the validity of
the power series assumption. Solving the equations implied from Equation 34 gives

x0 = 2, 0,−2 (35)

a =
x0 − 2

3x20 − 4
(36)

b =
a− 3ax20
3x20 − 4

(37)

where each x0 will result in a different a, b. Evaluating these expressions for each x0 gives the power
series, Equation 32, with explicit coefficients that is responsible for enhancing the precision of the
zeroth order roots. The power series are

x(2)(ε) = 2 + 0ε+ 0ε2 +O(ε3) (38)

x(−2)(ε) = −2− 1

2
ε+

1

8
ε2 +O(ε3) (39)

x(0)(ε) = 0 +
1

2
ε− 1

8
ε2 +O(ε3) , (40)
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and by plugging in the correct value of ε = 0.001, the second order roots of the equation of interest
can be found to be

x
(2)
(2)(0.001) = 2 ; x

(2)
(−2)(0.001) = −2.0005 ; x

(2)
(0)(0.001) = 0.000499875 . (41)

4.3 Notes.

Numerically solving the equation of interest using Mathematica gives the roots to be x =
2,−2.0005, and 0.000499875 which shows the results of the second order power series are as exact
as the precision of Mathematica’s numerical solve algorithm.
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5 Problem Review #1.

5.1 Calculate Vector Triple Product, u× (v ×w).

In order to find the vector triple product u × (v × w), the cross product of vw is calculated by
finding the determinant of the matrix

v ×w =

 î ĵ k̂
vi vj vk
wi wj wk

 = (vjwk − vkwj )̂i+ (vkwi − viwk)ĵ + (viwj − vjwi)k̂ . (42)

To get the vector triple product, the determinant of the matrix,

u× (v ×w) =

 î ĵ k̂
ui uj uk

(vjwk − vkwj) (vkwi − viwk) (viwj − vjwi)

 , (43)

must be calculated. After multiplying out all terms, the determinant becomes,

[ujviwj − ujvjwi − ukvkwi + ukviwk ]̂i

+ [ukvjwk − ukvkwj − uiviwj + uivjwi]ĵ

+ [uivkwi − uiviwk − ujvjwk + ujvkwj ]k̂ . (44)

This simplifies by factoring out the common coefficient from the first pair of terms and second pair
of terms in each component of this vector,

[vi(ujwj + ukwk)]̂i− [wi(ujvj + ukvk)]̂i

[vj(ukwk + uiwi)]ĵ − [wj(ukvk + uivi)]ĵ

[vk(uiwi + ujwj)]ĵ − [wk(uivi + ujvj)]k̂ . (45)

We are free to add any term to this vector without changing the result, so long as the value of the
term is zero. Consider adding

0 = [vi(uiwi)]̂i− [wi(uivi)]̂i+ [vj(ujwj)]ĵ − [wj(ujvj)]ĵ + [vk(ukwk)]k̂ − [wk(ukvk)]k̂ , (46)

to Equation 45 gives,

u× (v ×w) = [vi(uiwi + ujwj + ukwk)]̂i− [wi(uivi + ujvj + ukvk)]̂i

+ [vj(ujwj + ukwk + uiwi)]ĵ − [wj(ujvj + ukvk + uivi)]ĵ

+ [vk(ukwk + uiwi + ujwj)]ĵ − [wk(ukvk + uivi + ujvj)]k̂ ,

(47)

such that,

u× (v ×w) = [vi(u ·w)̂i+ vj(u ·w)ĵ + vk(u ·w)k̂]− [wi(u · v)̂i+ wj(u · v)ĵ + wk(u · v)k̂]

= v(u ·w)−w(u · v) .
(48)
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5.2 Calculate u× (v ×w) + v × (w × u) + w × (u× v).

To show the sum of each permutation za×(zb×zc), the three vector triple products are calculated,

u× (v ×w) = v(u ·w)−w(u · v)

v × (w × u) = w(v · u)− u(v ·w)

w × (u× v) = u(w · v)− v(w · u) ,

(49)

it is easy to see the sum of the three vector triple products is zero, for each term in one vector
triple product cancels exactly with a term in another. Note that a · b = b · a.
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