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1 Arfken 11.2.3.

Determine the analytic function w(z) = u(x, y)+ iv(x, y), for a given u(x, y) or v(x, y). An analytic
function is differentiable and single-valued in the complex plane. For a derivative to exist, the
function w must satisfy the Cauchy-Riemann equations,

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (1)

1.1 u(x, y) = x3 − 3xy2

The function u(x, y) is single-valued in the complex plane, so as long as the function v(x, y) that
satisfies the Cauchy-Riemann equations, and is single-valued, the function w(z) will be analytic.
The derivatives of u are

∂u

∂x
= ux = 3x2 − 3y2,

∂u

∂y
= uy = −6xy , (2)

which gives the derivatives of a function v that satisfies the Cauchy-Riemann equations,

∂v

∂x
= vx = −uy = 6xy,

∂v

∂y
= vy = ux = 3x2 − 3y2 . (3)

These partial derivatives are single valued, so the function v will be as well. Determining a v(x, y)
that satisfies Equation 3 will yield an analytic function. There must a a term −y3 in v so that
differentiating with respect to y yields a −3y2 term. Looking at the equation for vy, there must also
be a term 3x2y to get a 3x2 term when differentiating with respect to y. Luckily, the x derivative
of this term is exactly what we expect from the equation for vx. This gives an v(x, y) of 3x2y−3y2,
yielding an analytic function,

w(z) = u(x, y) + iv(x, y) = [x3 − 3xy2] + i[3x2y − y3] (4)

= x3 + 3x(iy)2 + 3x2(iy) + (iy)3 (5)

= (x+ iy)3 = z3 . (6)

1.2 v(x, y) = e−y sinx

Following the same logic as in the previous section, the derivatives of v are

vx = e−y cosx, vy = −e−y sinx , (7)

which gives derivatives of u,

ux = vy = −e−y sinx, uy = −vx = −e−y cosx. (8)

It is easy to tell the integral with respect to x of the ux equation is e−y cosx because d
dx cosx =

− sinx. Similarly, the integral with respect to y of uy is also e−y cosx because d
dye
−y = −e−y. This

gives the analytic function,

w(z) = [e−y cosx] + i[e−ysinx] = e−y[cosx+ i sinx] = ei
2yeix = ei(x+iy) = eiz . (9)
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2 Arfken 11.2.7.

The function f(z) = f(reiθ) = R(r, θ)eiΘ(r,θ), where R(r, θ) and Θ(r, θ) are both differentiable real
functions, is an arbitrary complex function in polar coordinates. Using this, the Cauchy-Riemann
conditions can be found using a similar treatment of Arfken does in the beginning of Section 11.2.
Start with the definition of the derivative

f ′(z) = lim
δz→0

δf(z)

δz
=
df

dz
, (10)

which must be equal at a point z0 from all directions for the derivative to exist. Consider small
increments in the polar coordinates r and θ, given by (δr) and (δθ), using the chain rule these give
the small increment in z to be

δz = (δr)eiθ + ri(δθ)eiθ . (11)

A small increment of the function can be found the same way,

δf = (δR)eiΘ +Ri(δΘ)eiΘ , (12)

which gives the ratio of incremental movement of the function to the incremental movement of the
coordinates. This is given by

δf(z)

δz
=

(δR)eiΘ +Ri(δΘ)eiΘ

(δr)eiθ + ri(δθ)eiθ
, (13)

which must be equal along every path approaching a point z0.

Consider a path purely in the radial direction, such that δθ = 0. On this path the derivative can
be found by taking the limit in Equation 10,

lim
δz→0

δf(z)

δz
= lim

(δr)→0

(δR)eiΘ +Ri(δΘ)eiΘ

(δr)eiθ
= lim

(δr)→0

(δR)eiΘ

(δr)eiθ
+ i

R(δΘ)eiΘ

(δr)eiθ
(14)

lim
δz→0

δf(z)

δz
=
∂R

∂r

eiΘ

eiθ
+ i

∂Θ

∂r

ReiΘ

eiθ
. (15)

Now consider a path in the tangental direction so that (δr) = 0. When taking the same limit, this
becomes

lim
δz→0

δf(z)

δz
= lim

(δr)→0

(δR)eiΘ +Ri(δΘ)eiΘ

(riδθ)eiθ
= lim

(δr)→0

(δR)eiΘ

ri(δθ)eiθ
+ i

R(δΘ)eiΘ

ri(δθ)eiθ
(16)

lim
δz→0

δf(z)

δz
= −i∂R

∂θ

eiΘ

reiθ
+
∂Θ

∂θ

ReiΘ

reiθ
. (17)

For the derivative to exist, these must give the same result. To ensure this, the real and imaginary
parts of both are set equal to each other,

∂R

∂r

eiΘ

eiθ
=
∂Θ

∂θ

ReiΘ

reiθ
,

∂Θ

∂r

ReiΘ

eiθ
=
∂R

∂θ

eiΘ

reiθ
, (18)

which give the equivalent of the Cauchy-Riemann conditions in polar coordinates,

∂R

∂r
=
∂Θ

∂θ

R

r
,

∂Θ

∂r
R = −∂R

∂θ

1

r
. (19)
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3 Arfken 11.3.3.

Show the integral ∫ 4−3i

3+4i
(4z2 − 3iz)dz (20)

takes the same value along two paths: one along a straight line connecting the two points and one
along an arc of the circle with radius 5, centered at the origin.

3.1 Straight Line

The integral goes from 3 + 4i to 4 − 3i, so a straight line connecting these points has slope −7.
The equation for this line is y = −7x+ b, but when x = 3, y = 4, so 4 = −7(3) + b which implies
b = 25. The equations for y(x) and x(y) are

y(x) = −7x+ 25, x(y) = −y
7

+
25

7
, (21)

The function f(z) = 4z2 − 3iz, plugging in for z = x+ iy becomes

f(x, y) = 4(x+ iy)2 − 3i(x+ iy) = 4(x2 − y2 + 2ixy) + 3y − 3ix (22)

= 4x2 − 4y2 + 3y − 3ix+ 8ixy = 4x2 − 4y2 + 3y + i[8xy − 3x] . (23)

This can be reduced to two functions of one variable each fx(x) and fy(y) by substituting in the
expressions in Equation 21,

fx(x) = 4x2 − 4[49x2 + 252 − (2)(7)(25)x] + 3[−7x+ 25] + i[8x(−7x+ 25)− 3x]

= [4− (4)(49)]x2 + [(−4)(−2)(7)(25) + (3)(−7)]x+ [(−4)(252) + (3)(25)]

+ i[(8)(−7)x2 + {(8)(25)− 3}x]

= −192x2 + 1379x− 2425 + i[−56x2 + 197x] ,

fy(y) = 4

[
y2

49
+

252

49
− 2(25)y

49

]
− 4

49y2

49
+ 3y + i

[
8y

(
−y
7

+
25

7

)
− 3

(
−y
7

+
25

7

)]
= 4

[
−48y2

49
+

252

49
− 2(25)y

49

]
+

3(49)y

49
+ i

[
1

7

(
−8y2 + (8)(25)y + 3y − 3(25)

)]
=

1

49
[−192y2 + 53y + 2500] +

i

7
[−8y2 + 203y − 75] .

The integral then becomes∫ 4−3i

3+4i
f(z)dz =

∫ 4−3i

3+4i
f(x, y)(dx+ idy) =

∫ 4

3
fx(x)dx+ i

∫ −3

4
fy(y)dy , (24)

and each integral can be evaluated separately. The x integral is∫ 4

3
fx(x)dx =

−192

3
x3 +

1379

2
x− 2425x+ i

[
−56

3
x3 +

197

2
x2

] ∣∣∣∣4
3

=
67

2
− i7

6
, (25)

while the y integral is∫ −3

4
fy(y)dy =

1

49

[
−192

3
y3 +

53

2
y2 + 2500y

]
+
i

7

[
−8

3
y3 +

203

2
y2 − 75y

] ∣∣∣∣−3

4

= −469

2
+i

49

6
. (26)
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These values give the value of the integral,∫ 4−3i

3+4i
(4z2 − 3iz)dz =

[
67

2
− i7

6

]
+ i

[
−469

2
+ i

49

6

]
=

67− 469i

2
+
−49− 7i

6
=

76− 707i

3
. (27)

3.2 Circle of Radius 5

In this case z = 5eiθ, the equation for a circle of radius 5 in the complex plane. The limits of
integration are from 3 + 4i (θ1 = arctan[4

3 ]) to 4 − 3i (θ2 = arctan[−3
4 ]). For this z, the f(z)

becomes

f(z) = f(5eiθ) = 4(52e2iθ)− 3i(5eiθ)

= 100e2iθ − 15ieiθ = f(θ),

which makes the integral∫ 4−3i

3+4i
(4z2 − 3iz)dz =

∫ θ2

θ1
f(θ)d[5eiθ] =

∫ θ2

θ1
(100e2iθ − 15ieiθ)5ieiθdθ =

500

3i
ie3iθ

∣∣∣∣θ2
θ1

− 75

2i
i2e2iθ

∣∣∣∣θ2
θ1

=

[
500

3
e3iθ − 75

2
ie2iθ

]θ2
θ1

=
76− 707i

3
,

where the final step was evaluated using Mathematica.
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4 Arfken 11.3.6.

Show that the integral ∫ 1+i

0
z∗dz (28)

depends on the path for which the integral is evaluated. The function f(z) = z∗ is not analytic
and therefore Cauchy’s Integral Theorem does not apply. The two paths selected are (1) from the
origin (x, iy) = (0, 0) to (1,0) along the x-axis, then vertically from (1,0) to (1,i), and (2) from the
origin to (0,1) along the y-axis, then horizontally from (0,1) to (1,i). The integral changes its form,
when substituting z = x+ iy, to∫
z∗dz =

∫
(x−iy)(dx+idy) =

∫
x(dx)−iy(dx)+x(idy)−iy(idy) =

∫
(x−iy)dx+

∫
(x−iy)idy .

(29)
This integral form can be used to calculate the path integral along each leg of both paths.

4.1 Path 1

On the line from (0,0) to (1,0), the value of y is always zero, so dy is zero. Equation 33 becomes∫
(x− iy)dx+

∫
(x− iy)idy =

∫ 1

0
xdx =

1

2
, (30)

which will be added to the value of the integral over the second leg of the path, to get the value of
the integral along the total path. The second leg has x constant, equal to 1, so dx is zero. Along
this leg, y ranges from 0 to 1 which makes Equation 33 into∫

(x− iy)dx+

∫
(x− iy)idy =

∫ 1

0
(1− iy)idy =

∫ 1

0
(i+ y)dy = iy +

1

2
y2

∣∣∣∣1
0

= i+
1

2
, (31)

which gives the total value of
∫ 1i

0 z∗dz along path (1) to be i+ 1.

4.2 Path 2

On the line from (0,0) to (0,1), the value of x is always zero, so dx is zero. Equation 33 becomes∫
(x− iy)dx+

∫
(x− iy)idy =

∫ 1

0
−iyidy =

∫ 1

0
ydy =

1

2
, (32)

which will be added to the value of the integral over the second leg of the path, to get the value of
the integral along the total path. The second leg has y constant, equal to 1, so dy is zero. Along
this leg, y ranges from 0 to 1 which makes Equation 33 into∫

(x− iy)dx+

∫
(x− iy)idy =

∫ 1

0
(x− 1i)dx =

1

2
x2 − ix

∣∣∣∣1
0

=
1

2
− i , (33)

which gives the total value of
∫ 1i

0 z∗dz along path (2) to be 1− i. This is clearly not equivalent to
the integral along path (1), so the integral of f(z) = z∗ does depend on path.
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5 Arfken 11.4.7.

Evaluate the integral ∮
C

sin2 z − z2

(z − a)3
dz , (34)

where the contour encircles point a. Begin by noting this integral has the same form as Arfken
Equation 11.33, which implies,

2πi

2
f ′′(a) =

∮
C

f(z)

(z − a)3
dz . (35)

To calculate this, the second derivative of f(z) is needed,

f(z) = sin2 z − z2 (36)

f ′(z) = 2 sin z cos z − 2z (37)

f ′′(z) = (2 cos2 z)− (2 sin2 z)− 2 , (38)

so that f ′′(a) = 2(cos2 a − sin2 a) − 2. Using the double angle formula this becomes f ′′(a) =
2 cos(2a)− 2, which gives the value of the integral,∮

C

sin2 z − z2

(z − a)3
dz = 2πi(cos(2a)− 1) . (39)

Page 7 of 8



Dylan J. Temples Arfken : Solution Set Two

6 Arfken 11.4.8.

Evaluate the integral ∮ C dz

z(2z + 1)
, (40)

where the contour is the unit circle. The function g(z) = (2z2 + z)−1 is not in the correct form to
use Cauchy’s Integral Formula, but it can be made into the correct form by using a partial fraction
decomposition,

1

z(2z + 1)
=
A

z
+

B

2z + 1
=
A(2z + 1) +Bz

z(2z + 1)
. (41)

Which gives the equation 2Az + A + Bz = 1, which says A = 1 and B = −2A. Now the integral
becomes∮ C dz

z(2z + 1)
=

∮
C
dz

(
1

z
+
−2

2z + 1

)
=

∮
C
dz

(
1

z
+
−1

z + 1
2

)
=

∮
C

dz

z
+

∮
C

−dz
z + 1

2

, (42)

for which Cauchy’s Integral Formula does apply. For the left term f1(z) = 1 and for the right
f2(z) = −1. The singularities of this function are located at z0 = 0 and z0 = 1

2 , both of which are
inside the unit circle contour. Applying Cauchy’s Integral Formula gives,∮ C dz

z(2z + 1)
= 2πf1(z) + 2πf2(z) = 2π(1) + 2π(−1) = 0 . (43)
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