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1 Arfken 11.5.7.

To find the Laurent expansion of
flz) = (1)

about z=1, the bare z terms can be rewritten as z + 1 — 1, which allows f(z) to be written as

[z +1—1]ext11 z—1 1 Y1
= = 2
f(z) Z_]. ez—1+Z—1 € Y ()
which after expanding the exponential becomes
1 > (z—1)"
=e|l -
e =i ] T @
n=0
Writing out this series is
1 z—-1 (=12 (2-1)3
- . 4
1 * 1 * 2 * 3! + ’ 4)
which when multiplying through by a factor of 1/(z — 1) is
1 1 z2—1 (2—1)? = (2 1)
- s = — 5
11T T 7 Z !’ 5)
n=-—1
making the function of interest,
oo oo
z—1)" z—1)"
=[S et 3 B o
n=0 ’ n=-—1 ’
Adding and subtracting a e/(z — 1) term allows the first sum to be rewritten ,
1 1 Zz-1)" X (z—1)"
= — _— _— 7
o[-y e e 3 B g

ol R ®
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2 Arfken 11.5.8.

To find the Laurent expansion of

f(z) = (2= 1)e!/? (10)
about z=0, the 1/z term can be written z~! and the exponential can be expanded,
(o9} o0 o oo
(Z—l)n yn Z—n—l—l yn
n=0 n=0 n=0 n=0
The first sum can be changed to go from n = —1 — oo, which would make the power of 2z in each
sum the same,
.  _—n+1 0 -n —(-1) o -n
z z z z
L D 2
= | R
= n! = (n+1)! 1 = (n+1)!

so the complete function can be written as

o0 —

f(z):z+7;)M—7;)Zm, (13)

which makes the Laurent series

S 1 17 .,
f@):w%{w—m]z : (14)
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3 Arfken 11.6.11.

Consider the function

filz) = /000 et | (15)

with ¢ real. This function can be rewritten by using z = x + iy, as

file) = [ eerintd - (16)

which clearly is only convergent for x > 0. Therefore, the domain for which f;(z) exists, is Re(z)
> 0. On this domain, f; can be evaluated,
o 1 1
o= ()1 a7)

o 1
filz) = / e ldt = ——e
0 0 z z

z

which is defined everywhere but z = 0. So fa(z) = 1/z is therefore an analytic continuation of
f1(2) over the entire z-plane except z = 0. This function can be rewritten as

é_ Z_lm - (EZ) W - (—11) 1- (zl—l—i)/z' = (z1+i)/i (18)

this function can be expanded around z = —i as
' 0o 4 00
fg(z)ZZZ[ ] Z "z 40", (19)
n=0 =

which converges on |(z+1)/i| < 1, which if the modulus of ¢ is brought to the other side, and noting
that |i| = 1 implies that f3(z) converges for |(z +1i)| < 1
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4 Arfken 11.7.1.

To calculate residues, the formulas on page 510 of Arfken can be used:

(11.66) a_1 = ZlLIglo ((z—20)f(2)) (20)
1 ) n—1 "
0168 01 = ot [ (= 20" 1)

where the first equation is for simple poles, and the second is for poles of order n. Secondarily,
note that 2% + a? can be factored to be (z +ia)(z — ia), which has zeros at +-ia. Note that for this
case the residue of one pole can be conjugated to find the residue for the other. Because there are
no poles higher than order 2 in this problem the Equation 21 becomes

a_1 = lim [d ((z— zo)2f(z))} . (22)

z—z0 | dz

4.1 f(Z) = ﬁ

As noted above this function has two simple poles at zy = *ia. To find the residues, Equation 20
is used,

Res(ia) = lim < (2 — ia) > -1 (23)

z—ia \ (z — 1a)(z + ia)

Res(—ia) — lim (( (2 — (~ia)) >:—1. (24)

z——ia \ (2 — ia)(z + ia) 2ia

4.2 f(Z) = m

The denominator of this function is squared, so it has two poles of order 2 at zg = +ia. To find
the residues, Equation 22 is used,

Res(ia) = lim [d <( (2 — ia)® ﬂ — lim —2(z 4 ia) P = 2 = (25)

z—ai | dz \ (z —ia)?(z + ia)? 2 ia © Ri3a3  4a3i

Res(—ia) = lim [jz <(z (—z i;)gzzicﬁ);a)Q)] = Jm 2z —ia)™ = 8i32’a3 - _ﬁ - (29)

2

4.3 f(Z) = (sz_—aQ)Q

The denominator of this function is squared, so it has two poles of order 2 at zg = +ia. To find
the residues, Equation 22 is used,

Res(ia) = lim [d< (e —da)? ﬂ — lim [— 2 % )3] 1 e

z—ai | dz \ (z —ia)%(z + ia)?

Res(—ia) = lim [d( 2z — (~ia))” )} = lim [— 28 % }:i. (28)

z=ai | dz \ (z —ia)?(z + ia)?

Page 5 of 10



Dylan J. Temples Arfken : Solution Set Three

4.4 f(Z) _ sin(1/2)

22+4a?
This function has two simple poles at zg = Fia. To find the residues at +ia, Equation 20 is used,

Res(ia) — lim (sin(l/z)(z - ia)) _ sin(—i/a) _ sinhl/a (29)

z—ia \ (2 —ia)(z + ia) 2ia 2a
L sin(1/z)(z — (—ia))\ _ sin(i/a)  sinhl/a
Res(—ia) = zl—lglm ( (z —ia)(z +ia) > T 2ia 20 (30)

This function also has an essential singularity at zp = 0, whose residue can be found by Laurent
expanding the numerator and denominator and looking for the coefficient of the % term. The
expansion of the denominator has a pole at z = +ia, so for |z| < a the expansion is

[o¢]

1 1 2n  —2n—2
p—y —_— 1
21a2  a2((z/a)? a22<a2> za ’ (31)

n=0

where the sum was introduced as in Arfken Example 11.5.1, and using the binomial expansion.
When |z| > a, the expansion is

1 1 2n ,—2n—2
= = . 2
224+a?  22(1+ (a/2)?) Z2Z(Z2> Za (32)

n=0
Now expand the numerator using a Taylor series,
[e.e] oo
) (1/Z)2n+1 »—(2n+1)
1/2) = - = o D el 33
sin(1/z) nz:%( AN CTER)I Z:%( eI (33)
Using these expansions, the complete series representing f(z) is
sin 1/z 20, ~2n—2 L on_o 0 5—(2n+1)
= -t 34
B =[S s S B o

The 27! term will come from the positive powers of z from the 1/(2? + a?) series multiplied by the
sine series:

> W2 B = (=)D

;(_1) @n+1)” ¢ _nz:% 2n+1)! (35)
B i i (_1)7’L 1 2n+1 (36)
a za (2n+1)! \a

_ [i sin(l/a)] L (37)

which says

Res(0) = a_1 — Lll sin(l/a)] . (38)

4.5 f(z)= p B
This function has two simple poles at zy = *ia. To find the residues, Equation 20 is used,
20, _ - i(ia) —a
Res(ia) = lim =¢ ,(Z za? = zae' - (39)
z—ia \ (2 — 1a)(z + ia) 2ia 2
zeiz({/: — (—za)) _ —iaet(—ia) _ el | (10)
(z —ia)(z +ia)

—2ia 2

z——ia

Res(—ia) = lim (
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4.6 f(z) = 2=

22—a2

This function has two simple poles at zy = +a. To find the residues, Equation 20 is used,

) ze"(z — a) ael®)  gla
R =1 = = — 41
es(a) e <(z—a)(z+a)> 2a 2 (41)
) ze¥(z — (—a)) —ael=®)  gie
eS( CL) z_lfl_la < (2 _ (l)(z + a) > —2(1 2 ( )
4.7 f(z) = £
This function has two simple poles at zy = *a. To find the residues, Equation 20 is used,
' etz (Z _ a) ei(a) ela
Res(a) = 1 = == 43
es(a) e ((z —a)(z+ a)) 2a 2a (43)
] eiz(z _ (_a>) ei(fa) e—ia
es(~a) S <(z —a)(z+ a)) —2a 2a (44)
48 f(z)=25for0<k<1
This function has one simple pole at zg = —1. To find the residues, Equation 20 is used,

27k — (= ; ;
Res(—l) = z1—1>n—11 (W) = (—1)*]C — (elﬂ')fk — o—imk (45)
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5 Arfken 11.7.4.

The principal value of the integral

o P
P :][ dx , (46)
0 r—1

can be found by splitting the integral at x = 1, by introducing a small parameter . Ignoring the
limit as the small parameter approaches zero, for now, this is denoted by P,

B 1-§ ,.—p 0 —p 1-6 1 0 1
P:/ x dx—i-/ * dx:—/ x P dx +/ x P /@ dx (47)
0 r—1 1+5.%'—1 0 1—=x 1+6 1—1/,%'

11 — [ 1\"
=— x P :v”da:—l—/ P —————dr = — / x”_pdx—i-/ z7P! ()
/0 Z 146 x1—(1/x) 2 0 146 ;:0 T

n=0

> 1-6 > 00
= — Z/ " Pdx + Z/ gpl (49)
oJ1+e

= p+1 & =P |®
I RS o] e &
n—p+liy s =L ntplligs
(1= Pt N (1+0)™P
I T &
n—p+1 — n+p
n=0
n p+1 1 5~ n—p
_ Z [ _(a+9) ] . (52)
— n—p+1 n+p
Taking the limit as the small parameter approaches zero is
o
_ -1 1
P=1limP = [ + } , (53)
§—0 - n—p+1 n-+p

under a change of variable in the first sum such that m = n + 1 and isolate the first term in the
seconod sum, this becomes

o o
P= + +

after changing the dummy index m back to n. Simplifying this some more makes it

(e}

;{n}rp_ : ] 59

n—p

o
n—p—n-—p 1 1
= + =42y (55
Z{ n? —p’ ] p ;pQ—nQ )
Note the pole expansion of cot z given by Arfken Equation 11.81 can be written
1 2p= 1
cot(z *—1-22’5 22 v = cot(pm) = —+2p7r§ 2:m+ﬂ7§1pz—n?,
(56)
from this it is easy to see
Ty 7
= t , 5
§ e = moot(e) (57)

which differs from Arfken by a factor of -1.
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6 Arfken 11.7.8.

6.1 Secant Pole Expansion

Using the Mittag-Leffler theorem the pole expansion of sec z can be written as

- 1 1
secz-secO—i—an( +> . (58)
n=1

Z—2Zn  Zn

Secant has poles at odd multiples of 7/2, so that zg = +(2n + 1)7/2, for integer n; each pole is a
simple pole. The residues can be calculated using L’Hopital’s rule,

— 1
b — lim z—(2n+ 1)7m/2 _ lim

——— = (-, (59)
—(2n+1)7/2 COs z z—(2n+1)w/2 SInz

for n = 0, the residue must be -1, hence the n + 1. However, the positive and negative poles of
the same absolute value have opposite sign residues, so the sums are subtracted instead of added,
making Equation 58 (following the method in Arfken) into

N
1 1 1 1
secz =1+ g 1)+ <m7r + mw) - g (—1)"tt <z+ — + _Wr) , (60)
2 2 2

2 n=0

where m = 2n + 1. Combing the terms in the sums yields

n=0

Evaluating the sum with no z dependence in the limit N — oo, using MATHEMATICA yields,

Z(_l)n-‘rl <T;LL7T> _ Z(_l)n—‘rl(znil)ﬂ =1, (65)

n=0

making the expression for secant, in the limit N — oo, into

SGC(Z) _ Z(_l)n-‘rl <Z2 — Z n+1 < 27&(:;})2) (66)

n=0 n=0 2

> 2n+1
—_ _1 n+1 67
m Z( ) ((2n+1)7r ( )

which is exactly the form of Arfken Equation 11.82.
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6.2 Cosecant Pole Expansion

Cosecant has simple poles at integer multiples of m, so zyp = nm, with residues given by (using
L’Hépital’s rule)
— 1
by = lim =" = lim = (-1)", (68)

z—nm  Sinz z—nmT COS 2

for n = 0 the pole must be +1, hence the power of n. Following the method in Arfken used for
cotangent, the expansion becomes

N
cse(z) — % = Z(—l)" [ ! + L + ! + L . (69)
n=1

zZ—nm nmw Z2+nm —nm

Adding the 1/z term removes the simple pole at z = 0 because for small z,

csc(z) — — = ——=-—=-=0. (70)

so that

ese(z) = = + lim i(—m [22222] (72)

z  Noool (nm)
1 al 1

— 22y () | (73)
LS [t

which is exactly the form of Arfken Equation 11.83.
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