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1 Arfken 11.8.10.

Show that ∫ ∞
0

x sinx

x2 + 1
dx =

π

2e
. (1)

First define f(x) as the integrand, and replace the sinx term with the complex exponential repre-
sentation,

f(x) =
x 1
2i(e

ix − e−ix)

x2 + 1
=

1

2i

[
xeix

x2 + 1
− xe−ix

x2 + 1

]
, (2)

which makes the integral of interest,

I ≡
∫ ∞
0

f(x)dx =
1

2i

[∫ ∞
0

xeix

x2 + 1
dx−

∫ ∞
0

xe−ix

x2 + 1
dx

]
=

1

2i

[∫ ∞
0

xeix

x2 + 1
dx+

∫ 0

∞

xe−ix

x2 + 1
dx

]
,

(3)
by flipping the limits of integration and obtaining a factor of −1 for the second integral. By
substituting x→ −x in the same integral, the limits of integration will span the entire real line. This
causes the integrand to pick up two factors of −1 (one from x and one from dx), and (−x)2 = x2,
therefore the only change to the integrand is e−ix → eix. This substitution makes the integrands
equal, and the limits of integration continuous, allowing the integral to be rewritten as

I =
1

2i

∫ ∞
−∞

xeix

x2 + 1
dx , (4)

which can be solved using a contour integral, with one section spanning the entire real axis. Rewrit-
ing this integral with a complex-valued (x→ z) function as a contour integral gives∮

C
φ(z)dz =

∮
C

zeiz

z2 + 1
dz = 2πi

∑
n

Res
z→zn

φ(z) , (5)

where zn is the nth pole of φ(z). Note that φ(z) has poles at zn = ±i. It is clear that in the
upper half-plane, φ(z) is analytic except for the pole at z0 = i. Choosing C such that it is a closed
semi-circle in the upper half-plane of infinite radius, allows the integral to be written,∮

C
φ(z)dz = 2πiRes

z→i
φ(z) = lim

R→∞

[∫ R

−R
φ(z)dz +

∫
CR

φ(z)dz

]
= 2iI + lim

R→∞

∫
CR

φ(z)dz , (6)

where CR is the circular arc in the upper half-plane, going from θ = 0 to θ = π. The integral
along the circular arc goes to zero because as |z| → ∞ in the upper half plane, the exponential is
negligible, so φ(z) dies slightly faster than 1/z (see Arfken page 525). This gives the value of the
desired integral to be

I = π Res
z→i

φ(z) . (7)

The value of the residue is calculated in the standard way,

Res
z→i

φ(z) = lim
z→i

(z − i) zeiz

(z + i)(z − i)
=
ie−1

2i
=

1

2e
, (8)

so that ∫ ∞
0

x sinx

x2 + 1
dx =

π

2e
. (9)

Page 2 of 11



Dylan J. Temples Arfken : Solution Set Four

2 Arfken 11.8.17.

Show that

I ≡
∫ ∞
0

xp lnx

x2 + 1
dx =

π2

4

sin(πp/2)

cos2(πp/2)
, (10)

for 0 < p < 1. As in the previous problem, this
will eventually be evaluated using a contour in-
tegral; begin by defining a function

f(z) =
zp Ln(z)

z2 + 1
, (11)

so that ∮
C
f(z)dz = 2πi

∑
n

Res
z→zn

f(z) , (12)
Figure 1: Contour used in evaluating the integral
in Arfken 11.8.17.

where Ln(z) is the complex logarithm. Inspection of this function shows there are two simple poles
at zn = ±i. Expanding the complex logarithm for z = reiθ, gives Ln(z) = ln(r) + iθ, which says
there exists a branch point at z = 0. Therefore a branch cut is introduced along the positive real
axis. Following Arfken Example 11.8.8, the contour C is defined to be a line just above the positive
real axis (where zp = xp and Ln(z) = lnx) integrated to the right, which is connected to a circle
of infinite radius that terminates at a line just below the positive real axis. The final arc of the
contour is a circle of infinitesimal radius ε around the origin connecting the two parallel segments
(see Arfken Figure 11.26). This makes the contour integral∮

C
f(z)dz = lim

R→∞
lim
ε→0

[∫
CR

f(z)dz +

∫
Cε

f(z)dz +

∫ R

ε
f(z)dz +

∫ ε

R
f(z)dz

]
, (13)

where the first line integral (ε to R) is the integral of interest, define this segment as A, and the
other linear path as B. As in the example, both integrals over circular arcs do not contribute to
this sum, for f(z) dies as ∼ 1/z. Along path B, z = re2πi, therefore its contribution is

lim
R→∞

lim
ε→0

∫ ε

R
f(z)dz =

∫ 0

∞

rpe2πip[ln(r) + ln(e2πi)]

r2e4πi + 1
dr (14)

= −
[∫ ∞

0

rpe2πip ln(r)

r2 + 1
dr +

∫ ∞
0

rpe2πip(2πi)

r2 + 1
dr

]
, (15)

by noting that enπi = 1 for even n. Along path A, z = r because θ = 0, so the integral of interest
is

I = lim
R→∞

lim
ε→0

∫ R

ε
f(z)dz =

∫ ∞
0

rp ln(r)

r2 + 1
dr , (16)

from this the integral along path B becomes

−
[
e2πip

∫ ∞
0

rp ln(r)

r2 + 1
dr + 2πie2πip

∫ ∞
0

rp

r2 + 1
dr

]
= −

[
e2πipI + 2πie2πip

π

2 cos(pπ/2)

]
, (17)

using the result of Arfken Example 11.8.8. Therefore, using Equations 11 and 13, and the values
for the integrals,

2πi

[
Res
z→i

f(z) + Res
z→−i

f(z)

]
= I − e2πipI − 2πie2πip

π

2 cos(pπ/2)
, (18)
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which yields,

I =
1

1− e2πip

[
2πi(B+ +B−) + i

π2e2πip

cos(pπ/2)

]
, (19)

where B+ and B− are the residues for +i and −i, respectively. The only remaining step is to
calculate the residues: begin by writing the poles in polar form, z+ = eiπ/2 and z− = ei3π/2. The
residues can now be calculated in the standard way

Bi = lim
z→zi

(z − zi)
zp Ln(z)

(z + zi)(z − zi)
=
zpi ln(zi)

2zi
, (20)

yeilding the results

B+ = eiπp/2
iπ/2

2i
and B− = e3iπp/2

3iπ/2

−2i
(21)

B+ +B− =
π

4
(eiπp/2 − 3e3iπp/2) , (22)

the exponentials are not simplified to ±i so they can be substituted for trig functions later. This
gives the value for the integral of interest

(1− e2πip)I =

[
2πi

π

4
(eiπp/2 − 3e3iπp/2) + i

π2e2πip

cos(pπ/2)

]
(23)

=
iπ2

2

[
eiπp/2 − 3e3iπp/2 +

2e2πip

cos(pπ/2)

]
. (24)

To remove the factors of 2 in the exponentials, both sides are multiplied by a factor of e−iπp, which
yields,

(e−iπp − eiπp)I =
iπ2

2

[
e−iπp/2 − 3eiπp/2 +

2eπip

cos(pπ/2)

]
. (25)

Though they were used previously, it is handy to note the Euler identities{
sinφ = 1

2i(e
iφ − e−iφ)

cosφ = 1
2(eiφ + e−iφ)

and

{
eix = cosx+ i sinx

e−ix = cosx− i sinx
, (26)

which when employed, Equation 25 becomes

−2i sin(pπ)I =
iπ2

2

[
e−iπp/2 − 3eiπp/2 +

2eπip

cos(pπ/2)

]
(27)

sin(pπ)I =
π2

4

[
3eiπp/2 − e−iπp/2 − 2eπip

cos(pπ/2)

]
(28)

=
π2

4

[
2eiπp/2 + eiπp/2 − e−iπp/2 − 2(eπip/2)2

cos(pπ/2)

]
(29)

=
π2

4

[
2eiπp/2 + 2i sin(pπ/2)− 2[cos(pπ/2) + i sin(pπ/2)]2

cos(pπ/2)

]
(30)

=
π2

4

[
2 cos(πp/2) + 2i sin(πp/2) + 2i sin(pπ/2)− 2[cos(pπ/2) + i sin(pπ/2)]2

cos(pπ/2)

]
(31)

=
π2

4

[
2C(πp/2) + 4iS(πp/2)− 2

[C2(pπ/2)− S2(pπ/2) + 2iC(pπ/2)S(pπ/2)

C(pπ/2)

]
,

(32)
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where S(x) = sin(x) and C(x) = cos(x). Making the transformation that sin(pπ) = 2 cos(pπ/2) sin(pπ/2),
yields

2IC(pπ/2)S(pπ/2) =
π2

4

[
2
S2(pπ/2)

C(pπ/2)

]
⇒ I =

π2

4

[
sin(pπ/2)

cos2(pπ/2)

]
. (33)
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3 Arfken 11.8.18b.

Show that ∫ ∞
0

(lnx)2

1 + x2
dx =

π3

8
, (34)

by noting that the suggested transformation is
x → z = et, using the suggested contour in Fig-
ure 2 and letting R → ∞. Define the integrand
as f(x). Under this transformation, dx → etdt
and the limits of integration become −∞ to ∞.

Figure 2: Contour suggested to evaluate the in-
tegral in Arfken 11.8.18b.

Using the transformation above the integrand becomes

f(x)→ f(z) =
(ln z)2

1 + z2
→ f(t) =

t2

1 + e2t
, (35)

therefore the contour integral around the contour in Figure 2 becomes∮
C
f(z)dz =

∮
C
f(t)etdt =

∮
t2et

1 + e2t
dt =

∮
t2

e−t + et
dt =

∮
t2

2 cosh(t)
dt . (36)

Note that under this transformation, the integral of interest is I =
∫∞
−∞(t2et)/(1 + e2t) dt, which is

equivalent to the expression in Equation 34. Define the integrand (in terms of t) from Equation 36
to be φ(t),

φ(t) =
t2et

1 + e2t
=

t2

e−t + et
=

t2

2 cosh(t)
, (37)

Now the contour integral becomes∮
C
φ(t)dt = lim

R→∞

[∫ R

−R
φ(t)dt+

∫ R+iπ

R
φ(t)dt+

∫ −R+iπ

R+iπ
φ(t)dt+

∫ −R
−R+iπ

φ(t)dt

]
, (38)

where the first integral is I. The integral along the vertical at +R is∫ R+iπ

R

t2

e−t + et
dt , (39)

which by examination of the real part, vanishes as t2/et as |t| → ∞, which is faster than 1/t, so
this integral does not contribute to the contour. The same argument can be used for the vertical
segment at −R. The final part of the puzzle is the horizontal integral at +iπ. Under a change of
variables such that t′ = t+ iπ (so dt′ = dt), this integral becomes∫ −R+iπ

R+iπ
φ(t)d =

∫ −R
R

φ(t+ iπ)dt =

∫ −R
R

(t+ iπ)2et+iπ

1 + e2(t+iπ)
dt =

∫ −R
R

(t+ iπ)2eteiπ

1 + e2te2iπ
dt (40)

= −
∫ R

−R

−(t+ iπ)2et

1 + e2t
dt =

∫ R

−R

t2et

1 + e2t
dt− π2

∫ R

−R

et

1 + e2t
dt+ 2iπ

∫ R

−R

tet

1 + e2t
dt ,

(41)

Note that the first integral is I and the last is zero, because in the limit R→∞, this becomes an
integral of an odd function over all space, which is zero. All that is left in the evaluation of this
integral is to evaluate the middle integral,

π2
∫ R

−R

et

1 + e2t
dt =

π2

2

∫ R

−R

1

cosh(t)
dt, (42)
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this is an elementary integral and can be looked up in tables, its value is π/2.

Using this information, by the Cauchy integral formula, Equation 38 becomes

2πi
∑
j

Bj = I + I − π3

2
, (43)

where Bj is the residue of the jth pole (located at zj → tj). The function f(t), given in Equation 35,
has poles at iπn/2, where n is any odd integer. However, by adding a branch cut down the negative
imaginary axis, the number of poles can be limited to a finite number. There is a branch point at
zero, so by adjusting the contour by adding a semicircular arc of infinitesimal radius around the
origin, it can be avoided. This segment does not contribute to the total contour because f(t)→ 0
as |t| → 0, so the integral vanishes. This says that there is one pole contained in the contour,
t = iπ/2. To find this residue B, L’Hôpital’s rule is applied to f(t),

B = lim
t→iπ/2

t2(t− iπ
2 )

2 cosh(t)
= lim

t→iπ/2

3t2 − iπt
2 sinh(t)

=
−3

4π
2 + 1

2π
2

2 sinh iπ
2

=
−1

4π
2

2i
, (44)

which gives an expression for the integral of interest, from Equation 43,

I = πiB +
π3

4
⇒ I = −π

3

8
+
π3

4
, (45)

which says the integral of interest is ∫ ∞
0

(lnx)2

1 + x2
dx =

π3

8
. (46)
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4 Arfken 11.8.22.

Show that∫ ∞
0

1

1 + xn
dx =

π/n

sin(π/n)
, (47)

using the contour shown in Figure 3, with θ =
2π/n. Define the integrand as f(x), and the con-
tour shown in Figure 3 as C. Note that along
the path down the positive real axis (path A),
z = x, so this integral is the integral of inter-
est, I. Along the other linear path (path B),
z = re2πi/n, so that dz = dr(e2πi/n).

Figure 3: Sector contour used in evaluating the
integral in Arfken 11.8.22, with θ = 2π/n.

Therefore the integral of f(z), where z is complex, is

2πi
∑
k

Res
z→zk

f(z) =

∮
C
f(z)dz = lim

R→∞

[∫ R

0
f(z)dz +

∫
CR

f(z)dz +

∫ 0

R
f(z)dz

]
, (48)

where zi are the poles contained in the contour C, and the integral along the circular arc of radius R,
CR vanishes. This is the case because making the assumption that n > 1, f(z) dies faster than 1/z.
This function has simple poles at the nth roots of +1, denoted by Bk. This makes the expression
for the contour integral

I −
∫ ∞
0

f(z)dz = 2πi
∑
k

Bk , (49)

where the limits of integration of the remaining integral were swapped, acquiring a factor of −1.
This integral can be written as∫ ∞

0
f(z)dz =

∫ ∞
0

1

1 + zn
dz =

∫ ∞
0

e2πi/n

1 + rne2nπi/n
dr = e2πi/n

∫ ∞
0

1

1 + rn
= e2πi/nI , (50)

which makes Equation 48 into

I(1− e2πi/n) = 2πi
∑
k

Bk . (51)

Using the trig identities used in Arfken 11.8.17, and multiplying through by a factor of e−πi/n, the
(1− e2πi/n) term can be replaced,

I(−2i sin(π/n)) = e−πi/n2πi
∑
k

Bk ⇒ I = −πe
−πi/nBn

sin(π/n)
. (52)

The sum of all residues can be reduced to a single residue because the angle for path B depends
on n. This splits the circle of infinite radius into n evenly sized sectors, each containing exactly
one pole, denoted by Bn, located at zn = eπi/n. The residue of this pole can be found the standard
way,

Bn = lim
z→zn

(z − zn)
1

1 + zn
= lim

z→zn

1

nzn−1
=
z1−nn

n
=
zn(z−nn )

n
=
eπi/n

n
e−nπi/n = −e

πi/n

n
, (53)
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using L’Hôpital’s rule. Combining this with Equation 52, gives the final result

I = − πe−πi/n

sin(π/n)

(
−e

πi/n

n

)
=

π/n

sin(π/n)
=

∫ ∞
0

1

1 + xn
dx (54)
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5 Arfken 11.9.3.

Evaluate
1

13
− 1

33
+

1

53
− . . . . (55)

This sum can be defined as

S ≡ 1

13
− 1

33
+

1

53
− . . . =

∞∑
n=1

(−1)n−1
1

(2n− 1)3
=
∞∑
n=0

(−1)n
1

(2n+ 1)3
. (56)

However, according to Arfken Table 11.2, in order to use the prescribed method to evaluate the
sum, it must be in the form

∞∑
n=−∞

(−1)nf

(
n+

1

2

)
=
∑
j

Res
z→zj

[f(z)π sec(πz)] , (57)

so the sum is rewritten as

S =
1

23

∞∑
n=0

(−1)n(
n+ 1

2

)3 =
1

23

[
1

2

∞∑
n=−∞

(−1)n(
n+ 1

2

)3
]
. (58)

Taking the summand as f(n + 1
2), it is easy to see that zf(z) vanishes as ∼ 1/z2 as |z| → ∞,

therefore, Arfken Equation 11.123 applies. This gives

24S =
∑
j

Res
z→zj

[
π sec(πz)

(−1)z

z3

]
=
∑
j

Res
z→zj

f(z) , (59)

where the definition of f(z) is inferred from the equation, and zj is the location of the pole. The
residues of f(z) can be found using Arfken Equation 11.68,

Bj =
1

(n− 1)!
lim
z→zj

[
dn−1

dzn−1
((z − zj)nf(z))

]
, (60)

where n is the order of the pole. The function f(z) has a pole of order three at z = 0, so the above
equation simplifies to

B0 = lim
z→0

π

2

d2

dz2
sec(πz) =

π

2

[
π2 sec3(πz) + π2 tan2(πz) sec(πz)

]
z=0

=
π3

2
[1 + 0] , (61)

however, there is also poles at z = (k+ 1
2)/2, for all integer k, from the secant factor. These are all

simple poles so their residues are given by

Bk = lim
z→(k+ 1

2
)/2

π[z − (k + 1
2)/2]

z3 cos(πz)
= lim

z→(k+ 1
2
)/2

π

3z2 cos(πz)− πz3 sin(πz)

=
−1

[(k + 1
2)/2]3 sin[π(k + 1

2)/2]
= − 1

23
(−1)k

[k + 1
2 ]3

.

Therefore the sum of all Bk’s is
∞∑

k=−∞
Bk = −

∞∑
k=−∞

1

23
(−1)k

[k + 1
2 ]3

= −2S , (62)

which gives the result of the sum to be

24S =
π3

2
− 2S ⇒ 2S(23 + 1) =

π3

2
⇒ S =

π3

22
1

(23 + 1)
=
π3

36
. (63)
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6 Arfken 11.9.7.

Show that
1

cosh(π/2)
− 1

3 cosh(3π/2)
+

1

5 cosh(5π/2)
− . . . =

π

8
. (64)

This sum takes the form

S =
∞∑
n=0

(−1)n
1

2n+ 1

1

cosh[(2n+ 1)π/2)]
=
∞∑
n=0

(−1)n
1

2(n+ 1
2)

1

cosh[(n+ 1
2)π)]

, (65)

in order to use the contour integral based formulas for summations, this sum needs to be of the
form

∑∞
n=−∞(−1)nf(n+ 1/2), so to change the rage of the summation, it can be written

2S =

∞∑
n=−∞

(−1)n
1

2(n+ 1
2)

1

cosh[(n+ 1
2)π)]

, (66)

where the summand can be written as a function of z,

f(z) ≡ 1

2z cosh(πz)
. (67)

Using the relations in Arfken Table 11.2 the sum can be written

2S =
∑
j

Res
z→zj

[
π secπz

2z cosh(πz)

]
=
∑
j

lim
z→zj

[
(z − zj)

π secπz

2z cosh(πz)

]
(68)

=
∑
j

lim
z→zj

[
d

dz
{π(z − zj)} /

d

dz
{2z cos(πz) cosh(πz)}

]
(69)

=
∑
j

[
π

2 cos(πz)[πz sinh(πz) + cosh(πz)]− 2πz sin(πz) cosh(πz)

]
z=zj

, (70)

by using L’Hôpital’s rule. The function f(z)π sec(πz) has a pole at z = 0 (from the secant) and
poles at z = (2k + 1)/2 = k + 1

2 , for all integers k (from the hyperbolic cosine). The pole at
zero has residue B0, given by the summand of Equation 70, evaluated at zj = 0. For this value,
sinh(0) = sin(0) = 0, while cosh(0) = cos(0) = 1. The other poles are given by the sum in
Equation 70, now over k. For this z value, sin((k + 1

2)π) = (−1)k, while cos((k + 1
2)π) = 0. Now

Equation 70 becomes

2S = B0 +
∞∑

k=−∞

π

−2π(k + 1
2) sin(π(k + 1

2)) cosh(π(k + 1
2))

(71)

=
π

2
−

∞∑
k=−∞

1

2(k + 1
2)

(−1)k
1

cosh[π(k + 1
2)]

(72)

=
π

2
− 2S (73)

S =
π

8
. (74)
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