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1 Arfken 7.6.14.

The ODE
y′′(x) + P (x)y′(x) +Q(x)y(x) = 0 , (1)

is satisfied by y1(x) and has a second, linearly-independent solution,

y2(x) = y1(x)

∫ x exp
[
−
∫ s
P (t)dt

]
[y1(s)]2

ds . (2)

It is useful to note the Leibniz formula for the derivative of an integral is

d

dξ

∫ h(ξ)

g(ξ)
f(x, ξ)dx =

∫ h(ξ)

g(ξ)

∂f(x, ξ)dx

∂ξ
+ f [h(ξ), ξ]

∂h(ξ)

∂ξ
− f [g(ξ), ξ]

∂g(ξ)

∂ξ
. (3)

In order to show y2 is a solution, the derivatives of y2 must be found using the Leibniz formula.
Considering Equation 2, define α(x) as the entire integral and β(s) as the numerator inside the
integral. This allows the equation to be written as y2 = y1α, so the first derivative is

y′2 = y′1α+ α′y1 , (4)

where

α′ =
d

dx

∫ x exp
[
−
∫ s
P (t)dt

]
[y1(s)]2

ds =
d

dx

∫ x β(s)

[y1(s)]2
ds , (5)

setting the lower bound to zero and using the Leibniz formula (with ξ → x and x→ s) this is

α′ =

∫ x

0

∂

∂x

β(s)

[y1(x)]2
ds+

β(s)

[y1(x)]2
∂

∂x
x− 0 =

β

y21
, (6)

so

y′2 = y′1α+
β

y1
. (7)

This can be differentiated again,

y′′2 = y′′1α+ α′y′1 +
β′

y1
− β

y21
y′1 , (8)

but from Equation 6 the second and fourth terms cancel, yielding

y′′2 = y′′1α+
β′

y1
. (9)

Now the expression for the first derivative of β must be found,

β = exp

[
−
∫ s

P (t)dt

]
⇒ β′ =

[
−
∫ s

P (t)dt

]′
β , (10)

using the Leibniz formula this is

β′ = −β d

dx

[∫ s

P (t)dt

]
= −β

{∫ s ∂

∂x
P (t)dt+ P (x)

d

dx
s− 0

}
, (11)
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but because the first term is not dependent on x it is zero and the second term is just P(x) is the
coordinate s is renamed x. So the derivatives of y2 are

y2 = y1α (12)

y′2 = y′1α+
β

y1
(13)

y′′2 = y′′1α+
−βP (x)

y1
. (14)

To verify that y2 is a solution, these derivatives can be inserted into Equation 1:

0 = y′′2 + P (x)y′2 +Q(x)y2 (15)

= y′′1α+
−βP (x)

y1
+ y′1αP (x) +

β

y1
P (x) +Q(x)y1α (16)

= y′′1α+ y′1αP (x) +Q(x)y1α (17)

= α[y′′1 + P (x)y′1 +Q(x)y1] = 0 , (18)

because y1(x) is a solution to the original ODE. Therefore y2(x) is a solution as well.

Page 3 of 11



Dylan J. Temples Arfken : Solution Set Six

2 Arfken 7.6.22 and 7.6.23.

The Chebyshev equation is given by

(1− x2)y′′ − xy′ + n2y = 0 ⇒ y′′ +
−x

1− x2
y′ +

n2

1− x2
y = 0 , (19)

where n is an integer.

2.1 Arfken 7.6.22: Solutions for n = 0.

One solution to the Chebyshev equation for n = 0 is y1(x) = 1. Arfken Equation 7.67 gives the
formula for finding a second, linearly-independent solution,

y2(x) = y1(x)

∫ x exp
[
−
∫ x2 P (x1)dx1

]
[y1(x2)]2

dx2 , (20)

where P (x) is determined by the differential equation in the form

y′′ + P (x)y′ +Q(x)y = 0 (21)

in this case, P (x) = −x/(1− x2). Therefore the second solution is given by

y2(x) =

∫ x

exp

[
−
∫ x2 −s

1− s2
ds

]
dx2 . (22)

The integral in the exponential can be evaluated by defining f = 1− s2, so that df = −2sds, so∫ x2 −sds
1− s2

=

∫ x2 1
2df

f
=

1

2
ln[1− s2]|x2 =

1

2
ln
[
1− x22

]
. (23)

This makes the second solution

y2(x) =

∫ x

exp

(
−1

2
ln
[
1− x22

])
dx2 =

∫ x

(1− x22)−
1
2dx2 = arcsinx . (24)

Compare this to the solution found by direct integration of Equation 20,

(1− x2)y′′i − xy′i = 0 . (25)

Notice the second order equation does not contain any term with yi, so the new function z can be
defined as the first derivative of yi. This makes the equation into an equivalent first order equation,

(1− x2)z′ = xz , (26)

which can be solved through direct integration,

z′

z
=

x

1− x2
⇒

∫
dz

z
=

∫
x

1− x2
dx . (27)

Using a similar transformation as in Equation 23, this becomes

ln z = −1

2
ln[1− x2] ⇒ z = [1− x2]−1/2 , (28)

after exponentiating. Now the first derivative of yi is known (z), so the solution is

yi =

∫
zdx =

∫
[1− x2]−1/2dx = arcsinx , (29)

which is exactly the second solution found previously.
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2.2 Arfken 7.6.23: Solutions for n = 1.

A solution to Equation 20 for n = 1 is y1(x) = x. The P (x) function for this value of n is the same
as above, so the same method for finding y2 can be applied. Now Equation 24 becomes

y2(x) = x

∫ x (1− s2)−1/2

s2
ds = x

[
−
√

1− x2
x

]
, (30)

using Mathematica. So the second solution, found using the Wronskian double integral, is

y2(x) = −(1− x2)1/2 . (31)
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3 Arfken 7.7.4.

Consider the inhomogeneous ODE

y′′ − 3y′ + 2y = sinx , (32)

which has a solution of the form
y = C1y1 + C2y2 + yp , (33)

where C1 and C2 are constants, y1 and y2 are the two solutions to the related homogeneous equation,
and yp is the particular solution for the inhomogeneous equation. Notice the homogeneous equation
is amenable to a solution of the form eαx. Using that as the ansatz, the homogeneous equation
reduces to

α2eαx − 3αeαx + 2eαx = 0 , (34)

after dividing out the exponential in each term, this equation has roots at α = 1, 2. Which makes
the solutions to the homogeneous equation,

y1(x) = ex and y2(x) = e2x . (35)

Using variation of parameters, the particular solution can be written as

yp(x) = u1(x)y1(x) + u2(x)y2(x) . (36)

This and its first derivative reduce to a simultaneous system of algebraic equations given by Arfken
Equation 7.98. For the above solutions, they are

0 = exu′1 + e2xu′2 (37)

sinx = exu′1 + 2e2xu′2 , (38)

the first can be solved for u′1 and plugged into the second, yielding

ex(−exu′2) + 2e2xu′2 = sinx (39)

e2xu′2 = sinx (40)

u′2 = e−2x sinx ⇒ u′1 = −e−x sinx . (41)

These can both be integrated with respect to x to find the coefficients of the homogeneous solutions
in the particular solution,

u1 =

∫
−e−x sinxdx =

1

2
e−x(sinx+ cosx) (42)

u2 =

∫
e−2x sinxdx = −1

5
e−2x(2 sinx+ cosx) , (43)

which makes the particular solution,

yp = ex
1

2
e−x(sinx+ cosx) + e2x[−1

5
e−2x(2 sinx+ cosx)] =

1

10
(sinx+ 3 cosx) . (44)

Collecting all the parts, the general solution to Equation 32 is

y(x) = C1e
x + C2e

2x +
1

10
(sinx+ 3 cosx) . (45)
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4 Arfken 10.1.3.

Consider the boundary condition problem

−d
2y

dx2
− y

4
= f(x)

{
y(0) = 0

y(π) = 0
. (46)

Which using the differential operator L is

Ly =

{
d

dx

(
− d

dx

)
+

(
−1

4

)}
y = f(x) (47)

To find the solution, first examine the homogeneous equation y′′ = −1
4y, which is a simple oscillator

with solutions of the form

y1(x) = sin(x/2) and y2(x) = cos(x/2) , (48)

note the coefficients will be added in later. The Green’s function, as defined by Arfken Equation
10.18, for these boundary conditions is

G(x, t) =

{
x < t : G1(x, t) = y1(x)h(t) = sin(x/2)h1(t)

x > t : G2(x, t) = y2(x)h(t) = cos(x/2)h2(t)
, (49)

which satisfy G(0, t) = G(π, t) = 0. Now the imposing the continuity of the Green’s function at
x = t,

y1(t)h1(t) = y2(t)h2(t) (50)

sin(t/2)h1(t) = h2(t) cos(t/2) , (51)

so h1(t) = A cos(t/2) and h2(t) = A sin(t/2). From Arfken Equation 10.19, the first derivative of
the Green’s function must have a discontinuity at x = t equal to 1/p(x) = −1, so the constant from
above is

A =

{
−1

[
sin(x/2)

(
−1

2
sin(x/2)

)
sin(x/2)−

(
1

2
cos(x/2)

)
cos(x/2)

]}−1
(52)

=

{
1

2
(cos2(t/2) + sin2(t/2)

}−1
= 2 . (53)

Therefore the Green’s function for this boundary condition problem is

G(x, t) =

{
2 sin(x/2) cos(t/2) 0 ≤ x ≤ t
2 cos(x/2) sin(t/2) t ≤ x ≤ π

. (54)
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5 Problem #5.

Consider the ODE x3y′′ = y, with solutions of the from y = eS(x). It has previously been shown
that the asymptotic behavior of the function in the exponential as x→ 0 is

S(x) =
2√
x

+
3

4
lnx+D(x) , (55)

where D(x)� lnx as x→ 0. Using this asymptotic behavior, the derivatives must obey

D′ � 1

x
⇒ (D′)2 � 1

x2
(56)

D′′ � 1

x2
. (57)

5.1 Asymptotic Behavior as x→ 0.

The form of D(x) must be a constant plus a function of x: D(x) = δ + δ(x), with δ � 1 as x→ 0.
Using the ansatz for y results in the ODE x3[(S′)2 + S′′] = 1, which plugging in the form of S(x)
above gives

1 = x3

[(
−x−3/2 +

3

4

1

x
+D′

)2

+
3

2
x−5/2 − 3

4

1

x2
+D′′

]
(58)

= x3
[
−2D′x−3/2 + (D′)2 +

3

2
D′x−1 − 3

2
x−5/2 + x−3 +

9

16
x−2 +

3

2
x−5/2 − 3

4
x−2 +D′′

]
(59)

= x3
[
−2D′x−3/2 + (D′)2 +

3

2
D′x−1 + x−3 +

9

16
x−2 − 3

4
x−2 +D′′

]
(60)

0 = x3
[
−2D′x−3/2 + (D′)2 +

3

2
D′x−1 +

9

16
x−2 − 3

4
x−2 +D′′

]
. (61)

This can be simplified using the asymptotic relations listed above. The second term and the sixth
term are negligible compared to the fourth term. Additionally, if D′ � x−1 then D′x−1 � x−2, so
that term can be neglected as well. Combining the remaining x−2 terms this is

0 ∼ x3
[
−2D′x−3/2 − 3

16
x−2

]
, x→ 0 . (62)

Pulling out a factor of x−3/2 from the brackets and writing the asymptotic relation for the two
terms in the bracket is

D′ ∼ − 3

32
x−1/2, x→ 0, (63)

and integrating once,

D ∼ − 3

16
x1/2 + δ, x→ 0, (64)

where δ was picked up as a constant of integration. Noting that
√
x � lnx as x → 0 (absolute

value of log is much larger), and additionally, x1/2 � 1, this form of D obeys the restrictions on
D(x). Therefore the full solution is

S(x) =
2√
x

+
3

4
lnx− 3

16
x1/2 + δ . (65)
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5.2 Power Series Solution.

The solution to the ODE above can be written

y(x) = Kx3/4e2/
√
xw(x) , (66)

where K is some constant. The first and second derivatives of y (found in Mathematica) are

y′(x) =
e2/
√
x

4x3/4
K
[
(−4 + 3

√
x)w + 4x3/2w′

]
(67)

y′′(x) =
e2/
√
x

16x9/4
K
[
(16− 3x)w + 8(−4x3/2 + 3x2)w′ + 16x3w′′

]
. (68)

These can be plugged into the original ODE, x3y′′ = y, and noting that the exponential part and
the constant K cancel on each side this is

x3/4w =
x3

16x9/4

[
(16− 3x)w + 8(−4x3/2 + 3x2)w′ + 16x3w′′

]
(69)

16w = (16− 3x)w + 8(−4x3/2 + 3x2)w′ + 16x3w′′ (70)

16w

16x3
= (16− 3x)

w

16x3
+ (−4x3/2 + 3x2)

8w′

16x3
+ w′′ (71)

w

x3
=
w

x3
− 3w

16x2
+

(
− 2

x3/2
+

3

2x

)
w′ + w′′ , (72)

therefore w(x) satisfies the equation

w′′ +

(
3

2x
− 2

x3/2

)
w′ − 3

16x2
w = 0 . (73)

Now assume a power series for w(x),

w(x) ∼
∞∑
n=0

anx
n/2 ⇒ w′(x) ∼

∞∑
n=0

an
n

2
x(n−2)/2 ⇒ w′′(x) ∼

∞∑
n=0

an
n(n− 2)

4
x(n−4)/2 ,

(74)
let a0 = 1. Plugging these expressions into Equation 73 yields the expression

0 =

∞∑
n=0

an
n(n− 2)

4
x(n−4)/2 +

∞∑
n=0

(
3

2x
− 2

x3/2

)
an
n

2
x(n−2)/2 −

∞∑
n=0

3

16x2
anx

n/2 (75)

=
∞∑
n=0

an
n(n− 2)

4
x(n−4)/2 +

∞∑
n=0

an
3n

4
x(n−4)/2 −

∞∑
n=0

annx
(n−5)/2 −

∞∑
n=0

an
3

16
x(n−4)/2 (76)

=

∞∑
n=0

an

[
n(n− 2)

4
+

3n

4
− 3

16

]
x(n−4)/2 −

∞∑
n=0

annx
(n−5)/2 . (77)

The terms in the brackets in the first sum can be simplified to

1

16
[4n(n− 2) + 12n− 3] =

1

16
[4n2 + 4n− 3] . (78)
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Now a change of variables m = n − 5 can be performed such that Equation 77, after multiplying
through by an x2 factor, becomes

0 =
1

16

∞∑
m=−5

am+5

[
4(m+ 5)2 + 4(m+ 5)− 3

]
xm+1 −

∞∑
m=−5

am+5(m+ 5)xm (79)

=
1

16

∞∑
m=−5

am+5

[
4m2 + 44m+ 117

]
xm+1 −

∞∑
m=−5

am+5(m+ 5)xm . (80)

A change of variables can be done on the first sum to change the power of x again to be the same
as the other sum. Let p = m+ 1, which makes the above expression

0 =
1

16

∞∑
p=−4

ap+4

[
4(p− 1)2 + 44(p− 1) + 117

]
xp −

∞∑
m=−5

am+5(m+ 5)xm (81)

=
1

16

∞∑
p=−4

ap+4

[
77 + 36p+ 4p2

]
xp −

∞∑
m=−5

am+5(m+ 5)xm (82)

=
1

16

∞∑
m=−4

am+4

[
77 + 36m+ 4m2

]
xm −

∞∑
m=−5

am+5(m+ 5)xm , (83)

by renaming the index p as m. Another change of variables can be done on both sums such that
n = m+ 4, yielding

0 =
1

16

∞∑
n=0

an
[
77 + 36(n− 4) + 4(n− 4)2

]
xn−4 −

∞∑
n=−1

an+1(n+ 1)xn−4 (84)

=
1

16

∞∑
n=0

an
[
4n2 + 4n− 3

]
xn−4 −

∞∑
n=0

an+1(n+ 1)xn−4 , (85)

in the last line, the n = −1 term was pulled out of the sum, moving the lower bound on the index
of summation to 0. This term is zero because of the n+ 1 factor. This makes both sums over the
same range with the same exponent, so they can be combined to one sum,

0 =

∞∑
n=0

xn−4
(

1

16
an
[
4n2 + 4n− 3

]
− an+1[n+ 1]

)
. (86)

Since every term in the sum will have different powers of x, the coefficient of each power of x must
be zero in order to make the entire sum zero. This gives the recursion relation used to find the
coefficients in the power series for w(x),

an+1 =

(
4n2 + 4n− 3

16(n+ 1)

)
an . (87)

In this form we can se the ratio of successive terms an+1/an is greater than one for large n. Thus,
using the ratio test this is a divergent series, so the radius of convergence is zero.
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6 Problem #6.

Consider the differential equation y′′ = y/x5 with the purpose of exploring the leading asymptotic
behavior of the solutions as x → 0. Assume a solution of the form y = eS(x), so the differential
equation reduces to

S′′eS + (S′)2e2 =
eS

x5
⇒ x5[S′′ + (S′)2] = 1 . (88)

Now, make the assumption that near x = 0, U ′′ � (U ′)2. Now the asymptotic behavior of
Equation 88 is

x5S′′ ∼ 1, x→ 0 ⇒ ±S′ ∼ x−5/2, x→ 0 . (89)

Therefore the asymptotic behavior of S as x → 0 is S ∼ ±2
3x
−3/2. The asymptotic solution may

now be expanded past leading order and written as

S(x) = ±2

3
x−3/2 + C(x) so S′ = ∓x−5/2 + C ′, S′′ = ±5

2
x−7/2 + C ′′ . (90)

Plugging this into Equation 88 yields

1 = x5
[
±5

2
x−7/2 + C ′′ +

(
∓x−5/2 + C ′

)2]
(91)

= x5
[
±5

2
x−7/2 + C ′′ + x−5 + (C ′)2 ∓ 2x−5/2C ′

]
(92)

0 = x5
[
±5

2
x−7/2 + C ′′ + (C ′)2 ∓ 2x−5/2C ′

]
, (93)

after canceling the x5x−5 = 1 term. Knowing that the leading asymptotic behavior must outweigh
the following terms, at all derivatives, S(n) � C(n). This lets the following asymptotic relations to
be written: 

C � −2
3x
−3/2

C ′ � ∓x−5/2 ⇒ (C ′)2 � x−5

C ′′ � ±5
2x
−7/2

, x→ 0 . (94)

Using these relations, an asymptotic relation can be written. Noting that the C ′′ term is negligible
compared to the first term, and (C ′)2 is negligible to the term that was canceled earlier, this relation
is

0 ∼ x5
[
±5

2
x−7/2 ∓ 2x−5/2C ′

]
= x5(x−5/2)

[
±5

2
x−1 ∓ 2C ′

]
, x→ 0. (95)

From this, clearly as x → 0, C ′ ∼ 5
4x
−1, so that C ∼ 5

4 lnx. This gives the leading asymptotic
behavior of the solutions as x→ 0 to be

y ∼ exp

[
±2

3
x−3/2 +

5

4
lnx

]
= e±

2
3
x−3/2

x5/4, x→ 0 . (96)
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