
Dylan J. Temples: Solution Set One

Northwestern University, Electrodynamics I
Wednesday, January 13, 2016

Contents

1 Problem #1: General Forms of Gauss’ and Stokes’ Theorems. 2
1.1 Gauss’ Theorem - Ordinary Product. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Gauss’ Theorem - Cross Product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Stokes’ Theorem - Ordinary Product. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Stokes’ Theorem - Cross Product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Problem #2: Surface Charge Densities of Parallel Plate Capacitor. 6
2.1 Adjacent Faces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Exterior Faces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Plate Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Electric Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.1 A Special Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Problem #3: Quantum Capacitance. 9

4 Problem #4: Force due to Self-Capacitance. 10
4.1 Charge on Conductors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Repulsive Force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Problem #5: Capacitance Matrix. 12
5.1 Coefficients of Capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1



Dylan J. Temples Northwestern University, Electrodynamics I : Solution Set One

1 Problem #1: General Forms of Gauss’ and Stokes’ Theorems.

The particular importance of the integral theorems of Gauss and Stokes arise from the transition
from a volume to a surface integral, and from a surface integral to a line integral, respectively.
These integral theorems are special forms of more general theorems. The more general forms can
be derived from the theorems of Gauss and Stokes by an appropriate choice of the vector A, in
particular, ∫

V
dV∇◦ =

∫
S(V )

dS◦ , and (1)∫
S

(dS ◦ ∇)× =

∮
C(S)

dr◦ , (2)

where ◦ represents an ordinary, dot, or cross product. These operators using dot products give rise
to the theorems of Gauss and Stokes and are already proven.

1.1 Gauss’ Theorem - Ordinary Product.

To prove the equivalent of Gauss’ theorem for the ordinary product choose a vector A to be an
arbitrary constant vector times an arbitrary function of the position vector∫

V
dV∇r · kψ(r) =

∫
S(V )

dS · kψ(r) . (3)

Since k is a constant vector, the product can be written ∇r ·kψ(R) = k ·∇rψ(r), and the constant
vector can be pulled out of the integral∫

V
dV∇r · kψ(r) = k ·

∫
V
dV∇rψ(r) . (4)

On the left hand side of Equation 3, the order of the product can be swapped and the constant
vector pulled out of the integral,∫

S(V )
dS · kψ(r) = k ·

∫
S(V )

dSψ(r) , (5)

which gives the relation

k ·
∫
V
dV∇rψ(r) = k ·

∫
S(V )

dSψ(r) , (6)

which implies the two integrals must be equal. This is of the form of Equation 1 with an ordinary
product operating on an arbitrary scalar field ψ(r).

1.2 Gauss’ Theorem - Cross Product.

Now select the vector A such that it is the cross product of an arbitrary constant vector and an
arbitrary vector that may have functional dependence on the spatial variables. The divergence
theorem then says ∫

V
dV∇r · [k×B(r)] =

∫
S(V )

dS · [k×B(r)] , (7)
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The ∇r ·A term on the left hand side can be written as∫
V
dV [B · (∇r × k)− k · (∇r ×B)] =

∫
S(V )

dS · [k×B(r)] , (8)

the first term of the left hand side drops out because the curl of a constant vector is zero, so it
becomes

−
∫
V
dV [k · (∇r ×B) = −k ·

∫
V
dV (∇r ×B) , (9)

because the constant vector can be moved outside the integral. Also, the right hand side becomes∫
S(V )

dS · k×B = k ·B× dS = k ·
∫
S(V )

B× dS = −k ·
∫
S(V )

dS×B , (10)

so

−k ·
∫
V
dV (∇r ×B) = −k ·

∫
S(V )

dS×B , (11)

which implies the integral operators must be equal. These operators are of the form of Equation 1
with the circle replaced with a cross product, which proves the general case that these integral
operators work with any type of product.

1.3 Stokes’ Theorem - Ordinary Product.

Let the vector A be the same as in section 1.1, and note that

∇r × aφ(r) = ∇φ× a + φ(∇× a) . (12)

Therefore we can write, from Stokes’ theorem∫
S
dS · ∇ × kψ(r) =

∫
S
dS · [∇ψ × k + ψ(∇× k)] =

∮
C(S)

dr · kψ(r) , (13)

note the curl of the constant vector is zero so the second term of the middle expression is zero.
Through associativity of dot products, the right hand side can be written∮

C(S)
dr · kψ =

∮
C(S)

(k · dr)ψ = k ·
∮
C(S)

drψ . (14)

The middle expression in Equation 13 is∫
S
dS · ∇ψ × k =

∫
S
k · dS×∇ψ = k ·

∫
S
dS×∇ψ , (15)

note that this integral operator is the only form of the left hand side of Equation 2 that results in
a vector by using an ordinary product. Using these expressions, it is found that∫

S
dS×∇ψ =

∮
C(S)

drψ , (16)

which proves Stokes’ theorem for the ordinary product, for an arbitrary scalar field ψ(r).
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1.4 Stokes’ Theorem - Cross Product.

Let the vector A be the same as in section 1.2. Similarly to section 1.3, the right hand side of
Stokes’ theorem becomes∮

C(S)
dr · [k×B(r)] =

∮
C(S)

k · (B× dr) = −k ·
∮
C(S)

dr×B , (17)

which has an integral operator equivalent to the right hand side of Equation 2 with a cross product.
The left hand side of Stokes’ theorem is∫

S
dS · ∇r × [k×B(r)] , (18)

but the vector product can be simplified to

∇r × [k×B(r)] = k(∇ ·B)−B(∇ · k) + (B · ∇)k− (k · ∇)B (19)

= k(∇ ·B)− (k · ∇)B , (20)

because any differential operator interacting with the constant vector k is zero. Using Einstein
notation to write the dot products this is

k(∇iBi)− (kj∇j)B , (21)

where ∇k is the kth element of the differential operator ∇r, taking the dot product with the surface
element is

dS · [k(∇iBi)− (kj∇j)B] = dS · k(∇iBi)− (kj∇j)B · dS , (22)

in Einstein notation,

dSjkj(∇iBi)− (kj∇j)BidSi = kJ [dSj∇iBi −∇jBidSi] . (23)

Now the Einstein sum over the dummy variable i can be rewritten as dot products

kj [dSj(∇ ·B)−∇j(B · dS)] , (24)

similarly the sum over j, so finally we get

dS · ∇r × [k×B(r)] = −k · [−dS(∇ ·B) +∇(B · dS)] (25)

= −k · [∇(B · dS)− dS(∇ ·B)] (26)

= −k · [∇(B · dS)− dS(B · ∇)] . (27)

On a side note, the vector triple product can be written as

a× (b× c) = −(b× c)× a , (28)

using the identity for the vector triple product, this becomes

b(a · c)− c(a · b) = −(b× c)× a (29)

c(a · b)− b(a · c) = (b× c)× a , (30)
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so if we plug in the appropriate vectors to make the left hand side of the above equation look like
the terms in the brackets in Equation 27, we find

∇(B · dS)− dS(B · ∇) = (dS×∇)×B (31)

−k · [∇(B · dS)− dS(B · ∇)] = −k · (dS×∇)×B = dS · ∇r × [k×B(r)] , (32)

which we can integrate over all space and equate to the right hand expression in Equation 17, due
to Stokes’ theorem and find∫

S
−k · (dS×∇)×B = −k ·

∫
S

(dS×∇)×B = −k ·
∮
C(S)

dr×B (33)∫
S

(dS×∇)×B =

∮
C(S)

dr×B , (34)

which is the exact form of Equation 2 with a cross product. This proves Equation 2 for all three
types of products.

Figure 1: Diagram of electric field lines from four charged infinite planes, assuming the electric
fields are not affected by the other charged planes. The direction of the green and purple arrows
would reverse if the charge density was of opposite sign, but would still oppose each other.

Page 5 of 14



Dylan J. Temples Northwestern University, Electrodynamics I : Solution Set One

2 Problem #2: Surface Charge Densities of Parallel Plate Capac-
itor.

Two infinite, conducting, plane sheets of uniform thicknesses t1 and t2, respectively, are placed
parallel to one another with their adjacent faces separated by a distance L. The first sheet has a
total charge per unit area (sum of surface charge densities on either side) equal to q1, while the
second has q2.

This gives the relationships

q1 = σ1I + σ1E (35)

q2 = σ2I + σ2E , (36)

where σjI is the surface charge density of the interior face of the jth conductor, and σjE is the
surface charge density of the external face.

2.1 Adjacent Faces.

It can be shown that the surface charge densities on the adjacent faces are equal and opposite.
Consider a cylindrical Gaussian surface of radius a, where the ends are parallel to the plates and
one end lies inside each conductor. Because these faces are inside the conductor, the electric field
passing through these faces must be zero. Additionally, the electric field between the plates is
purely in the axial direction, so no electric field lines pass through the surface of the Gaussian
cylinder. Therefore, by Gauss’ law,∫

S
E · dS =

Qenc
ε0

⇒ 0 =
1

ε0
(πa2σ1I + πa2σ2I) = σ1I + σ2I . (37)

So it must be that the surface charge densities of the interior faces are equal and opposite,

σ1I = −σ2I . (38)

2.2 Exterior Faces.

It can be shown that the surface charge densities on the exterior faces of the two sheets are the
same. To see this, it is important to enforce the electric field inside the conductor is zero. First
consider four infinite planes that correspond to the faces of each conductor (the ones that are
parallel to the electric field), the outer planes have charge density σa and σb and the inner planes
have ±σI . Assume the electric field from each plane can exist in each region around the planes,
now in the region between the two surfaces of each plate (where the conductor bulk would be) the
electric fields from the two inner plates exactly cancel because their charge densities are equal and
opposite so the field lines in these regions would oppose and exactly cancel. Therefore in these
regions only the electric field lines from the outer faces contribute. If we enforce the electric field
in these regions must be zero then the contributions from the outer planes must cancel exactly, so
they must have the same magnitude of charge density. It can be shown by this method, using the
symmetry of the problem that the charge density must be the same sign as well to ensure the field
lines cancel, see Figure 1; therefore

σ1E = σ2E . (39)

In Figure 1 the green and purple field lines are due to the surface charge density of the exterior
faces, clearly they must have the same sign for the electric fields to cancel inside the conductors.
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The diagram shows σa = σb > 0, but would have the same effect for σa = σb < 0. Shortly, because
the charge densities on the inner faces are equal and opposite, the charge density induced on one
outer face is due only to the other outer face. Therefore, the induced charges must be exactly the
same.

2.3 Plate Geometry.

Due to both plates being infinite in size, all horizontal components of the electric field exactly
cancel, so the only net electric fields in this system are perpendicular to the plane. Consider a
Gaussian cylinder as in section 2.1, but of any height. The only surfaces that contribute in Gauss’
law are the ends, because the normal vector to the surface forming the barrel of the cylinder is
always perpendicular to the electric field, so the dot product will always be zero,

Et(πa
2) + Eb(πa

2) =
Qenc
ε0

=
πa2

∑
σi

ε0
, (40)

where σi are the surface charge densities enclosed by the Gaussian surface and Et and Eb are the
magnitudes of the electric field passing through the top and bottom faces of the Gaussian cylinder,
respectively. Clearly, the area of the face does not matter, so the electric field in any region does
not depend on any geometric parameter of the system, but only on the surface charge density.
Using the results of sections 2.1 and 2.2, these surface densities are clearly also independent of t1,
t2, and L.

2.4 Electric Fields.

From the previous solutions and Equations 35 and 36, we have{
q1 = σI + σE

q2 = −σI + σE
⇒

{
σE = 1

2(q1 + q2)

σI = 1
2(q1 − q2)

. (41)

Consider the five regions created by the four parallel infinite sheets of charge: A) vacuum outside
first conductor, B) first conductor, C) vacuum between conductors, D) the second conductor, and
E) vacuum outside second conductor. We can construct four Gaussian surfaces, each a pillbox of
face area A (height doesn’t matter due to there being no transverse electric field) with one face in
the conductor and one face in the vacuum. The electric field is zero inside the conductor so only
the face in the vacuum contributes to the surface integral. Therefore, from Gauss’ law,

EA =
σencA

ε0
⇒ E =

σenc
ε0

, (42)

where σenc is the surface charge density enclosed in the Gaussian pillbox. The electric field in regions
B and D must be zero, and the fields in the regions outside the conductors are due completely to
the exterior faces surface charge density

EA = EE =
σE
ε0

, (43)

and the electric field in region C has two contributions (that must oppose if charge densities are
the same sign) so

EC =
σI1
ε0
− σI2

ε0
=
σI1
ε0
− −σI1

ε0
=

2σI
ε0

. (44)
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Using Equation 41, we find that the electric fields are

Eoutside =
q1 + q2

2ε0
(45)

Einside =
q1 − q2
ε0

, (46)

which as stated previously do not depend on any distance scale (t1, t2, L).

2.4.1 A Special Case.

Consider the special case that q1 = −q2 = Q. From Equations 41, 45 and 46, it is easy to see that{
σE = 1

2 [Q+ (−Q)] = 0

σI = 1
2 [Q− (−Q)] = Q

⇒

{
Eoutside = 0

Einside = 2Q
ε0
,
. (47)

So the electric field outside the capacitor is zero and the field inside is proportional to twice the
charge density.
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3 Problem #3: Quantum Capacitance.

You have probably seen more than a few times the derivation of the capacitance C of a parallel
plate capacitor, with a charge Q on one plate, and a corresponding potential difference V between
its plates, with C = Q/V . What is glossed over in this simple analysis is how the potential is
actually measured. Considering the case when the charges in question are electrons, measuring
the voltage on a plate means equilibrating the electrochemical potential µ of the electrons on the
plate with the electrochemical potential of the metal forming the electrical leads of a voltmeter.
You know from your statistical physics courses that the electrochemical potential of fermions is
determined by their number density.

Consider then a parallel plate capacitor of area S and separation d where one of the plates is made
from a typical metal such as copper or gold, but the other plate is made from graphene, a single,
two-dimensional atomic layer of carbon atoms with low charge carrier density. Applying a potential
across this capacitor will draw charges to the capacitor plates. For a typical metal like copper, this
would not represent a significant change in the charge density, but it does for a low density material
like graphene, and hence will result in an appreciable change in electrochemical potential. This
results in a correction CQ to the geometric capacitance Cg = εS/d. By calculating this correction
one can show how to obtain information about the density of states dn/dE of charge carriers in
graphene by measuring the capacitance of this device. Here n is the areal charge density and E is
the energy of the charge carriers.

Previously, it was shown that the charge density on the interior faces of a parallel plate capacitor
must be equal an opposite, since all charge carriers have the same charge magnitude e, then the
number density on both plates n must be equal. Since the charge carrier number density of copper
is much higher than graphene, the graphene must draw additional charge carriers. If the graphene
accepts N charge carriers, its charge raises by Q = Ne. Therefore the change in electrochemical
potential (equivalent to the change in energy) is

∆µ = ∆E =
N

S dn
dE

=
Q

eS dn
dE

. (48)

The change in voltage is given by the change in energy per unit charge

∆V =
∆µ

e
=

Q

e2S dn
dE

. (49)

By the definition of capacitance, we can find the change in capacitance of the whole capacitor,
which in this case is exactly the capacitance due to the quantum mechanical behavior,

∆C =
Q

∆V
= e2S

dn

dE
, (50)

so the total capacitance of the system is

C = Cg + Cq =
ε0S

d
+ e2S

dn

dE
. (51)
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4 Problem #4: Force due to Self-Capacitance.

Consider two capacitors with self capacitances C1 and C2. (For clarity, you may want to think
of them as spherical conducting shells, as discussed in class, but this is not necessary.) They are
placed such that the distance r between them is large in comparison to their sizes. Let V1 bet the
potential of the first conductor, and V2 be the potential of the second conductor.

4.1 Charge on Conductors.

A single capacitor with capacitance C with charge Q has potential V = Q/C. Now a point charge Q′

is placed at a distance r from the capacitor, which creates a potential V = kQ′/r, with k−1 = 4πε0,
at the location of the capacitor. Generalizing this to be two point-capacitors (in the sense the size
of the physical capacitor is negligible compared to the distance between them r) the total potential
on each capacitor is given by

V1 =
Q1

C1
+
k

r
Q2 (52)

V2 =
Q2

C2
+
k

r
Q1 , (53)

after multiplying by the respective capacitances,

C1V1 = Q1 +
k

r
C1Q2 (54)

C2V2 = Q2 +
k

r
C2Q1 , (55)

which can be rearranged into expressions for the charges,

Q1 = C1V1 −
k

r
C1Q2 (56)

Q2 = C2V2 −
k

r
C2Q1 . (57)

To find an expression for Q2 plug Equation 56 into Equation 55, which yields

C2V2 = Q2 +
k

r
C2

[
C1V1 −

k

r
C1Q2

]
, (58)

combining the terms with Q2 and rearranging yields

Q2

[
1− k2

r2
C1C2

]
= C2V2 −

k

r
C1C2V1 , (59)

and multiplying each side by k2/r2 gives

Q2

[
r2

k2
− C1C2

]
=
C2

k

[
V2r

k
− C1V1

]
r . (60)

Which is an expression for the total charge on the second capacitor. An analogous equation can
be found for the charge on the first by plugging Equation 57 into Equation 54 (or by arguing this
must be the case by symmetry) yields the expression

Q1

[
r2

k2
− C1C2

]
=
C1

k

[
V1r

k
− C2V2

]
r . (61)

With expressions for the charges on each capacitor known, the force between them can be calculated.
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4.2 Repulsive Force.

The magnitude of the force between the two capacitors is simply given by the Coulomb force law

F =
k

r2
Q1Q2 =

k

r2

(
C1r

k

)[
V1r

k
− C2V2

](
C2r

k

)[
V2r

k
− C1V1

]/[
r2

k2
− C1C2

]2
(62)

=
C1C2

k

(k−1rV1 − C2V2)(k
−1rV2 − C1V1)

[(k−1r)2 − C1C2]
2 (63)

= 4πε0C1C2

[
(4πε0rV1 − V2C2)(4πε0rV2 − V1C1)

((4πε0r)2 − C1C2)2

]
. (64)
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5 Problem #5: Capacitance Matrix.

In class, we related the charge on the ith conductor in an ensemble of n conductors to the potentials
φi on the other conductors by the equation

qi =
n∑
j=1

Cijφj , (65)

where Cij are the so-called capacities of the system. Consider two concentric spherical shells of
radii r1 and r2 (r2 > r1).

5.1 Coefficients of Capacity.

Let us define three regions: Region I interior to the small conductor (0 ≤ rI < r1), Region II
between the conductors (r1 < rII < r2), and Region III exterior to the large conductor (rIII > r2).
The small and large spheres have charge q1 and q2, respectively. The electric field in each region
can be easily found using Gauss’ law. In Region I there is no charge internal to the Gaussian
surface, so the electric field is zero. In Region II the electric field is only due to q1, and in Region
III the electric field is due to q1 + q2,

EI = 0 (66)

EII =
kq1
r2

(67)

EIII =
k(q1 + q2)

r2
. (68)

Additionally the change in electric potential can be calculated in Regions II and III. Let φ1 and
φ2 be the potentials of the small and large spheres, respectively. Then the potential drop in Region
II is

φ2 − φ1 = −
∫ r2

r1

E · d` = −
∫ r2

r1

kq1
r2

r̂ · r̂dr = −kq1
[
−1

r

]r2
r1

(69)

= kq1

[
1

r2
− 1

r1

]
= −kq1

r2 − r1
r1r2

. (70)

The matrix elements Cij are completely determined by the geometry of the system, independent
of potentials and charges. Therefore, the potentials (or equivalently charges) can be fixed on each
surface to values that make it simple to calculate the matrix elements, and the matrix elements
will hold for any potential. Consider grounding the exterior shell and maintaining a voltage of φ1
on the interior shell. Using Equation 67 yields

φ1 = kq1
r2 − r1
r1r2

⇒ q1 =
r1r2

k(r2 − r1)
φ1 . (71)

Using the definition of the capacities of the system

Cij =
∂qi
∂φj

, (72)

gives the result for the first matrix element,

C11 =
r1r2

k(r2 − r1)
. (73)
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Similarly, we can set 0 = φ1 6= φ2, so that

φ2 = −kq1
r2 − r1
r1r2

⇒ q1 = − r1r2
k(r2 − r1)

φ2 = −C11φ1 , (74)

so that C12 = −C11.

Additionally, we can solve for the potential difference between the outer shell and the potential at
infinity φ∞, which will be set to zero. In this region,

φ∞ − φ2 = −
∫ ∞
r2

k(q1 + q2)

r2
r̂ · r̂dr = −k(q1 + q2)

∫ ∞
r2

dr

r2
= k(q1 + q2)

[
0− 1

r2

]
, (75)

which simplifies to

φ2 =
k

r2
(q1 + q2) . (76)

We can expand the matrix equation given by Equation 65, and using the relationship implied by
Equation 74, to get the system of equations

q1 = C11(φ1 − φ2) (77)

q2 = C21φ1 + C22φ2 . (78)

Now we can examine a third scenario in which the potential on the inner sphere is zero, and φ2 on
the outer sphere. From Equations 77 and 76, we have that

φ2 =
k

r2
(−C11φ2 + q2) =

kq2
r2
− k

r2

(
r1r2

k(r2 − r1)

)
φ2 =

kq2
r2
−
(

r1
r2 − r1

)
φ2 (79)

kq2
r2

= φ2

[
1 +

r1
r2 − r1

]
= φ2

[
r2

r2 − r1

]
, (80)

which gives the expression for the potential on the second sphere in this scenario

φ2 = q2
k(r2 − r1)

r22
, (81)

and using Equation 72, the coefficient of capacity is

C22 =
q2
φ2

=
r22

k(r2 − r1)
. (82)

The final coefficient of capacity must be equal to the other off diagonal entry, due to pairwise
interaction. The effect the inner sphere has on the outer must be the same as the outer sphere’s
effect on the inner. Therefore C21 = C12 = −C11, so the whole capactiy matrix is

Ĉ =

[
C11 C12

C21 C22

]
=

4πε0r2
r2 − r1

[
r1 −r1
−r1 r2

]
(83)

5.2 Capacitance.

The inverse of Equation 65 is

φj =

n∑
k=1

pjkqk , (84)
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where pjk are the coefficients of potential, so that p̂ = Ĉ−1. The inverse of the matrix of the
coefficients of capacity is

p̂ =
1

4πε0

[ 1
r1

1
r2

1
r2

1
r2

]
. (85)

Equation 84 can be expanded to two equations (one for φ1 and one for φ2) and subtracted to find
an expression for the potential difference across the capacitor. Consider the potentials that arise
from placing a charge −Q on the inner conductor and a charge Q on the outer conductor. In this
case, the system of equations is{

φ1 = p11(−Q) + p12(Q)

φ2 = p21(−Q) + p22(Q)
→ ∆V = V2 − V1 = (p11 + p22 − 2p12)Q , (86)

and so from the definition of capacitance,

C =
Q

∆V
=

1

p11 + p22 − 2p12
=

1

k

[
1

r1
+

1

r2
− 2

r2

]−1
=

1

k

[
1

r1
− 1

r2

]−1
(87)

=
1

k

[
r2 − r1
r1r2

]−1
= 4πε0

r1r2
r2 − r1

= C11 . (88)
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