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1 Problem #1: Jackson 2.2.

Using the method of images, discuss the problem of a point charge q inside a hollow, grounded,
conducting sphere of radius a.

1.1 Electric Potential.

Find the potential inside the sphere.

Consider a point charge at a distance d < a from the origin, which will produce an image charge
q′ at a distance d′ > a from the origin along the same line. Along this line (that connects both
charges and the origin), the potential at a distance r is given by φ(r) = k(q/|r − d| + q′/|r − d′|),
where the coupling constant is k = (4πε0)

−1. We can enforce the potential at r = a is zero, so

0 =
kq

(a− d)
+

kq

(d′ − a)
= k

(
q

a(1− d
a)

+
q′

d′(1− a
d′ )

)
, (1)

by inspection, we find q/a = q′/d′ and d/a = a/d′, which give

q′ = −a
d
q and d′ =

a2

d
, (2)

which is the same as the solution to the problem with the charge located outside the sphere, as we
expect.

Consider a point P on the plane which contains the origin, the charge, and its image (due to
spherical symmetry, such a plane will always exist. This point is confined such that r = (a, θ), in
polar coordinates on this plane, where θ = 0 is defined to be along the line containing the origin,
the charge, and its image. If we write the potential in vector form for the potential inside the
sphere we get

φ(r) = kq

[
1

|r− r1|
−
(a
d

) 1

|r− r2|

]
, (3)

where r1 and r2 are the vectors that point to the charge and its image, respectively. Using law of
cosines to expand the vector magnitudes allows us to write the potential.

φ(r, θ) = kq

 1√
r2 + d2 − 2rd cos θ

−
(a
d

) 1√
r2 + (a

2

d )2 − 2r(a
2

d ) cos θ

 . (4)

We find that the potential at a point (r, θ) inside a grounded, conducting, hollow sphere produced
by a point charge q located a distance d from the origin is

φ(r, θ) =
q

4πε0

 1√
r2 + d2 − 2rd cos θ

− 1√
d2r2

a2
+ a2 − 2rd cos θ

 . (5)
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1.2 Charge Density.

Find the surface charge density.

The charge density is given by

σ = −ε0
∂φ

∂n

∣∣∣∣
S

= −ε0
∂φ

∂r

∣∣∣∣
r=a

= −
( q

4π

) d2 − a2

a (a2 − 2ad cos θ + d2)3/2
, (6)

where the unit normal n points out of the sphere bounded by S.

1.3 Force.

Find the magnitude and direction of the force acting on q.

We can use the Coulomb force law to find the force between the charge and its image which is
equivalent to the force felt on the charge by the grounded sphere. Using superposition and the
values of q′ and d′, we find

F =
1

4πε0

q
(
−a
dq
)(

d− a2

d

)2 = − 1

4πε0

(ad)q2

(d2 − a2)2
, (7)

which is attractive: the charge feels a net force towards the sphere along the line which connects
the origin and the point charge.

1.4 Variations.

Is there any change in the solution if the sphere is kept at a fixed potential φ0? If the sphere has a
total charge Q on it?

Holding the sphere at a potential φ0 only adds a constant term to the potential, Equation 5. This
has no effect on the surface charge because the excess charge will evenly distribute itself across the
surface to create this potential (additionally, taking the derivative causes this term to vanish). It
also has no effect on the force, because both the charge and its image will react to it and due to
superposition these constant terms will cancel.

If the charge has a constant charge Q, and we have shown there is an induced interior surface charge
of −q, so there must be a charge of Q+q induced on the outer face. This will raise the potential by
an amount (Q+q)(k/a) on the inside of the sphere, which just gets added to Equation 5. This does
not change the system inside the sphere at all because the charge will arrange itself to maintain
equilibrium.
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2 Problem #2: Equipotential Surfaces of Two Infinite Wires.

Two infinitely long wires run parallel to the x, and carry linear charge densities of +λ (for the wire
at y = a, z = 0) and one at −λ (for the wire at y = −a, z = 0). Show that the equipotential surfaces
are right circular cylinders, and locate the axis and radius corresponding to a given potential φ0.

Consider a point P in the x = 0 plane, the vectors r1 and r2 are the distances from this point to
the wire with positive line charge and to the wire with negative line charge, respectively:

|r1| =
√
z2 + (y − a)2 (8)

|r2| =
√
z2 + (y + a)2 . (9)

Additionally, the potential a distance r from an infinite line charge is φ(r) = (λ/2πε0) ln[r0/r],
where r0 is some reference distance where the potential is zero. The potential at P is then the
superposition of both line charges. If we assume both line charges have the same reference distance
(a safe assumption if they have the same linear charge density), we can write

φ(y, z) =
λ

2πε0
ln

[
|r2|
|r1|

]
=

λ

4πε0
ln

[
z2 + y2 + a2 + 2ya

z2 + y2 + a2 − 2ya

]
. (10)

If we are searching for surfaces of constant potential, we can set φ(y, z) = φ0, where φ0 is a constant.
Furthermore, we can incorporate this with the rest of the constants on the right hand side, and
then exponentiate the equation to find

C(z2 + y2 + a2 − 2ya) = z2 + y2 + a2 + 2ya , (11)

where the constant C = exp[4πεφ0/λ]. If we distribute and collect terms, we find

(C − 1)z2 + (C − 1)y2 + (C − 1)a2 − 2ya(C + 1) = 0 (12)

z2 + y2 − 2y

[
a
C + 1

C − 1

]
+ a2 = 0 , (13)

which can be noted to be the equation of a circle.

A circle of radius R in the y− z plane, centered at y0 can be expressed as (y− y0)2 + z2 −R2 = 0.
If we expand the square and rearrange we get

z2 + y2 − 2yy0 + (y20 −R2) = 0 , (14)

which is of the same form as Equation 13, with

y0 = a
C + 1

C − 1
and R2 = y20 − a2 = a2

([
C + 1

C − 1

]2
− 1

)
= a2

(
C2 + 2C + 1

(C − 1)2
− 1

)
, (15)

where y0 is the axis and R is the radius of the circle. We can simplify the expression for the radius

R2 = a2
(
C2 + 2C + 1

(C − 1)2
− C2 − 2C + 1

(C − 1)2

)
= a2

4C

(C − 1)2
(16)

We can extend this along the x axis and see the equipotential surfaces are cylinders with axes y0
and radii R defined by {

y0 = aC+1
C−1

R = 2a
√
C

C−1
with C = e4πεφ0/λ . (17)
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3 Problem #3.

3.1 Jackson 2.12.

Find the Green’s function for the two-dimensional potential problem with the potential specified
on the surface of a cylinder of radius b, and show that the solution inside the cylinder is given by
Poisson’s integral:

φ(r, θ) =
1

2π

∫ 2π

0
φ(b, θ′)

b2 − r2

b2 + r2 − 2br cos(θ′ − θ)
dθ′ . (18)

Consider the scenario where there is an infinite line charge +λ running parallel to the cylinder axis.
Then in a plane that intersects the cylinder perpendicular to its axis, a point P inside the cylinder
is defined by r = (r, θ) with r < b; the location the line charge intersects this plane is r1 = (r1, θ

′).
The image line charge, of magnitude −λ, created by this line charge is located at r2 = (r2, θ

′),
because it lays along the same ray as the line charge. We can then define the distance from P to
the line charge and its image:

s1 = |r− r1| =
√
r2 + r21 − 2rr1 cos(θ − θ′) (19)

s2 = |r− r2| =
√
r2 + r22 − 2rr2 cos(θ − θ′) . (20)

We can now write the potential at P using the superposition of the line charges

VP (r, θ) =
λ

2πε0

[
ln
r1
s1
− ln

r2
s2

]
=

λ

2πε0

[
ln
s2
s1

+ ln
r1
r2

]
, (21)

where s1 and s2 are the reference distances for each line charge, which we have taken to be the
distance to the origin. Furthermore if we define r′ = r1, and assume the image line charge is at the
inverse position of this relative to a circle of radius b, we find r2 = b2/r′. If we insert all this into
Equation 21, and pull down the square root to be a coefficient of one half, we find

VP (r, θ) =
λ

2πε0
ln


r2 +

(
b2

r′

)2
− 2r b

2

r′ cos(θ − θ′)

r2 + r′2 − 2rr′ cos(θ − θ′)


1/2(

r′

b

)2

 . (22)

We can now define the Green’s function for this geometry, which is how the system responds to
the addition of the fundamental unit of charge, in this case λ = 4πε0. We can take how the system
reacts to the introduction of an arbitrary charge at an arbitrary point VP , and set our value of
lambda to see

G(r, r′) = ln


r2 +

(
b2

r′

)2
− 2r b

2

r′ cos(θ − θ′)

r2 + r′2 − 2rr′ cos(θ − θ′)


1/2(

r′

b

)2

 . (23)

We can find the potential inside our surface using

Φ(r, θ) = − 1

4π

∮
S
φ(b, θ′)

∂G

∂r
da , (24)
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where the unit normal points radially outward (positive). If we use Mathematica to take the
derivative and and evaluate it at r = b (the surface S), we find

Φ(r, θ) = − 1

4π

∮
S
φ(b, θ′)

2(r′2 − b2)
b (b2 + r′2 − 2br′ cos(θ − θ′))

(bdθ) . (25)

We can cancel the factors of b, and rename r′ as r and θ as θ′. This is acceptable because of
the reciprocity of the Green’s function, we can swap the field term and the source term, as long
as we’re consistent about changing which set of coordinates the derivative is with respect to and
which variable we evaluate at the surface. Also note that the cosinne is symmetric under swapping
the variables. This yields the expression

Φ(r, θ) =
1

2π

∮
S
φ(b, θ′)

b2 − r2

b2 + r2 − 2br cos(θ − θ′)
dθ′ , (26)

which proves Equation 18.

3.2 Jackson 2.13.

Two halves of a long conducting cylinder of radius b are separated by a small gap, and are kept at
different potentials V1 and V2. Show that the potential inside is given by

φ(r, θ) =
V1 + V2

2
+
V1 − V2

π
tan−1

(
2br

b2 − r2
cos θ

)
, (27)

where θ is measured from a plane perpendicular to the plane through the gap.

Let us consider a cross-sectional plane of the cylinder, with the origin at the axis of the cylinder;
using polar coordinates the surface has coordinates (b, ψ), where ψ is an angle measured from the
plane that separates the two halves of different potentials. We can express our boundary conditions
in this coordinate system as

φ(b, ψ) =
V1 + V2

2
+
V1 − V2

2
sign(ψ) , (28)

where

sign(ψ) =

{
−1 −π < ψ < 0

+1 0 < ψ < π
. (29)

Note that φ(b, ψ) = V1 for ψ ∈ [0, π] and φ(b, ψ) = V2 for ψ ∈ [−π, 0], which are the boundary
conditions. Furthermore, we can assume the potential at any point interior of the cylinder has a
potential given by the sum of the average potential and some function that varies with r and ψ. In
cylindrical coordinates, we can assume a Fourier series for the angular behavior and a power series
for the radial behavior,

φ(r, ψ) =
V1 + V2

2
+

∞∑
n=0

r±n (an sinnψ + bn cosnψ) , (30)

which can be constrained for physical reasons. The function must be finite at r = 0, so negative
values of n are not allowed. Additionally, the potential is not symmetric about ψ = 0 (φ(r, ψ) 6=
φ(r,−ψ)), so we want the varying function to be asymmetric about this point as well, so bn = 0.
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The potential is symmetric about ψ = π/2, so that φ(r, ψ) = φ(r, π − ψ), which implies there are
only odd values of n1. To determine the coefficients an, let us impose the boundary condition by
evaluating Equation 30 at r = b and equating it with Equation 28,

∞∑
n odd

anb
n sinnψ =

V1 − V2
2

sign(ψ) . (31)

If we exploit the orthogonality condition of the sine function, we find∫ π

−π
dψ sin(mψ)

∞∑
n odd

anb
n sin(nψ) =

∫ π

−π
dψ sin(mψ)

V1 − V2
2

sign(ψ) (32)

∞∑
n odd

anb
n

∫ π

−π
dψ sin(mψ) sin(nψ) =

V1 − V2
2

∫ π

−π
dψ| sin(mψ)| , (33)

where the absolute value comes from noting that sine and the sign function always have the same
sign on the domain θ ∈ [−π, π]. We can replace the integral on the right hand side by an two times
an integral from zero to π of just sine, and use the orthogonality condition on the left hand side to
get

∞∑
n odd

anb
n(πδmn) = (V1 − V2)

∫ π

0
sin(mψ)dψ (34)

anb
nπ = 2

V1 − V2
n

, (35)

which can be rearranged to get the values of an. We are now free to write the expression for the
potential as

φ(r, ψ) =
V1 + V2

2
+ 2

V1 − V2
π

∑
n odd

(r
b

)n sinnψ

n
. (36)

Let us define a complex number z = (r/b)eiψ, and note Im[eiθ] = sin θ, so we can express the sum
in the above expression as

∑
n odd

(r
b

)n Im[einψ]

n
= Im

[ ∑
n odd

(r
b
eiψ
)n 1

n

]
= Im

[ ∑
n odd

zn

n

]
=

1

2
Im

[
ln

1 + z

1− z

]
, (37)

using the identity for the sum2. Let us now simplify the argument of the logarithm by multiplying
the top and bottom by the complex conjugate of the bottom

1 + z

1− z
=

1 + reiψ/b

1− reiψ/b
=

(1 + reiψ/b)(1− re−iψ/b)
1 + (r/b)2 − (r/b)(eiψ + e−iψ)

=
1 + (r/b)(eiψ − e−iψ)− (r/b)2)

1 + (r/b)2 − 2(r/b) coshψ
(38)

=
1− (r/b)2 + 2i(r/b) sinψ

1 + (r/b)2 − 2(r/b) cosψ
. (39)

1Let us show odd n satisfy our symmetry condition φ(r, ψ) = φ(r, π − ψ)
sin(nψ)→ sin[(2m+ 1)ψ] = sin[(2m+ 1)(π − ψ)]
= sin[2mπ + π − (2m+ 1)ψ] note m is an integer so 2mπ does not change the value of the sine
= sin[π−nψ] = sin[nψ] which is just the reference angle. So for odd n, φ(r, ψ) = φ(r, π−ψ). Note this would not be
true for even n = 2m because the lone π term would not be there so you would get sin(nψ) = sin(−nψ) for even n

2Schaum’s Outlines, Mathematical Handbook of Formulas and Tables. Equation 22.18.
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Furthermore, note that ln(z) = ln(αeiφ) = ln(α) + iφ → Im[ln(z)] = phase(z) = φ, and in the
representation z = x+ iy, we find that tanφ = y/x. We can therefore right Im[ln(z)] = tan−1(x/y),
but we must write Equation 39 in the appropriate form

1

1 + (r/b)2 − 2(r/b) cosψ

[(
1− r2

b2

)
+ i
(

2
r

b
sinψ

)]
⇒ y

x
=

2r sinψ

b
(

1− r2

b2

) . (40)

If we simplify this result, and thread all the pieces from Equation 36 through 40 together, we get
the result

φ(r, ψ) =
V1 + V2

2
+
V1 − V2

π
tan−1

[
2br sinψ

b2 − r2

]
, (41)

which proves Equation 27. We will note that we defined our coordinate ψ as zero at the plane that
separates the two halves, while θ is measured from the plane perpendicular to that, so sinψ = cos θ,
and the result of this is consistent with the expected solution.
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4 Problem #4: Jackson 2.7.

Consider a potential in the half-space defined by z ≥ 0, with Dirichlet boundary conditions on the
plane (z = 0) and at infinity.

4.1 Green’s Function.

Write down the appropriate Green’s function G(r, r′).

Consider a point charge q at a position (x0, y0, z0) for z0 > 0, which has an image charge of −q at
(x0, y0,−z0). Let the vectors r1 and r2 be the distances from a point P in half-space (x, y, z), so
that

|r1| =
√

(x− x0)2 + (y − y0)2 + (z − z0)2 (42)

|r2| =
√

(x− x0)2 + (y − y0)2 + (z + z0)2 , (43)

and the potential at P is

VP =
q

4πε0

[
1

|r1|
− 1

|r2|

]
, (44)

so the Green’s function is how the system responds to unit charge q = 4πε0,

G(r, r′) =
1√

(x− x0)2 + (y − y0)2 + (z − z0)2
− 1√

(x− x0)2 + (y − y0)2 + (z + z0)2
. (45)

4.2 Cylindrical Coordinates.

If the potential on the plane z = 0 is specified to be φ0 inside a circle of radius a centered at the
origin, and φ = 0 outside that circle, find an integral expression for the potential at the point P
specified in terms of cylindrical coordinates (r, θ, z).

If we use polar coordinates on the z = 0 plane, we can consider the distance from a point
(x0, y0, 0)→ (r0, θ0) to a point (x, y, 0)→ (r, θ), denoted by the vector ρ. We can get the magnitude
of ρ using the law of cosines,

|ρ|2 = r2 + r20 − 2rr0 cos(θ − θ0) , (46)

which allows us to write the magnitude of the distance vectors r1 and r2 in terms of ρ and θ instead
of x and y,

|r1|2 = r2 + r20 − 2rr0 cos(θ − θ0) + (z − z0)2 (47)

|r2|2 = r2 + r20 − 2rr0 cos(θ − θ0) + (z + z0)
2 , (48)

so the Green’s function in polar coordinates is these results inserted in Equation 44 with q equal
to the unit charge. We are interested in solving for the potential in half-space, so the unit normal
is n = −z0. We can use the Green’s function to to find the potential using Jackson Equation 1.44
with ρ(r′) = 0 because there is no charge density in the volume of interest. The partial derivative
of the Green’s function with respect to the unit normal is

∂G

∂n

∣∣∣∣
S

=
∂G

∂(−z0)

∣∣∣∣
z0=0

= −

[
z − z0

(|r1|)3/2
+

z + z0

(|r2|)3/2

]
z0=0

, (49)
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so using the specified equation from Jackson we find

Φ(r, θ, z) = − 1

4π

∮
S0

φ(r0, θ0, z0)
∂G

∂n
da0 (50)

= −φ0
4π

∫ a

0

∫ 2π

0

∂G

∂n

∣∣∣∣
z=0

r0dr0dθ0 (51)

=
φ0
4π

∫ a

0

∫ 2π

0

2z(
r2 + r20 + z2 − 2 cos(θ − θ0)rr0

)3/2 r0dr0dθ0 (52)

=
φ0z

2π

∫ a

0

∫ 2π

0

r0dr0dθ0(
r2 + r20 + z2 − 2 cos(θ − θ0)rr0

)3/2 , (53)

note the integral was carried out only over the region in which φ(r0, θ0, z0) was nonzero. This
integral can be evaluated to find the potential anywhere in half-space, due to the constant potential
from the disk centered at the origin on the z = 0 plane.

4.3 Potential along Cylinder Axis.

Show that along the axis of the cylinder, (r = 0) the potential is given by

φ = φ0

(
1− z√

a2 + z2

)
. (54)

If we are interested on what the potential will be along the axis of the cylinder (z-axis), we set
r = 0 to obtain

Φ(θ, z) =
φ0z

2π

∫ a

0

∫ 2π

0

r0dr0dθ0(
r20 + z2

)3/2 = φz

∫ a

0

r0dr0(
r20 + z2

)3/2 . (55)

This integral can be evaluated using a substitution of u = r20 + z2, so du/dr0 = 2r0, which makes
the integral

Φ(θ, z) =
φz

2

∫ a2+z2

z2

du

u3/2
=
φz

2

(
2√
z2
− 2√

a2 + z2

)
, (56)

so we find the potential along the cylinder axis in half space to be

Φ(θ, z) = φ

(
1− z√

a2 + z2

)
, (57)

which proves Equation 54.

4.4 Large Distance Expansion.

Show that at large distances (r2+z2 � a2), the potential can be expanded in powers of (r2+z2)−1,
and that the leading terms are

φ =
φ0a

2

2

z

(r2 + z2)3/2

[
1− 3a2

4(r2 + z2)
+

5(3r2a2 + a4)

8(r2 + z2)2
+ . . .

]
. (58)
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We will begin from Equation 53, but will divide top and bottom by the factor (r2 + z2)3/2, which
yields

Φ(r, θ, z) =
φ0z

2π
(r2 + z2)−3/2

∫ a

0

∫ 2π

0

r0dr0dθ0(
1 +

r20−2 cos(θ−θ0)rr0
r2+z2

)3/2 (59)

=
φ0z

2π
(r2 + z2)−3/2

∫ a

0

∫ 2π

0
r0dr0dθ0

(
1 +

r20 − 2 cos(θ − θ0)rr0
r2 + z2

)−3/2
. (60)

We can use the Taylor series (1 + x)n = 1 + nx+ n(n−1)
2 x2 + . . . to write the factor as

1− 3

2

[
r20 − 2 cos(θ − θ0)rr0

r2 + z2

]
+

3
2
5
2

2

[
r20 − 2 cos(θ − θ0)rr0

r2 + z2

]2
+ . . . (61)

We can perform the integrals term-by-term, starting with the first term∫ a

0

∫ 2π

0
r0dr0dθ0 (1) = πa2 . (62)

The second integral, evaluated in Mathematica, is

−3

2

∫ a

0

∫ 2π

0
r0dr0dθ0

(
r20 − 2 cos(θ − θ0)rr0

r2 + z2

)
= − 3

2(r2 + z2)

πa4

2
= −(πa2)

3a2

4(r2 + z2)
, (63)

and the third, evaluated in Mathematica, is

15

8

∫ a

0

∫ 2π

0
r0dr0dθ0

(
r20 − 2 cos(θ − θ0)rr0

r2 + z2

)2

=
15

8(r2 + z2)2
1

3
πa4

(
a2 + 3r2

)
(64)

= (πa2)
5a2(3r2 + a2)

8(r2 + z2)2
. (65)

If we combine these three integrals with Equation 60, we see the potential in the a2 � r2 + z2 limit
is (to order (r2 + z2)2) given by the expansion

Φ(r, θ, z) =
1

2

φ0za
2

(r2 + z2)3/2

[
1− 3a2

4(r2 + z2)
+

5a2(3r2 + a2)

8(r2 + z2)2

]
, (66)

which proves Equation 58.
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5 Problem #5: Potential of Hollow Cylinder.

Consider a cylinder of radius a and height L, and with no charge inside the cylinder. One endcap
and the lateral sides of the cylinder are held at the potential φ0; on the other endcap, the potential
vanishes (you can consider this endcap to be separated from the rest of the cylinder by a thin
insulating spacer). Solve Laplace’s equation to find the potential φ inside the cylinder, evaluating
all required integrals.

We need to solve Laplace’s equation ∇2Φ = 0 in cylindrical coordinates where we assume Φ(ρ, ϕ, z)
is a separable solution φ = R(ρ)Θ(ϕ)Z(z). In cylindrical coordinates we have the equation

∇2Φ =

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂ϕ2
+

∂2

∂z2

]
R(ρ)Θ(ϕ)Z(z) = 0 (67)

0 = R′′ΘZ +
1

ρ
R′ΘZ +

1

ρ2
RΘ′′Z +RΘZ ′ (68)

−k2 + k2 =
R′′

R
+

1

ρ

R′

R
+

1

ρ2
Θ′′

Θ
+
Z ′′

Z
, (69)

where k is some real constant. We can immediately isolate a differential equation for Z(z)

Z ′′ = k2z ⇒ Z(z)

{
cosh kz

sinh kz
. (70)

If we continue separating variables, we find

−ν2 + ν2 = ρ2
R′′

R
+ ρ

R′

R
+

Θ′′

Θ
+ ρ2k2 , (71)

which isolates the angular dependence:

Θ′′ = −ν2Θ ⇒ Θ(ϕ)

{
cos νϕ

sin νϕ
. (72)

We are left with the radial equation

ν2 = ρ2k2 + ρ2
R′′

R
+ ρ

R′

R
⇒ 0 = ρ2R′′ + ρR′ + (ρ2k2 − ν2)R , (73)

which is just Bessel’s equation, so the solutions are Bessel functions of the first (Jν(kr)) and second
kind (Yν(kr)). However, our domain of interest contains the origin and the Bessel functions of the
second kind are divergent at the origin, they cannot be allowed solutions. Furthermore, we know
there can be no angular dependence on the potential due to the cylindrical symmetry, therefore
Θ(ϕ) must equal some nonzero constant. This means ν = 0, so we only have one Bessel function
in our solution, J0(kr). Therefore the boundary conditions of pure geometry have constrained our
solution to be the zeroth Bessel function of the first time times a series of hyperbolic sines and
cosines. If we consider the potential dependent boundary conditions we must note which endcap
is held at ground. Let the endcap on the z = 0 plane, centered at the origin be held at ground,
while the rest of the cylinder is at φ0. This is equivalent to shifting the arbitrary zero point of
potential and saying the entire cylinder is held at ground and the bottom endcap is held at −φ0.
We therefore have the conditions

S(z = 0) = −φ0 S(z = L) = 0 , (74)
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where S is the series which is added to the constant potential. We want the series to be −φ0
at z = 0 so when it is summed to the constant potential term, the total potential is zero on the
bottom endcap, which is the boundary condition for the actual problem (no shifted potentials).
We can only accept hyperbolic sine solutions for the Z solution because the value of hyperbolic
cosine is never negative or zero, which is required for either potential setup (original or shifted).
Additionally, for ρ = a → R = 0, so k = χ0m/a where χ0m is the mth zero of the zeroth Bessel
function of the first kind. Therefore, we can write the potential inside the cylinder as

Φ(ρ, ϕ, z) = φ0 +

∞∑
m=1

amJ0

(χ0m

a
r
)

sinh
(χ0m

a
(z − L)

)
, (75)

and we can apply the boundary condition,

Φ(ρ, ϕ, 0) = 0 = φ0 +
∞∑
m=1

amJ0

(χ0m

a
r
)

sinh
(
−χ0m

a
L
)

(76)

φ0 =

∞∑
m=1

amJ0

(χ0m

a
r
)

sinh
(χ0m

a
L
)
. (77)

To determine the coefficients am we can again exploit an orthogonality condition of Bessel functions,∫ a

0
φ0J0

(χ0n

a
r
)
rdr =

∞∑
m=1

am sinh
(χ0m

a
L
)∫ a

0
J0

(χ0n

a
r
)
J0

(χ0m

a
r
)
rdr (78)

=

∞∑
m=1

am sinh
(χ0m

a
L
)[a2

2
J2
1 (χ0n)δmn

]
(79)

= an sinh
(χ0n

a
L
)[a2

2
J2
1 (χ0n)

]
(80)

an =
2φ0

a2J2
1 (χ0n) sinh

[χ0n

a L
] ∫ a

0
J0

(χ0n

a
r
)
rdr . (81)

We can evaluate this integral by defining w = (χ0n/a)r, and dw/dr = χ0n/a, so∫ a

0
J0

(χ0n

a
r
)
rdr =

∫ w=χ0n

w=0
J0 (u)

(
a

χ0n
u

)(
a

χ0n
du

)
=

a2

χ2
0n

∫ χ0n

0
J0(u)u du (82)

=
a2

χ2
0n

(χ0nJ1(χ0n)) . (83)

Combining this back into Equation 75, we find

Φ(ρ, ϕ, z) = φ0 +

∞∑
m=1

2φ0

sinh
[χ0m

a L
] J0 (χ0m

a r
)

sinh
(χ0m

a (z − L)
)

χ0m
, (84)

which is the potential at a point inside the cylinder of radius a.
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