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Dylan J. Temples Electrodynamics I : Solution Set Four

1 Problem #1: Laplacian in Prolate Spheroidal Coordinates.

Consider the Dirichlet problem in prolate spheroidal (i.e., ellipsoidal) coordinates (α, β, φ), related
to the Cartesian coordinates (x, y, z) by the equations

x = c sinhα sinβ cosφ y = c sinhα sinβ sinφ z = c coshα cosβ , (1)

where
0 ≤ α <∞, 0 ≤ β ≤ π, −π < φ ≤ π, (2)

and c > 0. Using separation of variables, and assuming azimuthal (φ) symmetry, show that the
solution of Laplace’s equation in the interior of an ellipsoid can be written in the form

u(α, β) =
∑
n

AnPn(coshα)Pn(cosβ) . (3)

1.1 Derivation of Laplacian Operator.

The Laplacian in generalized curvilinear coordinates is defined by

∇2 =
1∏
j hj

∂

∂qi

[∏
j hj

h2i

∂

∂qi

]
=

1

hαhβhφ

∂

∂qi

[
hαhβhφ
h2i

∂

∂qi

]
(4)

where the sum over repeated indeces is implied, and hi are the scale factors defined as

hi =

√√√√ 3∑
k=1

(
∂xk
∂qi

)2

(5)

with qi ∈ {α, β, φ} and xk ∈ {x, y, z}. Therefore, we find the scale factors are given by

hα = c
√

(coshα sinβ cosφ)2 + (coshα sinβ sinφ)2 + (sinhα cosβ)2 (6)

hβ = c
√

(sinhα cosβ cosφ)2 + (sinhα cosβ sinφ)2 + (− coshα sinβ)2 (7)

hφ = c
√

(− sinhα sinβ sinφ)2 + (sinhα sinβ cosφ)2 , (8)

which we can examine case-by-case. Begin with the sacle factor for the first coordinate α,

hα = c

√
cosh2 α sin2 β cos2 φ+ cosh2 α sin2 β sin2 φ+ sinh2 α cos2 β

= c

√
cosh2 α sin2 β + sinh2 α cos2 β

= c

√
cosh2 α sin2 β + sinh2 α− sinh2 α sin2 β

= c

√
sinh2 α+ (cosh2 α− sinh2 α) sin2 β

= c

√
sinh2 α+ sin2 β ,

by using the identity cosh2 x = 1 + sinh2 x. The scale factor for φ is

hφ = c

√
sinh2 α sin2 β sin2 φ+ sinh2 α sin2 β cos2 φ

= c sinhα sinβ ,
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We can use a similar analysis as for hα show the scale factor for β is

hβ = c

√
sinh2 α cos2 β cos2 φ+ sinh2 α cos2 β sin2 φ+ cosh2 α sin2 β

= c

√
sinh2 α cos2 β + cosh2 α sin2 β

= c

√
sinh2 α(1− sin2 β) + cosh2 α sin2 β

= c

√
sinh2 α+ sin2 β(cosh2 α− sinh2 α)

= c

√
sinh2 α+ sin2 β ,

which we note is the same as the first scale factor, hα = hβ. We can now define H(α, β) to simplify
our expression for the Laplacian,

H(α, β) =
∏
j

hj = hαhβhφ = h2αhφ = c3(sinh2 α+ sin2 β)(sinhα sinβ) , (9)

so that

∇2 =
1

H

∂

∂qi

[
H

h2i

∂

∂qi

]
=

1

H

{
∂

∂α

[
H

h2α

∂

∂α

]
+

∂

∂β

[
H

h2β

∂

∂β

]
+

∂

∂φ

[
H

h2φ

∂

∂φ

]}

=
1

H

{
∂

∂α

[
hφ

∂

∂α

]
+

∂

∂β

[
hφ

∂

∂β

]
+

∂

∂φ

[
h2α
hφ

∂

∂φ

]}
=

1

H

{[
(∂αhφ)∂α + hφ∂

2
α

]
+
[
(∂βhφ)∂β + hφ∂

2
β

]
+
h2α
hφ
∂2φ

}
,

where ∂ik is the ith order partial derivative with respect to the kth coordinate. We can note that

∂αhφ = c coshα sinβ (10)

∂αhφ = c sinhα cosβ (11)

h2α/hφ = c
sinh2 α+ sin2 β

sinhα sinβ
= c(sinhα cscβ + cschα sinβ) , (12)

and thus the Laplacian operator is

∇2
{α,β,φ} =

1

c2(sinh2 α+ sin2 β)(sinhα sinβ)

{
(coshα sinβ)

∂

∂α
+ (sinhα sinβ)

∂2

∂α2

+ (sinhα cosβ)
∂

∂β
+ (sinhα sinβ)

∂2

∂β2
+ (sinhα cscβ + cschα sinβ)

∂2

∂φ2

}
, (13)

which can be simplified by distributing the last term in the denominator of the overall factor,

∇2
{α,β,φ} =

1

c2(sinh2 α+ sin2 β)

{
cothα

∂

∂α
+

∂2

∂α2
+cotβ

∂

∂β
+

∂2

∂β2
+(csc2 β+csch2α)

∂2

∂φ2

}
, (14)

which is the Laplacian operator in prolate spheroidal coordinates.
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1.2 Solving Laplace’s Equation.

We are interested in solving Laplaces equation, ∇2
{α,β,φ}u = 0. We will assume a separable form

for u, with azimuthal symmetry, so that

u(α, β) = CφA(α)B(β) , (15)

where Cφ is some arbitrary constant that incorporates the azimuthal symmetry (Φ(φ) = cst). If
we act the Laplacian operator (Equation 14)) on this ansatz, we find

∇2u = 0 =
Cφ

c2(sinh2 α+ sin2 β)

[
cothα

dA

dα
B +

d2A

dα2
B + cotβ

dB

dβ
A+

d2B

dβ2
A+ 0

]
, (16)

because there is no azimuthal dependence (∂φ = 0). If we divide out the factor out front, then
divide through by the quantity AB, we get the equation

− k2 + k2 =

[
cothα

1

A

dA

dα
+

1

A

d2A

dα2
+ cotβ

1

B

dB

dβ
+

1

B

d2B

dβ2

]
(17)

where k is some real, arbitrary constant. This results in the two independent differential equations

k2A = cothα
dA

dα
+

d2A

dα2
(18)

−k2B = cotβ
dB

dβ
+

d2B

dβ2
, (19)

but can be simplified if we take derivatives with respect to coshα and cosβ. The differential
operators with respect to α become

d

dα
=

d

d coshα

d coshα

dα
= sinhα

d

d coshα
d2

dα2
=

d

dα

[
sinhα

d

d coshα

]
= coshα

d

d coshα
+ sinhα

d

dα

d

d coshα

= coshα
d

d coshα
+ sinhα

[
sinhα

d

d coshα

]
d

d coshα

= coshα
d

d coshα
+ sinh2 α

d2

d coshα2
,

and for β,

d

dβ
=

d

d cosβ

d cosβ

dβ
= − sinβ

d

d cosβ

d2

dβ2
= − cosβ

d

d cosβ
− sinβ

[
− sinβ

d

d cosβ

]
d

d cosβ
= − cosβ

d

d cosβ
+ sin2 β

d2

d cosβ2
,

so the differential equations become

0 = coshαA+ sinh2 αA′′ + cothα sinhαA′ − k2A (20)

0 = − cosβB′ + sin2 βB′′ − cotβ sinβB′ + k2B , (21)

Page 4 of 13



Dylan J. Temples Electrodynamics I : Solution Set Four

where the primes denote derivatives with respect to coshα and cosβ. Upon simplification, and
multiplying the equation for A by negative one, we see both equations are now in the form of
Legendre’s equation:

0 = −(cosh2 α− 1)A′′ − 2 coshαA′ + k2A (22)

0 = (1− cos2 β)B′′ − cosβB′ + k2B . (23)

The first equation has x = coshα and n(n+1) = k2, while the second has x = cosβ and n(n+1) =
k2, so the solutions are Legendre polynomials of the same order n, with the respective argument.
It is legitimate to set the arbitrary constant k2 to the indicated value, so that the series solution
will stay bounded at θ = 0, π 1. We can represent the solution to Laplace’s equation as a series of
these solutions over the order of the Legendre polynomial. Incorporating the constant from the φ
coordinate with the constant for the series, we see the solution can be written

u(α, β, φ) =

∞∑
n=0

AnPn(coshα)Pn(cosβ) , (24)

which proves Equation 3.

1Arfken. Mathematical Methods for Physicists, 7 ed. Page 716.
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2 Problem #2: Jackson 4.1 a,b.

Calculate the moments (up to quadrupolar order) of the two charge distributions shown in Figure 1
in both Cartesian and spherical coordinates. Also calculate the far-field potential to the same order.

Figure 1: Charge distributions used in Problem #2.

The integrals for the dipole moment (Jackson equation 4.8) and the elements of the traceless
quadrupole moment tensor (Jackson equation 4.9) of a discrete charge distribution become sums
over each particle:

p =
N∑
n=1

qnrn (25)

Qij =
N∑
n=1

qn(3xixj − r2δij) , (26)

expressed in Cartesian coordinates. After these moments are calculated, they can be transformed
to spherical coordinates by using Jackson Equations 4.4 through 4.6. Jackson equation 4.10 shows
the form of the far-field potential in Cartesian coordinates, while Jackson equation 4.1 is the far
field potential in spherical coordinates (in terms of the multipole moments).

2.1 First Distribution.

This distribution has charges q located at (0, 0,±a) and a charge −2q at the origin. We can
immediately see that the monopole moment is zero because the total charge is zero. We note the
central charge has does not contribute to the dipole or quadrupole moments because the value of
its position coordinates are all zero. Therefore, the dipole moment is

p = q [(aẑ) + (−aẑ)] = 0 , (27)

so this distribution only has quadrupole moments or higher. We can write the elements of the
quadrupole moment tensor as

Qij = q
[
(3x

(1)
i x

(1)
j − a

2δij) + (3x
(3)
i x

(3)
j − a

2δij)
]

= q
[
3(x

(1)
i x

(1)
j + x

(3)
i x

(3)
j )− 2a2δij

]
, (28)

where the superscripts are the particle index. We can note that x
(n)
1 = x

(n)
2 = 0, so all off-diagonal

terms must vanish because they must have at least one xi = 0, and the Kronecker delta is zero for
these terms. Additionally, we note that Q11 = Q22 = −2a2 because the xi terms are all zero. The
final terms is

Q33 = q[3(a2 + a2)− 2a2] = 4a2 , (29)
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so the quadrupole moment tensor is

Qij = a2q

−2 0 0
0 −2 0
0 0 4

 , (30)

which is indeed traceless, as expected. Under a transformation to spherical coordinates we see

q00 = q11 = q10 = q1(−1) = 0 , (31)

due to the charge configuration having zero monopole and dipole moments. Additionally, the matrix
elements Qij = 0 for i 6= j, and Q11 = Q22 so we see

q22 = q21 = q2(−2) = q2(−1) = 0 . (32)

Therefore, in spherical coordinates, this charge configuration only has one nonzero moment

q20 =
1

4

√
5

π
(4a2q) =

√
5

π
a2q . (33)

2.1.1 Far-Field Potential.

In Cartesian coordinates, the potential at large distances is given by

Φ(r) = Φ(x, y, z) =
1

4πε0
2a2q

z2

r5
(34)

while in spherical coordinates, the far field potential is

Φ(r) = Φ(r, θ, φ) =
1

ε0

1

5

√
5

π
a2q

Y20(θ, φ)

r3
(35)

and such, these are valid for |r| > a.

2.2 Second Distribution.

In this distribution, there is also a zero monopole moment because the total charge is zero. The
dipole moment is also zero because each charge has a partner with the same magnitude at an
opposite position, i.e., Q(r) = Q(−r), so each term in the dipole moment sum cancels exactly with
another. The elements of the quadrupole moment tensor are given by

Qij = q
[
3(x

(2)
i x

(2)
j + x

(4)
i x

(4)
j − x

(1)
i x

(1)
j − x

(3)
i x

(3)
j )− 2a2δij + 2a2δij

]
, (36)

where the superscripts denote which particle’s position to use. We note that each particle has a z
coordinate of zero, so the off diagonal terms involving z are zero, as well as the 33 term because
there is no Kronecker delta. The off diagonal elements Q12 and Q21 are also zero because each
charge only has one nonzero component, so the product of two different components will always be
zero. The remaining elements are

Q11 = q3(−a2 − a2) = −6a2q (37)

Q22 = q3(a2 + a2) = 6a2q , (38)
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in Cartesian coordinates. Though explicit calculation of Q22 was unnecessary if we exploit the
fact the quadrupole moment tensor is traceless, Q11 = −Q22. After transforming to spherical
coordinates, we see the multipole moments are

q00 = q11 = q10 = q21 = q20 = q2(−1) = 0 (39)

q22 =
1

12

√
15

2π
(−2a2q − 2a2q) =

√
5

2π
a2q (40)

q2(−2) = (−1)2q22 =
1

12

√
15

2π
(−2a2q − 2a2q) =

√
5

2π
a2q . (41)

2.2.1 Far-Field Potential.

Using the appropriate equations from Jackson we find

Φ(r) = Φ(x, y, z) =
1

8πε0

[
−2a2q

x2

r5
+ 2a2q

y2

r5

]
=

1

4πε0

a2q

r5
(y2 − x2) (42)

Φ(r, θ, φ) =
1

5ε0

√
5

2π
a2q

Y22(θ, φ) + Y2(−2)(θ, φ)

r3
, (43)

which are valid for |r| > a.

Page 8 of 13



Dylan J. Temples Electrodynamics I : Solution Set Four

3 Problem #3: Jackson 4.7 a.

A localized charge distribution has a charge density

ρ(r) =
1

64π
r2e−r sin2 θ . (44)

3.1 Multipole Expansion.

Make a multipole expansion of the potential due to this charge density and determine all the non-
vanishing multipole moments.

Using Jackson equation 4.3, we can find all the multipole moments

qlm =
1

64π

∫
Y ∗lm(θ, φ)rl+2e−r sin2 θ(r2 sin θdrdθdφ) (45)

=
1

32

∫ ∞
0

rl+4e−rdr

∫ π

0
Y ∗lm(θ, φ) sin3 θdθ . (46)

If we note the azimuthal symmetry of the charge distribution, it must be that m = 0 so that there
is no φ dependence in the potential the charge distribution creates. Using this and writing the
spherical harmonics in the form of Jackson equation 3.57, we see the multipole moments are of the
form

qlm =
1

32

√
2l + 1

4π

∫ ∞
0

rl+4e−rdr

∫ π

0
Pl(cos θ) sin θ(1− cos2 θ)dθ , (47)

where Pl(x) are the Legendre polynomials. We can investigate the polar integral under a change
of variables cos θ → x, and see that

I =

∫ 1

−1
Pl(x) sin θ(1− x2)(− sin θdx) =

∫ 1

−1
Pl(x)dx−

∫ 1

−1
x2Pl(x)dx . (48)

We should note that P0(x) = 1, then we can exploit the orthogonality of Legendre polynomials to
evaluate the integrals

I =

∫ 1

−1
P0(x)Pl(x)dx−

∫ 1

−1
x2P0(x)Pl(x)dx (49)

=
2δl0

2l + 1
dx−

∫ 1

−1
x2P0(x)Pl(x)dx . (50)

Integrals of this form have solutions given by Jackson equation 3.32, which is nonzero only for
l = 0, 2, so there are only two multipole moments. Therefore, this integral is

I =
2

2l + 1

[
δl0 −

4

75
δl2 −

1

3
δl0

]
=

{
4
3 l = 0

− 4
15 l = 2

, (51)

so the multipole moments are

q00 =
1

32

1√
4π

4

3

∫ ∞
0

r4e−rdr =
1√
4π

(52)

q20 =
1

32

√
5

4π

−8

105

∫ ∞
0

r6e−rdr = −6

√
5

4π
. (53)
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3.2 Far-Field Potential.

Write down the potential at large distances as a finite expansion in Legendre polynomials.

The multipole expansion of the potential due to the charge distribution, by Jackson equation 4.1,
is

Φ(r, θ, φ) =
1

4πε0

[
4π

1√
4π

Y00(θ, φ)

r
− 4π

5
6

√
5

4π

Y20(θ, φ)

r3

]
(54)

=
1

4πε0

[
√

4π
Y00(θ, φ)

r
− 6

√
4π

5

Y20(θ, φ)

r3

]
(55)

=
1

4πε0

[
1

r
− 6

r3

(
3

2
cos2 θ − 1

2

)]
(56)

=
1

4πε0

[
1

r
− 6

r3
P2(cos θ)

]
, (57)

which is the far-field potential.
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4 Problem #4: Jackson 4.2.

By calculating the moments up to quadrupolar order, show that the charge distribution

ρ(r) = −(p · ∇)δ(r) , (58)

represents an elementary dipole of moment p′ at the origin. (This is most easily done in Cartesian
coordinates).

In Cartesian coordinates, the charge distribution can be expressed as

ρ(x, y, z) = −
[
p′x

∂

∂x
+ p′y

∂

∂y
+ p′z

∂

∂z

]
δ(x)δ(y)δ(z) , (59)

where p′i is the ith component of p′. The relevant equations in Jackson are, equation 4.3 with
l = m = 0 for the monopole moment, equation 4.8 for dipole moment, and equation 4.9 for
the quadrupole moment tensor components. Note that all integration takes place over all space:
xi ∈ (−∞,∞), so the limits of integration will be excluded, as they are implied.

4.1 Monopole Moment.

The monopole moment is given by

q00 =

∫
ρ(r′)Y00(θ

′, φ′)dr′ = − 1√
4π

∫∫∫ [
p′x

∂

∂x′
+ p′y

∂

∂y′
+ p′z

∂

∂z′

]
δ(x′)δ(y′)δ(z′)dx′dy′dz′, (60)

which if we distribute the three delta functions, we get three equivalent integrals, one for each
Cartesian coordinate. Let us define the integral I1 as

I1 =

∫∫∫ [
p′x

∂

∂x′

]
δ(x′)δ(y′)δ(z′)dx′dy′dz′ , (61)

and the integrals I2 and I3 follow. Then the monopole moment is given by q00 = −(4π)−1/2(I1 +
I2 + I3). Continuing the evaluation of the first integral is

I1 =

∫∫∫ [
p′x

∂

∂x′
δ(x′)

]
δ(y′)δ(z′)dx′dy′dz′ =

∫ [
p′x′

∂

∂x′
δ(x′)

]
dx′ , (62)

after integrating out the y′ and z′ delta functions, which over all space are unity. The integral can
now be integrated by parts using u = p′x and dv = d

dx′ δ(x
′),

I1 =
[
p′xδ(x

′)
] ∣∣∣∣x′=∞
x′=−∞

−
∫

dp′x
dx′

δ(x′)dx′ = −dp′x
dx′

∣∣∣∣
x′=0

, (63)

where the boundary term is zero because it is evaluated at ±∞. The integrals I2 and I3 can be
found similarly, which result in the monopole moment

q00 = − 1√
4π

[
−dp′x

dx′
−

dp′y
dy′
− dp′z

dz′

] ∣∣∣∣
x′=y′=z′=0

, (64)

which is zero if the dipole moment p′ does not depend on spatial coordinates. This is the case
because p′ is a constant vector.
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4.2 Dipole Moment.

In Cartesian coordinates, the dipole moment of this charge distribution is

p = −
∫∫∫

(x′x̂ + y′ŷ + z′ẑ)

[
p′x

∂

∂x′
+ p′y

∂

∂y′
+ p′z

∂

∂z′

]
δ(x′)δ(y′)δ(z′)dx′dy′dz′ , (65)

again after distributing the delta functions, we get three similar integrals. The first of which is
given by

I1 =

∫∫∫
(x′x̂ + y′ŷ + z′ẑ)

[
p′x

∂

∂x′
δ(x′)

]
δ(y′)δ(z′)dx′dy′dz′ , (66)

and I2 and I3 follow similarly. The dipole moment is then given by p = −(I1+I2+I3). The integral
I1 can be integrated by parts using u = p′x(x′x̂ + y′ŷ + z′ẑ)δ(y′)δ(z′)dy′dz′, and dv = ∂

∂x′ δ(x
′)dx′.

The boundary term is zero because the delta functions are only nonzero at x′ = y′ = z′ = 0, and
the boundary term is evaluated at ±∞. Now the integral is

I1 = −
∫∫∫

d

dx

[
p′xx

′x̂ + p′xy
′ŷ + p′xz

′ẑ
]
δ(x′)δ(y′)δ(z′)dx′dy′dz′ (67)

= −
∫∫∫ [(

dp′x
dx′

x′ + p′x

)
x̂ +

dp′x
dx′

y′ŷ +
dp′x
dx′

z′ẑ

]
δ(x′)δ(y′)δ(z′)dx′dy′dz′ . (68)

The integral over y′ and z′, due to the delta function, causes the integrand to be evaluated at
y′ = z′ = 0, so the ŷ and ẑ terms vanish. Finally, we see

I1 = −
∫ (

dp′x
dx′

x′ + p′x

)
δ(x′)dx′x̂ , (69)

where the first term is zero due to the delta function, so I1 = −p′xx̂, and I2 and I3 follow similarly.
We see the dipole moment is

p =
[
p′xx̂ + p′yŷ + p′zẑ

] ∣∣∣∣
r=0

= p′ , (70)

so the dipole moment of this charge configuration is the dipole moment p′ at the origin.

4.3 Quadrupole Moment.

Inserting the charge distribution into Jackson equation 4.9, we see

Qij = −
∫∫∫

[3x′ix
′
j − (r′)2δij ]

[
p′x

∂

∂x′
+ p′y

∂

∂y′
+ p′z

∂

∂z′

]
δ(x′)δ(y′)δ(z′)dx′dy′dz′ , (71)

where (r′)2 = (x′)2 + (y′)2 + (z′)2, and xi ∈ {x, y, z}. Again, we can distribute the delta functions
and get three similar integrals so that Qij = −(I1 + I2 + I3), the first of which is

I1 =

∫∫∫
[3x′ix

′
j − (r′)2δij ]δ(y

′)δ(z′)

[
p′x

∂

∂x′
δ(x′)

]
dx′dy′dz′ , (72)

which can be integrated by parts by using

u = [3x′ix
′
j − (r′)2δij ]δ(y

′)δ(z′)p′xdy′dz′ (73)

dv =
∂

∂x′
δ(x′)dx′ , (74)
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from which we see

du =
∂

∂x′
[
3x′ix

′
j − (r′)2δij

]
dx′(p′xδ(y

′)δ(z′)dy′dz′) (75)

v = δ(x′) , (76)

note p′x, p
′
y, p
′
z are all constant. We can note the boundary term is zero because the delta functions

are evaluated at ±∞, and are thusly zero. We now see our integral is

I1 = −
∫∫∫

δ(x′)
∂

∂x′
[
3x′ix

′
j − (r′)2δij

]
dx′(p′xδ(y

′)δ(z′)dy′dz′) (77)

= −
∫∫∫

p′x

[
3
∂x′i
∂x′

x′j + 3x′i
∂x′j
∂x′
− 2x′δij

]
δ(x′)δ(y′)δ(z′)dx′dy′dz′ , (78)

which will always be zero when integrated over all space, for any i, j. This must be the case because
the triple integral pulls out the integrand evaluated at the location the delta functions are nonzero.
This occurs at x′ = y′ = z′ = 0. For any Qij there is always a coordinate in each term that will be
set to zero, so the integral will always be zero. The construction of I1 is identical to that of I2 and
I3 except with derivatives taken with respect to different coordinates. Therefore the result for I1
will hold for the other two integrals, so if I1 = 0 ∀ {i, j}, then I2 = I3 = 0. Using this result we see
that

Qij = 0 . (79)

The charge distribution given by Equation 58, has no monopole or quadrupolar contributions to
the potential. It’s dipolar contribution is exactly that of a dipole of moment p′ located at the
origin. Therefore this charge distribution describes a perfect dipole of moment p′ at the origin.
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