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1 Problem #1: Interaction of Polarizable Molecules.

Show that the interaction between two polarizable molecules is attractive, and that it goes like the
inverse sixth power of the distance between them.

Consider a single molecule, with no net dipole moment. In the presence of another polarizable
molecule, a dipole moment can be spontaneously induced in each molecule. The induced dipole
moment (akin to the polarization, just for one particle) of one molecule is proportional to the
electric field of the other, and vice versa. The dipole moment of the first molecule, due to the
electric field E2 produced by the second molecule1 is

p1 = ε0χeE2 , (1)

where χe is the electric susceptibility of the first molecule. The dipole moment p2 simultane-
ously2 induced in the second molecule is what creates the electric field E2 felt by the first molecule
(which induces its dipole moment). When the molecules are separated by a distance r, this electric
field is

E2(r) =
3n̂(p2 · n̂)− p2

4πε0r3
, (2)

where n̂21 is a unit pointing from molecule two to molecule one. Since the molecules are mutually
polarized, the dipole moment will always point along or anti-along the separation vector, so

|E2|(r) =
|p2|

2πε0r3
. (3)

The electrostatic energy of a dipole is

U = −p ·E ∝ −|E|2 , (4)

so the energy of the first molecule due to the second is

U = −p1 ·E2 = −ε0χe|E2|2 ∝ −
|p2|2

r6
, (5)

which because the potential energy is negative, must be an attractive potential (e.g., gravity). The
dipole moments and therefore electric fields of both molecules must be identical (if their electric
susceptibilities are), and the energies of each dipole is the same.

1Jackson, Classical Electrodynamics 3 Ed., Equation 4.36
2As the molecules are brought together, they both simultaneously induce slight dipole moments in each other

which produce electric fields that induce a stronger dipole. At a distance r, when the system comes to equilibrium
the first molecule has dipole moment p1 induced by electric field E2 of the second molecule, due to the dipole moment
p2, which is induced in the second molecule by the electric field E1 produced by the first molecule, due to its dipole
moment p1. This system is symmetric if the molecules are identical (having the same electric susceptibility), so the
field and dipole moment produced and induced in one by the other, must be exactly the same as the field and dipole
moment induced in the other by the first.
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2 Problem #2: Polarizability of Electron in Harmonic Potential.

Determine quantum mechanically the polarizability of an electron in a one-dimensional harmonic
potential.

For linear dielectrics, the electric field is always parallel to the electric displacement, so the elec-
trostatic energy of a dipole is

U = −p ·E = −ε0χ|E|2 = −ε0χE2 , (6)

where χ is the polarizability, which can be determined by

χ = − 1

2ε0

∂2U

∂E2
. (7)

Consider an electron in a one dimensional harmonic oscillator in the region of a uniform electric
field E along the dimension of the oscillator. The Hamiltonian of this electron is

H =
p2

2m
+

1

2
mω2z2 + eEz , (8)

where m and e are the electron mass and charge, and ω is the oscillation frequency. If we complete
the square for the terms with z dependence, we enforce

Az2 +Bz = C(z + z0)
2 +D , (9)

where A and B can be read off from Equation 8. Equating powers of z, we find

A = C (10)

B = 2Cz0 (11)

0 = Cz20 +D , (12)

which give the results

C =
1

2
mω2 (13)

eE = mω2z0 ⇒ z0 =
eE
mω2

(14)

D = −1

2

e2E2

mω2
, (15)

allowing the Hamiltonian to be expressed as

H =
p2

2m
+

1

2
mω2

(
z +

eE
mω2

)2

− 1

2

e2E2

mω2
. (16)

This can be identified as a harmonic oscillator with energies

εn = ~ω(n+ 1
2)− 1

2

e2E2

mω2
, (17)

and wave functions

ψn(z) = ψHO
n

(
z +

eE
mω2

)
, (18)
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where ψHO
n (x) are the eigenfunctions of the simple one dimensional harmonic oscillator. We can

find the expectation value of the dipole moment using quantum mechanics

〈p〉 = −e 〈z〉 = −e
∫ ∞
−∞

ψHO*
n

(
z +

eE
mω2

)
zψHO

n

(
z +

eE
mω2

)
dz , (19)

which is simply the expectation value of z. For the harmonic oscillator centered at zero this
expectation value is zero, so we can say the expectation value for a shifted oscillator is the where
the new coordinate (argument of wave function) is zero, so

〈p〉 = −e
(
− eE
mω2

)
=

e2E
mω2

, (20)

using Jackson equation 4.67, we see the polarizability is

γ =
e2

ε0mω2
. (21)

Using the classical definition of polarizability given at the start of this problem we see

∂2

∂E2

[
~ω(n+ 1

2)− 1

2

e2E2

mω2

]
= − e2

mω2
⇒ χ =

e2

ε0mω2
, (22)

which is the exact same result as obtained quantum mechanically.
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3 Problem #3: Dielectric Spherical Shell.

Consider a spherical dielectric shell of permittivity ε and inner and outer radii a and b (b > a) in
a uniform external field E0. Determine the field inside the shell (r < a) as a function of ε, a, b.
What happens as ε→∞?

Consider the same geometry and coordinate system as in Jackson figure 4.6, but with the outer
radius b and an interior cavity of radius a. Let us then define the regions: region 1 for r < a, region
2 for a < r < b, and region 3 for r > b. Using Jackson equation 4.49, we can define the potential
in all three regions:

φ1 =
∞∑
`=0

[
A`r

` +B`r
−(`+1)

]
P`(cos θ) (23)

φ2 =
∞∑
`=0

[
C`r

` +D`r
−(`+1)

]
P`(cos θ) (24)

φ3 =
∞∑
`=0

[
F`r

` +G`r
−(`+1)

]
P`(cos θ) , (25)

where the constants A,B,C,D, F,G will be determined by boundary conditions, and P`(x) are the
Legendre polynomials. Since the potential in region one must be finite at the origin we can say
B` = 0 ∀` ∈ Z. Similarly to the process in Jackson, we say3 that F` = −E0δ`1, where δ`1 is the
Kronecker delta.

Using the boundary conditions on the tangential components of E and the normal component of
D we obtain the conditions

−1

a

∂φ1
∂θ

∣∣∣∣
r=a

= −1

a

∂φ2
∂θ

∣∣∣∣
r=a

and − ε0
∂φ1
∂r

∣∣∣∣
r=a

= −ε∂φ2
∂r

∣∣∣∣
r=a

(26)

−1

b

∂φ2
∂θ

∣∣∣∣
r=b

= −1

b

∂φ3
∂θ

∣∣∣∣
r=b

and − ε∂φ2
∂r

∣∣∣∣
r=b

= −ε0
∂φ3
∂r

∣∣∣∣
r=b

, (27)

where the top line is the conditions for the surface at r = a and the second line is the conditions
for the surface r = b. Let us calculate these derivatives noting that

∂

∂θ
P`(cos θ) = P 1

` (cos θ) , (28)

where P 1
` (x) is the `th associated Legendre function of first order. The derivatives of the potential

in region one are then

∂φ1
∂θ

=

∞∑
`=0

A`r
`P 1
` (cos θ) (29)

∂φ1
∂r

=

∞∑
`=0

A``r
`−1P`(cos θ) , (30)

3The electric field is E0 = E0z = E0r cos θ, so the coefficient of the r1P1(cos θ) must be the electric field for large
values of r. This imposes no condition on G` because the negative exponentials vanish for large r.
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and region two:

∂φ2
∂θ

=

∞∑
`=0

[
C`r

` +D`r
−(`+1)

]
P 1
` (cos θ) (31)

∂φ2
∂r

=
∞∑
`=0

[
C``r

`−1 − (`+ 1)D`r
−(`+2)

]
P`(cos θ) , (32)

and region three:

∂φ3
∂θ

= E0r sin θ +

∞∑
`=0

G`r
−(`+1)P 1

` (cos θ) (33)

∂φ3
∂r

= −E0 cos θ +

∞∑
`=0

−(`+ 1)G`r
−(`+2)P`(cos θ) . (34)

Starting with the first condition, we see

0 =

(
∂φ1
∂θ
− ∂φ2

∂θ

) ∣∣∣∣
r=a

=

∞∑
`=0

A`a
`P 1
` (cos θ)−

∞∑
`=0

[
C`a

` +D`a
−(`+1)

]
P 1
` (cos θ) , (35)

since the associated Legendre functions form an orthogonal basis, the coefficient of each term in
the sum must vanish independently,

0 = A`a
` − C`a` −D`a

−(`+1) ⇒ A` = C` +D`a
−(2`+1) . (36)

Similarly, for the tangential condition at the r = b surface,

0 =

(
∂φ2
∂θ
− ∂φ3

∂θ

) ∣∣∣∣
r=b

=
∞∑
`=0

[
C`b

` +D`b
−(`+1)

]
P 1
` (cos θ)−

∞∑
`=0

[
−E0b

`δ1` +G`b
−(`+1)

]
P 1
` (cos θ)

= C`b
` +D`b

−(`+1) + E0bδ1` sin θ −G`b−(`+1)

` = 1 : 0 = C1b+D1b
−2 + E0b−G1b

−2 ⇒ G1 = D1 + (C1 + E0)b
3

` 6= 1 : 0 = C`b
` +D`b

−(`+1) −G`b−(`+1) ⇒ C` = (G` −D`)b
−(2`+1)

Now consider the normal component conditions on the surface at r = a, since there is no free charge
anywhere, we have

0 =

(
ε
∂φ2
∂θ
− ε0

∂φ1
∂θ

) ∣∣∣∣
r=a

(37)

= ε

∞∑
`=0

[
C``a

`−1 − (`+ 1)D`a
−(`+2)

]
P`(cos θ)− ε0

∞∑
`=0

A``a
`−1P`(cos θ) , (38)

since the Legendre polynomials form an orthogonal basis, the coefficient of each term in the sum
must vanish independently:

0 = εC``a
`−1 − ε(`+ 1)D`a

−(`+2) − ε0A``a`−1 (39)

=
`

`+ 1
(εC` − ε0A`)− εD`a

−(2`+1) . (40)
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The final boundary condition is

0 =

(
ε
∂φ2
∂θ
− ε0

∂φ3
∂θ

) ∣∣∣∣
r=b

= ε

∞∑
`=0

[
C``b

`−1 − (`+ 1)D`b
−(`+2)

]
P`(cos θ)− ε0

∞∑
`=0

[
−E0δ1`b

`−1 − (`+ 1)G`b
−(`+2)

]
P`(cos θ)

= εC``b
`−1 − ε(`+ 1)D`b

−(`+2) + ε0E0δ1` + ε0(`+ 1)G`b
−(`+2).

For ` = 1 this becomes
0 = εC1 − 2εD1b

−3 + ε0E0 + 2ε0G1b
−3 , (41)

and for ` 6= 1, we have
0 = εC``b

2`+1 + (`+ 1)(ε0G` − εD`) , (42)

after multiplying through by b`+2.

In summary, the boundary conditions (in the order: tangential at r = a, tangential at r = b, normal
at r = a, and normal at r = b) for ` = 1 are

0 = (C1 −A1)a
3 +D1 (43)

0 = D1 −G1 + (C1 + E0)b
3 (44)

0 = (ε0A1 − εC1) a
3 + 2εD1 (45)

0 = εC1 − 2εD1b
−3 + ε0E0 + 2ε0G1b

−3 . (46)

The boundary conditions for ` 6= 1 are

0 = (C` −A`)a2`+1 +D` (47)

0 = D` −G` + C`b
2`+1 (48)

0 = (ε0A` − εC`) `a2`+1 + εD`(`+ 1) (49)

0 = εC``b
2`+1 + (`+ 1)(ε0G` − εD`) . (50)

Using Mathematica to solve for the constants A1, C1, D1, G1, we get the results

A1 = − 1

f

(
9E0b

3εε0
)

(51)

C1 = − 1

f

(
3E0b

3ε0 (2ε+ ε0)
)

(52)

D1 = − 1

f

(
3E0a

3b3 (ε− ε0) ε0
)

(53)

G1 =
1

f

(
E0b

3 (ε− ε0) (2ε+ ε0)
(
b3 − a3

))
(54)

with f = 2ε2
(
b3 − a3

)
+ ε0ε

(
4a3 + 5b3

)
+ 2ε20

(
b3 − a3

)
. (55)

Using Mathematica to solve for the coefficients for arbitrary `, shows the only solution is if the
constants are A` = C` = D` = G` = 0, which is not an interesting solution. The potentials in each
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region are then

φ1 = − 1

f

(
9E0b

3εε0
)
rP1(cos θ) (56)

φ2 = − 1

f

[(
3E0b

3ε0 (2ε+ ε0)
)
r +

(
3E0a

3b3 (ε− ε0) ε0
) 1

r2

]
P1(cos θ) (57)

φ3 = −E0r cos θ +
1

f

[(
E0b

3 (ε− ε0) (2ε+ ε0)
(
b3 − a3

)) 1

r2

]
P1(cos θ) , (58)

where P1(cos θ) = cos θ. The electric field in the interior cavity is

E1 = −∇φ1 = −
(
∂φ1
∂r

r̂ +
1

r

∂φ1
∂θ

θ̂

)
(59)

= 9E0b
3εε0

[
cos θ

∂

∂r

r

f
r̂ +

∂

∂θ

cos θ

f
θ̂

]
(60)

=
9E0b

3εε0
2ε2 (b3 − a3) + ε0ε (4a3 + 5b3) + 2ε20 (b3 − a3)

(
cos θr̂− sin θθ̂

)
. (61)

Consider the coefficient in the above expression in the limit ε→∞. From a qualitative standpoint,
this limit makes it so that the electric field cannot penetrate the dielectric material, and the electric
field inside must be zero. This seems to say that as the dielectric constant tends to infinity, the
dielectric material behaves like a perfect conductor. Mathematically, we can show that in this limit
the electric field inside the cavity is zero, just as in a perfect conductor:

lim
ε→∞

E1 lim
ε→∞

∝ αε

βε2 + γε+ δ
= lim

ε→∞

α

βε+ γ
= 0 , (62)

by L’Hôpital’s rule. This proves the electric field inside the cavity is zero as the dielectric constant
tends to infinity.
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4 Problem #4: Dielectric Infinite Cylinder.

By solving Laplace’s equation, derive the electric field inside and outside an infinitely long uniform
dielectric cylinder of permittivity ε = εrε0 placed in a uniform electric field E0 oriented perpendic-
ular to the cylinder’s axis. Determine the depolarization factors. Based in your results, what do
you expect the field inside the cylinder to be if the external field were aligned along the axis of the
cylinder.

For an infinite cylinder of uniform dielectric in a uniform electric field, the potential everywhere in
space can have no z dependence. Furthermore, we will assume a separable solution to Laplace’s
equation such that

∇2Φ(ρ, φ) = ∇2R(ρ)Y (φ) = 0 , (63)

in cylindrical coordinates this is

0 =
1

ρ

[
∂

∂ρ
+ ρ

∂2

∂ρ2

]
R(ρ)Y (φ) +

1

ρ2
∂2

∂φ2
R(ρ)Y (φ) (64)

=
1

ρR

[
∂R

∂ρ
+ ρ

∂2R

∂ρ2

]
+

1

Y ρ2
∂2Y

∂φ2
(65)

=
1

R

[
ρ
∂R

∂ρ
+ ρ2

∂2R

∂ρ2

]
+

1

Y

∂2Y

∂φ2
, (66)

after multiplying the equation by ρ2. We are left with the two equations

k2R = ρ2R′′ + ρR′ (67)

k2Y = −Y ′′ , (68)

where k is an arbitrary constant. The polar equation has sine and cosine solutions:

Y (φ) = C sin(kφ) +D sin(kφ) , (69)

and we will assume a power series solution4 for the radial equation,

R(ρ) =
∞∑

n=−∞
anρ

n , (70)

where an are constants. If we substitute this ansatz into the radial differential equation, we obtain

0 = ρ2
∞∑

n=−∞
n(n+ 1)anρ

n−2 + ρ
∞∑

n=−∞
nanρ

n−1 +
∞∑

n=−∞
(−k2)anρn (71)

0 =
∞∑

n=−∞

(
n(n+ 1) + n− k2

)
anρ

n =
∞∑

n=−∞

(
n2 − k2

)
anρ

n , (72)

due to the form of the ansatz, each term must be zero independently, and if we enforce that an 6= 0,
it must be that

0 = n2 − k2 ⇒ k = ±n , (73)

4Since each order of derivative appears next to an equivalent power of ρ, a power series of the indicated form will
satisfy this ODE. Taking n derivative reduces the power of ρ by n, then multiplying it by a factor of ρn ensures that
each power of ρ will appear in multiple terms and each term in the infinite sum is allowed to cancel exactly.
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so it must be that since n is any integer, k ∈ Z. We can then express the power series solution as

R(ρ) = a0 +
∞∑
n=1

anρ
n +

∞∑
n=1

a−nρ
−n , (74)

but we are free to set the zero of our potential such that5 a0 = 0. The potential everywhere,
without enforcing boundary conditions is

Φ(ρ, φ) =
∞∑
n=1

ρn (bn sinnφ+ cn cosnφ) +
∞∑
n=1

ρ−n (bn sinnφ+ cn cosnφ) , (75)

where the an were incorporated in the new coefficients bn, cn. The potential inside the cylinder
must be finite at the origin, and also finite as ρ→∞, so we can separate the potential into separate
expressions for the regions inside and outside the cylinder surface,

Φin(ρ, φ) =

∞∑
n=1

ρn (bn sinnφ+ cn cosnφ) (76)

Φout(ρ, φ) = −E0ρ cosφ+
∞∑
n=1

ρ−n (dn sinnφ+ fn cosnφ) (77)

=

∞∑
n=1

−E0ρ
nδ1n cosnφ+ ρ−n (dn sinnφ+ fn cosnφ) , (78)

where the first term in Φout is due to the far field potential needing to be equivalent to that due
to the uniform magnetic field. Here we have set the electric field along the x axis E0 = E0ρ cosφ,
and the x axis is taken at φ = 0. The cylinder has radius r. Using the boundary conditions for
the tangential component of E and the normal component of the electric displacement D, we must
have

0 =

(
∂Φin

∂φ
− ∂Φout

∂φ

) ∣∣∣∣
ρ=s

(79)

0 =

(
ε
∂Φin

∂ρ
− ε0

∂Φout

∂ρ

) ∣∣∣∣
ρ=r

, (80)

again since there is no free charge. The first condition gives

0 =

∞∑
n=1

rn (bnn cosnφ− cnn sinnφ) + E0nr sinφ−
∞∑
n=1

a−n (dnn cosnφ− fnn sinnφ) (81)

=
∞∑
n=1

(
−rncnn+ E0nr

nδ1n + r−nfnn
)

sinnφ+
∞∑
n=1

(
rnbnn− r−ndnn

)
cosnφ (82)

=

∞∑
n=1

(
−r2ncn + E0r

2nδ1n + fn
)
n sinnφ+

∞∑
n=1

(
r2nbn − dn

)
n cosnφ , (83)

since both sines and cosines are form an orthogonal basis, their coefficients in each term must
vanish:

0 = −r2ncn + E0r
2nδ1n + fn ⇒ fn = r2n(cn + E0δ1n) (84)

0 = r2nbn − dn ⇒ dn = r2nbn . (85)

5Especially because we are interested in the electric field, not the potential, so the derivatives with respect to r
vanish.
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The second boundary condition gives

0 = ε
∞∑
n=1

nrn−1 (bn sinnφ+ cn cosnφ) + ε0

∞∑
n=1

−E0nr
n−1δ1n cosnφ+ nr−(n+1) (dn sinnφ+ fn cosnφ)

=

∞∑
n=1

[
εrn−1bn + ε0r

−(n+1)dn

]
n sinnφ+

∞∑
n=1

[
εrn−1cn + ε0E0r

n−1δ1n + ε0r
−(n+1)fn

]
n cosnφ

again the coefficient in each term of the sum must vanish independently:

0 = εrn−1bn + ε0r
−(n+1)dn ⇒ dn = −r2n ε

ε0
bn (86)

0 = εrn−1cn + ε0E0r
n−1δ1n + ε0r

−(n+1)fn ⇒ fn = −r2n
(
ε

ε0
cn + E0δ1n

)
, (87)

The boundary conditions can be summarized as

fn = r2n(cn + E0δ1n) (88)

dn = r2nbn (89)

dn = −r2n ε
ε0
bn (90)

fn = −r2n
(
ε

ε0
cn + E0δ1n

)
. (91)

For Equations 89 and 90 to be consistent we must have ε = −ε0. We cannot have negative
permittivities, so this result is unphysical. The only way these conditions are consistent is if
dn = bn = 0 ∀n ∈ Z. Extending this logic to Equations 88 and 91, for n 6= 1, we obtain the same
inconsistency as before, so the only nonzero constants are c1 and f1. We now have

f1 = r2(c1 − E0) (92)

f1 = −r2
(
ε

ε0
c1 + E0

)
, (93)

which can be solved for the results

c1 = −2E0
ε0

ε+ ε0
(94)

f1 = E0r
2 ε− ε0
ε+ ε0

, (95)

which we can insert into the expressions for the potentials inside and outside the cylinder to obtain

Φin(ρ, φ) = −2E0
ε0

ε+ ε0
ρ cosφ (96)

Φout(ρ, φ) = −E0ρ cosφ+ E0r
2 ε− ε0
ε+ ε0

1

ρ
cosφ . (97)

The corresponding electric fields are given by the negative gradient of the potential:

Ein = −∇Φin = −
(
∂Φin

∂ρ
ρ̂ +

1

ρ

∂Φin

∂φ
φ̂

)
(98)

= 2E0
ε0

ε+ ε0
cosφρ̂− 2E0

ε0
ε+ ε0

sinφφ̂ (99)

= 2E0
ε0

ε+ ε0

(
cosφρ̂− sinφφ̂

)
= 2E0

ε0
ε+ ε0

x̂ . (100)
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note that this is along the same direction as the original electric field E0. The potential outside is

Eout = −∇Φout = −
(
∂Φout

∂ρ
ρ̂ +

1

ρ

∂Φout

∂φ
φ̂

)
(101)

=

[
E0 cosφ+ E0

r2

ρ2
ε− ε0
ε+ ε0

cosφ

]
ρ̂ +

[
−E0 sinφ+ E0

r2

ρ2
ε− ε0
ε+ ε0

r2

ρ2
sinφ

]
φ̂ (102)

= E0

[(
r2

ρ2
ε− ε0
ε+ ε0

+ 1

)
cosφρ̂ +

(
r2

ρ2
ε− ε0
ε+ ε0

− 1

)
sinφφ̂

]
. (103)

For the case in which the electric field was aligned along the axis of the cylinder, I would assume
the electric field inside would be exactly the same as that outside. Since the cylinder is infinite in
extent, any polarization caused by the electric field in a single plane (perpendicular to the axis of
the cylinder) will be canceled out by the planes in front and behind it.

Depolarization factors Ni are geometrical constants determined by the polarization along each axis.
In Cartesian coordinates the sum of depolarization factors must be one: 1 = Nx + Ny + Nz. Ad-
ditionally, since the cylinder is infinite in extent in the z direction we must have Nz = 0. Through
symmetry in the x− y plane, it must be that Nx = Ny = 1

2 . This can be shown mathematically:

We can write the electric field inside the dielectric as

Ein = 2E0
1

ε
ε0

+ 1
x̂ = E0

1 + 1 + ε
ε0
− ε

ε0
ε
ε0

+ 1
x̂ = E0

(
1 + ε

ε0
ε
ε0

+ 1
+

1− ε
ε0

ε
ε0

+ 1

)
x̂ (104)

= E0x̂− E0

(
ε− ε0
ε+ ε0

)
x̂ , (105)

while the polarization of the dielectric is

P = D− ε0E = (ε− ε0)E = 2E0ε0
ε− ε0
ε+ ε0

x̂ , (106)

so if we write the electric field inside the dielectric in terms of the polarization we see

Ein = E0 −
1

2

P

ε0
, (107)

which we note that the coefficient of −P/ε0 is the depolarization coefficient6, in this case it is
Nx = 1/2 as claimed previously. If we repeat the calculation with the initial electric field aligned
along the y axis we find the same result, Ny = 0. If the electric field is aligned along the axis of the
cylinder, we have previously said Ein = E0, so the coefficient of the polarization is zero: Nz = 0,
as expected.

6Garg, Classical Electrodynamics in a Nutshell. Section 96, page 351.
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