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1 Problem #1: Toroidal Electromagnet with Gap.

Estimate the field strength H in the gap of the circular electromagnet shown in Figure 1. The
electromagnet has N turns of wire carrying a current I wrapped around a magnetic material with
circular cross-sectional area F0, permeability µ and mean circumference L− l, where l is the width
of the gap. You can assume constant and Homogeneous fields.

Let us define a coordinate x which is the distance along the mean circumference, with x = 0 = L
at one end of the gap. The positive direction is away from the gap, as indicated. If we consider the
closed-loop integral from x = 0 to x = L:∮

H · dl =

∮
H · dx̂ =

∮
Hdx = Ienc = NI , (1)

if there are N total turns around this the loop. We can note that the magnetic field from a circular
electromagnet is entirely in the axial direction, H = Hφ̂. Therefore x̂ ‖ H, so the dot product
results in the entire magnitude of the fields. Each loop contributes a current I independently. We
can then express the integral as ∫ L−l

0
Hidx+

∫ L

L−l
Hodx = NI , (2)

where Hi is the magnetic field inside the electromagnet along the mean circumference and Ho is
the magnetic field in the gap. Evaluating this, we see

NI = Hi(L− l) +Hol . (3)

If we approximate the gap as small, we can say the field in the gap also points in the axial direction,
and the field normal to the faces of the gap, is the entire magnetic field. If we use the magnetostatic
boundary conditions, we see

Bi
⊥ = Bo

⊥ ⇒ Bi = Bo . (4)

We can replace the magnetic induction with the magnetic field by using the permeability of the
material. In the electromagnet, the permeability is µ and in the gap it is µ0, so

µHi = µ0Ho ⇒ Hi =
µ0
µ
Ho . (5)

If we insert this into Equation 3, we obtain

NI = Ho

(
µ0
µ

(L− l) + l

)
⇒ Ho =

NI
µ0
µ (L− l) + l

. (6)

This is a reasonable result because in the limit that µ0 → µ (the gap being filled with the same
dielectric material as the rest of the electromagnet), we get the magnetic field due to a circular
electromagnet:

H =
NI

L
=

1

µ
Btoroid , (7)

as expected - we get the field in the gap region (now with permeability µ) to be the same as the
field around the rest of the mean circumference. We get the same result if we take l = 0:

H =
NI
µ0
µ L

=
µ

µ0

NI

L
=

µ

µ0
Btoroid , (8)

but the in the gap region we must replace µ0 by µ, and we get the same result.
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2 Problem #2: Electromagnetic Momentum.

A solenoid of radius R with n turns per unit length carries a stationary current I. Two hollow
cylinders of length l are fixed coaxially with it and are free to rotate along their axes (l is much
shorter than the length of the solenoid). One cylinder of radius a is inside the coil (a < R) and
carries a uniformly distributed charge Q. The outer cylinder of radius b > R carries a charge −Q. If
the current is switched off, the cylinders start to rotate. Calculate the resulting angular momentum
of each cylinder, and show this angular momentum results from the electromagnetic field.

Let us define a coordinate system with the z axis along the central axis of the cylinders, where
z = 0 is the plane perpendicular to the axis that intersects the inner and outer cylinders halfway
down their length l. The only magnetic field in the system is interior to the solenoid (r < R),
so the Poynting vector only exists in this region (the poynting vector carries the momentum of
electromagnetic fields). The magnetic induction in this region is simply

B = µ0Inẑ , (9)

where n is the number of turns per unit length, and I is the current running through the solenoid
(in a direction such that it produces a field in the positive z direction). For r < a there is no electric
field (no enclosed charge), and since the magnetic field only exists for r < R, we are only interested
in the electric field in the region a < r < R. By Gauss’ law, the electric field in this region is∫

S
E · dS =

Q

ε0
, (10)

because the for r > a the entire charge of the inner cylinder is contained within the Gaussian
surface. The electric field outside created by the charged cylinder points radially outward, so the
Gaussian surface is a cylinder at r > a with a length l. The only flux is through the tube face (not
the endcaps), so

E(2πrl) =
Q

ε0
⇒ E =

Q

2πε0l

1

r
r̂ , (11)

which is valid in the region a < r < R (really valid to b) and −l/2 ≤ z ≤ l/2, for all ϕ, in
cylindrical coordinates. Using Jackson equation 6.117, we can write the linear momentum density
of the electromagnetic field in this volume as

g = µ0ε0E×H = ε0E×B , (12)

where S = E ×H is the Poynting vector. In cylindrical coordinates, the Poynting vector in the
specfied region is

E×B = µ0S =
µ0InQ

2πε0l

1

r
r̂× ẑ = −µ0InQ

2πε0l

1

r
ϕ̂ . (13)

Using the definition of angular momentum, we can write the angular momentum density of the
electromagnetic field in this region as

` ≡ r× g = ε0r×E×B = (ε0r)

(
−µ0InQ

2πε0l

)
1

r
(r̂× ϕ̂) = −µ0InQ

2πl
ẑ . (14)

To find the total electromagnetic angular momentum, we must integrate this over the entire volume
in which the Poynting vector exists. This is equivalent to simply multiplying to the total volume
because the angular momentum density is a constant:

LEM = −µ0InQ
2πl

(
π(R2 − a2)l

)
ẑ = −1

2
µ0nIQ(R2 − a2)ẑ . (15)
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We now consider turning off the current so that over some period of time (regardless of how short)
the current decreases from I to zero, and as such reduces the magnetic field inside the solenoid
linearly with the current. This changing magnetic field gives rise to an induced electric field EI
defined by

∇×EI = −∂B
∂t

, (16)

by Faraday’s law of induction. If we integrate these over a surface S, we see∫
S
∇×EI · dS = − ∂

∂t

∫
S
B · dS (17)∮

C
EI · dl = − ∂

∂t
ΦM , (18)

where C is the contour bounding the surface S and ΦM is the magnetic flux through this surface.
If we assume there is only an axial component of the electric field, the line element will always be
parallel to the field. For this surface and electric field, the left-hand side of the above equation is

|EI |(2πr) , (19)

Consider a circular surface of radius r > R perpendicular to the axis of the cylinders, then the
right-hand side of Equation 17 is

− ∂

∂t
ΦM = −(πR2ẑ) · ∂

∂t
B = −µ0πnR2∂I

∂t
ϕ̂ . (20)

so we get

EI(r, t) = −µ0πnR
2

2πr
ϕ̂ = −1

2
µ0n

R2

r

∂I

∂t
ϕ̂ . (21)

This electric field induces a torque on the charged cylinder of radius b, given by

τ b(t) = br̂× (−Q)EI(b, t) =
1

2
µ0nQR

2∂I

∂t
ẑ , (22)

and angular momentum is related to torque by dL
dt = τ . Therefore the angular momentum of the

outer cylinder is

Lb =

∫ t

0
τ b(t)dt =

1

2
µ0nQR

2

∫ t

0

∂I

∂t
dt ẑ (23)

=
1

2
µ0nQR

2[I(t)− I(0)]ẑ = −1

2
µ0nQR

2I ẑ , (24)

because the current is at full strength I at t = 0 and after a time t the current has been totally
turned off.

Similarly, for r < R, the right hand side of Equation 17 gives

− (πr2ẑ) · ∂
∂t

B = −µ0πnr2
∂I

∂t
ϕ̂ , (25)

yielding

EI(r, t) = −1

2
µ0nr

∂I

∂t
ϕ̂ . (26)
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The torque on the inner conductor is

τ a = ar̂×QEI(a, t) = −1

2
µ0nQa

2∂I

∂t
ϕ̂ , (27)

yielding an angular momentum of

La =

∫ t

0
τ a(t)dt = −1

2
µ0nQa

2

∫ t

0

∂I

∂t
dt ẑ (28)

= −1

2
µ0nQa

2[I(t)− I(0)]ẑ =
1

2
µ0nQa

2I ẑ . (29)

If we sum the results, the total angular momentum of the system after the current has been
completely switched off, is

Lmech =
1

2
µ0nIQ(a2 −R2)ẑ = −1

2
µ0nIQ(R2 − a2)ẑ , (30)

which we notice is equal in sign and magnitude to the angular momentum of the electromagnetic
field that was applied before the current was removed.

Figure 1: The geometry of the electromagnet in problem one.
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3 Problem #3: Type I Superconductor.

A Type I superconductor is a material which is a perfect diamagnet, in that below a certain critical
field Hc, the magnetic field B inside the superconductor is zero. If the magnitude of the field
inside the superconductor Hi > Hc, the superconductor becomes a normal metal, in which state
its permeability µ ∼ µ0. Consider a superconducting sphere of radius a in a uniform magnetic field
B0 inside and outside the superconductor.

3.1 Permeability of Superconductor.

For Hi < Hc, what is the permeability µ of the superconductor?

If the magnetic field inside the superconductor is Hi, the magnetic induction is given by

B = µHi . (31)

However, for fields of magnitude less than Hc, the magnetic induction inside is zero, but the mag-
netic field is non-zero, so the permeability must be zero. We can interpret this as a superconductor
(in its superconducting state) having no capacity to support or transmit magnetic inductances.

3.2 Fields of Superconductor.

For the case above, determine H and B inside and outside the superconductor.

We can immediately write Bin = 0, by the logic above. Then, using Jackson equation 5.112, we
can write the magnetization of the sphere as

M = − 3

2µ0
B0 , (32)

and inser that into the second expression of Jackson equation 5.112 to get the magnetic field inside
the superconductor:

Hin =
1

µ0
B0 +

1

2µ0
B0 =

3

2µ0
B0 , (33)

which we note is consistent with Jackson equation 5.115, because in the uperconducting state µ = 0.
Using the magnetization, we can write the magnetic dipole moment of the sphere as

m =
4

3
πa3M = −2πa3

µ0
B0 . (34)

Now we can write the magnetic induction outside the sphere as the sum of the applied field and
the field due to the dipole moment of the sphere:

Bout(x) = B0 + Bdipole = B0 +
µ0
4π

[
3r̂(r̂ ·m)−m

|x|3

]
, (35)

where r̂ is a unit vector, such that x ≡ rr̂. The system is azimuthally symmetric, so we can reduce
this problem to that of a plane. We can use a polar coordinate system with θ measured from the
z axis, with r as the radial coordinate. Let the y axis be perpendicular to z in a right-handed
coordinate system. The unit vector is then

r̂ = cos θẑ + sin θŷ , (36)
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so that

n̂ ·m = −2πa3

µ0
B0 cos θ ≡ −M cos θ . (37)

Alternatively we can express ẑ = cos θr̂− sin θθ̂, so that

m = −Mẑ = −M
(

cos θr̂− sin θθ̂
)
, (38)

so we see that the numerator in the dipole term is

3r̂(r̂ ·m)−m = −3M cos θr̂ +M
(

cos θr̂− sin θθ̂
)

(39)

= −2M cos θr̂−M sin θθ̂ . (40)

Using this we can write the magnetic induction outside the sphere as

Bout(x) = B0

(
cos θr̂− sin θθ̂

)
− µ0

4πr3

[
2M cos θr̂ +M sin θθ̂

]
(41)

=

(
B0 − 2

µ0M
4πr3

)
cos θr̂−

(
B0 +

µ0M
4πr3

)
sin θθ̂ , (42)

and noting

µ0
2πr3

M =
B0

2

(a
r

)3
, (43)

we obtain the result

Bout(r, θ) = B0

(
1−

(a
r

)3)
cos θr̂−B0

(
1 +

1

2

(a
r

)3)
sin θθ̂ , (44)

and using the definition of the magnetic field in terms of the magnetic induction yields

Hout(r, θ) =
Bout(r, θ)

µ0
=
B0

µ0

(
1−

(a
r

)3)
cos θr̂− B0

µ0

(
1 +

1

2

(a
r

)3)
sin θθ̂ , (45)

3.3 Superconductor in Super-Critical Fields.

What happens to the fields if B0 is increased so that the H field inside the superconductor exceeds
Hc? How do you think the superconductor resolves the resulting logical inconsistency?

As the applied magnetic induction B0 increases in magnitude, the magnitude of the internal mag-
netic field Hi increases linearly, and the magnetization decreases (increasingly negative) linearly as
well (see Equation 32). As the applied field increases, there is still no B field inside the conductor
until the magntiude of the internal field surpasses Hc. At this point, the permeability of the sphere
goes from 0 to some finite µ with the same order of magnitude as µ0. The discontinuous jump in
permeability gives rise to a discontinuity of the magnetic induction inside the sphere. The magne-
tization of the sphere in its superconducting state is given by Equation 32, while the magnetization
of a normally-conducting sphere in an external magnetic field is given by Jackson equation 5.115,
which combine to give

M =
3

µ0
B0

[
−1

2
Θ(Bc −B0) +

n− 1

n+ 2
Θ(B0 −Bc)

]
, (46)
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where µ/µ0 = n, and Bc is the critical applied field such that Hc = 3/(2µ0)Bc, and Θ(x) is the
Heaviside step function. We can use this, and the second expression in Jackson equation 5.112, to
find the value of the internal magnetic field H inside the sphere for any applied field. The magnetic
induction inside the sphere is

Bin =

[
B0 +

2µ0
3

M

]
Θ(B0 −Bc) . (47)

The magnitude of these fields, and magnetization (all point in ±z direction), are plotted in Figure 2,
with n = 1.5 and µ0 = 1. We see the discontinuous jump in the permeability of the sphere causes
a discontinuous jump in the internal magnetic induction.

(a) Permeability of non-superconducting state
greater than the permeability of free space.

(b) Permeability of non-superconducting state less
than the permeability of free space.

Figure 2: Magnetization and magnetic fields inside a spherical superconductor as a function of
applied external field. Note the discontinuous jumps occur when the applied magnetic field increases
the magnitude of the magnetic field inside the conductor past some critical value.

If we examine the internal H field, we see there is a drop in magnitude when the sphere transitions
out of its superconducting state. This drop in magnitude puts Hin < Hc, so it should return to
its superconducting state - so every time the magnetic field is increased past a critical value, the
magnetization shifts and drops the field below the critical value, so it should still be superconducting
-which means the magnetization could not have changed! There is some logical inconsistency here,
because in practice there is definitely a magnitude of applied magnetic field which will cause a
superconductor to transition to a non-superconducting phase. The drop in Hin occurs for any
value of µ, except µ = µ0, in this case there is no discontinuity of the H field, and it linearly
passes the critical value. However, this would mean the superconductor makes a phase transition
to become equivalent to a vacuum when its superconducting state is killed, which I don’t think is
the case.
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4 Problem #4: Self-Inductance of a Long Solenoid.

Determine the self-inductance of a long solenoid.

Consider a cylindrical coordinate system with the z axis aligned with the axis of a solenoid of radius
R, with n turns per unit length. This solenoid carries a current I such that it creates a magnetic
induction in the positive z direction, given by

B = µ0nI ẑ . (48)

This field is only created for r < R, while for r > R there is no field, note r is the radial coordinate.
This is easy to show using Ampere’s law: consider a square Amperian loop with two edges of
unit length parallel to the axis, one inside the solenoid and one outside the solenoid. These lines
are connected by parallel infinitesimal lengths perpendicular to the axis. The contour C around
this loop is taken such that the line element inside the solenoid points in the positive z direction.
Ampere’s law gives ∮

C
B · dl = µ0Ienc , (49)

and we have claimed there are no magnetic field lines in the radial direction, or outside the solenoid.
Therefore

|B| = µ0nI , (50)

and since it was parallel to the line element, the magnetic field is also in the positive z direction.

Consider the surface S which is a circular cross-section of the solenoid, which has area πR2, and
its normal points in the positive z direction. The magnetic flux through this surface is then

ΦM = πµ0R
2nI . (51)

If we give the solenoid a total length d, there are nd loops, each of which contributes one factor of
the flux given above. The inductance L is a geometrical quantity which is related to the magnetic
flux by Φtot = LI, for the long solenoid, the inductance is simply

L = πµ0R
2n2d . (52)
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5 Problem #5: Mutual Inductance of Coaxial, Displaced Current
Loops.

Calculate the mutual inductance of two coaxial loops of wire of radius a and b whose centers are
separated by a distance d. Approximate the result (which will likely be in terms of elliptic integrals)
in the limit when a ∼ b� d.

Consider a Cartesian coordinate system (x̂1, ŷ1, ẑ1), in which there is a ring of radius a, centered
at the origin. If we define a radial coordinate r1 and an angle from θ1 from x̂1, we can express a
position in this coordinate system as

x1 = r1 cos θ1x̂1 + r1 sin θ1ŷ1 + z1ẑ1 . (53)

A line element around the path C1 of the ring is given by

dl1 = a cos θ1dθ1x̂1 + a sin θ1dθ1ŷ1 . (54)

Consider another coordinate system (x̂2, ŷ2, ẑ2), with radial coordinate r2 and angle θ2 with the x2
axis. There is a ring of radius b centered at the origin; a line element around this path C2 is given
by

dl2 = b cos θ2dθ2x̂2 + b sin θ2dθ2ŷ2 . (55)

These coordinates are aligned respect to each other such that x̂1 = x̂2 and x̂1 = x̂2. The z axes
point along the same direction, but are separated by a distance d. So the distance to a point on
C1 from a point on C2 is given by

x12 = (x1 − x2)x̂ + (y1 − y2)ŷ + d = d+ (a cos θ1 − b cos θ2)x̂ + (a sin θ1 − b sin θ2)ŷ (56)

|x12|2 = d2 + (a cos θ1 − b cos θ2)
2 + (a sin θ1 − b sin θ2)

2 = a2 + b2 + d2 − 2ab cos (θ1 − θ2) . (57)

We can use the Neumann double integral formula1 to write the mutual inductance of the two wire
loops:

M ≡M21 = M12 =
µ0
4π

∮
C1

∮
C2

dl1 · dl2
|x12|

. (58)

If we insert the expression for |x12|, and evaluate the dot product, we see

M =
µ0
4π

∮
C1

∮
C2

ab(cos θ1 cos θ2dθ1 + sin θ1 sin θ2)dθ1dθ2√
a2 + b2 + d2 − 2ab cos (θ1 − θ2)

(59)

=
µ0
4π

∫ 2π

θ1=0

∫ 2π

θ2=0

ab cos(θ1 − θ2)dθ1dθ2√
a2 + b2 + d2 − 2ab cos (θ1 − θ2)

. (60)

Let us define a relative angle ψ = θ1 − θ2, so we have

M =
µ0
4π

∫ 2π

θ1=0

∫ 2π

θ2=0

ab cosψdθ1dθ2√
a2 + b2 + d2 − 2ab cosψ

. (61)

We can use dψ = dθ2 (we only vary θ2 for the first integral) then this integral becomes

M =
µ0
4π

∮
θ1

[∮
ψ

ab cosψdψ√
a2 + b2 + d2 − 2ab cosψ

]
dθ1 , (62)

1Jackson uses this form to calculate the force between to wire loops in equation 5.10. The inductance is a purely
geometric quantity, which requires we remove the interaction of the currents, and a factor of x12/|x12|2 to get correct
dimensions. Compare this to Jackson problem 5.33, or see Wikipedia for this form.
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and now we note there is no dependence on θ1, so we may integrate it out, picking up a factor of
2π:

M =
µ0
2
ab

∫ 2π

0

cosψ√
a2 + b2 + d2 − 2ab cosψ

dψ . (63)

We can write the remaining integral in terms of the complete elliptic integrals2 K(m) [first type]
and E(m) [second type] as∫ 2π

0

cosψ√
α− β cosψ

= 4

√
α+ β

β

[(
1− ν2

2

)
K(ν)− E(ν)

]
, (64)

with

α = a2 + b2 + d2 (65)

β = 2ab (66)

ν =

√
2β

α+ β
=

√
4ab

a2 + b2 + d2 + 2ab
=

√
4ab

(a+ b)2 + d2
. (67)

So the mutual inductance of the wire loops is given by

M =
µ0ab

2

4
√
α+ β

β

[(
1− ν2

2

)
K(ν)− E(ν)

]
(68)

= µ0
√

(a+ b)2 + d2
[(

1− ν2

2

)
K(ν)− E(ν)

]
(69)

= µ0

√
4ab

ν

[(
1− ν2

2

)
K(ν)− E(ν)

]
= µ0

√
ab

[(
2

ν
− ν
)
K(ν)− 2

ν
E(ν)

]
, (70)

which is exact. If we are interested in the limit a ∼ b ≡ R � d, we can approximate the mutual
inductance. In this case α = 2R2 = β, so the mutual inductance is

M ' 2µ0R

[
1

2
K(ν)− E(ν)

]
, (71)

but the complete elliptic integral of the first kind diverges at ν = 1, while E(1) = 1. The Taylor
series expansion for K(ν) is only valid for arguments strictly less than one. If we express the
complete elliptic integral of the first kind as

K(ν) =

∫ π/2

0

dx√
1− ν2 sin2 x

=

∫ 1

1−ν2

dy

2
√
y(1− y)(y − 1 + ν2)

, (72)

after a change of variables such that y = 1− ν2 sin2 θ. Let us insert a small parameter δ such that
ν = 1− δ, so the integrand becomes[

y(1− y)(y − 1 +
(
1− δ)2

)]−1/2
=

1
√
y

[
y − 2δ + δ2 − y2 + 2δy − δ2y

]−1/2
. (73)

2Arfken, Mathematical Methods for Physicists, 7 ed. Page 928. The exact form that follows is from Kurt Nalty:
http://www.kurtnalty.com/Helmholtz.pdf, and verified against the result presented by Bouwkamp and Casimir in
1948: On the mutual inductance of two parallel coaxial circles of circular cross-section.
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If we retain only terms to zeroth order in the small parameter (reasonable to do because to return
to our original problem we need δ = 0) we see the integral can be written

K(ν) =
1

2

∫ 1

1−ν2

dy

y
√

(1− y)
+O(δ1) , (74)

which is the first term in the Taylor expansion (as says Mathematica). In the limit y → 0 (ν → 1)
the term in the radical becomes unity and the integral is trivial to integrate,

K(ν) ∼ −1

2
log(1− ν2) +O(δ1), ν → 1 , (75)

so the integral diverges logarithmically. The fact this integral diverges makes sense, because if d→
0, the two wire rings are occupying the exact same space. In reality, this is not possible, but when
the rings are a finite distance apart, and brought closer, the inductance increase logarithmically.
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6 Problem #6: Inductance of Coaxial Cable.

Calculate the inductance per unit length of a coaxial cable that consists of an inner conductor of
radius a and permeability µ1 surrounded by a thin conducting shell of radius b, with the space
between the two conductors being filled with a medium of permeability µ2.

Consider a cylindrical coordinate system with the z direction aligned along the axis of the cable,
with radial coordinate r and axial coordinate ϑ. Let there be a current +I on the inner conductor
and a current −I on the outer conductor. Now consider an Amperian contour C1 of r < a (assume
for simplicity, in the z = 0 plane), the current enclosed by this contour is I(r2/a2), so by Ampere’s
law, we have ∫

C1

B · dl = B(2πr) = µ1I
r2

a2
⇒ B =

µ1Ir

2πa2
ϑ̂ . (76)

The energy density of the magnetic field created is given by Jackson equation 5.148:

u =
1

2
H ·B =

1

2µ
|B|2 , (77)

so in the region r < a, the energy density is

u =
1

2µ1

(
µ1Ir

2πa2

)2

=
1

2
µ1

(
I

2π

)2 r2

a4
, (78)

which we can integrate over this entire region to determine the total energy in this region. We are
interested in quantites per unit length, so we do not need to integrate over the z coordinate (we
have no dependence on z, so integrating over the total length of the solenoid just adds a factor of
total length, which we divide by to get per unit length quantities, so it is equivalent to multiplying
by one). The total energy per unit length in this region is

E =
1

2
µ1

(
I

2π

)2 ∫ 2π

ϑ=0

∫ a

r=0

r2

a4
rdrdϑ =

1

2
µ1

I2

2πa4

(
1

4
a4
)

=
I2

2

1

2π

µ1
4
. (79)

Now consider an Amperian contour C2 with a < r < b, using Ampere’s law, we see∫
C2

B · dl = B(2πr) = µ2(−I) ⇒ B = −µ2I
2πr

ϑ̂ . (80)

In this region, the energy density is given by

u =
1

2µ2

(
µ2I

2πr

)2

=
1

2
µ2

(
I

2π

)2 1

r2
, (81)

and thus, the total energy per unit length is

E =
1

2
µ2

(
I

2π

)2 ∫ 2π

ϑ=0

∫ b

r=a

1

r2
rdrdϑ =

1

2
µ2
I2

2π
log(b/a) =

I2

2

1

2π
µ2 log(b/a) . (82)

Adding this energy to the energy per unit length in Equation 79, the total energy per unit length
in the region r ≤ b is

E =
I2

2

1

2π

[
µ1
4

+ µ2 log

(
b

a

)]
. (83)
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The energy stored in an inductor of inductance L when a current I applied is given by E = 1
2LI

2,
which can be solved for the inductance:

L = 2
E

I2
, (84)

and for the coaxial cable, we see the inductance per unit length is

L =
1

2π

[
µ1
4

+ µ2 log

(
b

a

)]
. (85)
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