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1 Complex Polarization Amplitude

In class, we have described the polarization of the EM field in terms of the x and y components
of the electric field (Ex or Ey) or their equivalents in the magnetic field. Another way to describe
the polarization is as a complex quantity: Ex + iEy. Starting from the discussion of polarization in
class, show how you would represent a linearly polarized wave; right- and left-circularly polarized
waves; and right- and left-elliptically polarized waves with these new complex amplitudes.

The components of the electric field of an electromagnetic wave can be expressed as

Ex = a1 cos(k · x− ωt+ δ1) (1)

Ey = a2 cos(k · x− ωt+ δ2) , (2)

where a1,2 are the amplitudes of the field, and δ1,2 are the phases. In this representation, we have
{a1, a2} ∈ R. From this, we can represent the electric field as

E(x, t) = Exx̂ + Eyŷ , (3)

which is a completely real quantity, however we may represent the electric field as a complex
quantity using complex exponentials:

E(x, t) = (a1e
iδ1 x̂ + a2e

iδ2 x̂)ei(k·x−ωt) , (4)

which leads to the definition of the complex quantities

α1 = a1e
iδ1 (5)

α2 = a2e
iδ2 . (6)

We can gather an overall phase, and ignore it, without losing generality, and consider only the
relative phase δ, then we have:

E(x, t) = (α1x̂ + α2ŷ)ei(k·x−ωt) = (a1x̂ + a2e
iδx̂)ei(k·x−ωt) , (7)

which is the general representation of an arbitrary polarization determined by a1, a2, δ. Let us
define τ = k · x− ωt.

1.1 Linear Polarization.

In the case of linear polarization, there is no condition on the amplitudes, but the phase must be
an integral multiple of π:

E(lin)(x, t) = (a1x̂ + a2e
i(nπ)x̂)eiτ = (a1x̂± a2ŷ)eiτ . (8)

1.2 Circular Polarization.

Circular polarization requires that the amplitudes of both components are equal and the phases
are δr = π

2 + 2nπ for right-handed, and δl = −π
2 + 2nπ for left, where n ∈ Z:

Right : E(cr)(x, t) = a(x̂ + ei(
π
2
+2nπ)ŷ)eiτ = a(x̂ + ŷ)eiτ (9)

Left : E(cl)(x, t) = a(x̂ + ei(−
π
2
+2nπ)ŷ)eiτ = a(x̂− ŷ)eiτ (10)

1.3 Elliptical Polarization.

Elliptical polarization is the general polarization, and has no conditions on the phase or amplitudes,
see Equation 7.
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2 Complex Wave Vector.

The electric field E of an electromagnetic wave in which the real and imaginary components of
the complex wave vector k are in different directions, is linearly polarized. Determine the mutual
disposition of the vectors E0 (the amplitude of the electric field), H1, H2, k

′, and k′′, where H1,2

are the real and imaginary parts of the complex amplitude H0 of the magnetic field, and k′ and k′′

are the real and imaginary parts of the vector k. Find the locus of the end point of the vector H
at a given point in space.

The electric field of an electromagnetic wave propagating with complex wave vector k = k′ + ik′′

can be expressed as

E(x, t) = E0e
i(k·x−ωt) =

(
E0e

−k′′·x
)
ei(k

′·x−ωt) , (11)

where E0 describes the polarization of the wave. Since the polarization is linear, we enforce that
E0 is completely real. This wave propagates in the k′ direction, and is damped in the k′′ direction.
The direction of the amplitude of the electric field (which, due to the linear polarization, is real) is
by definition perpendicular to k′. Furthermore, we know the magnitude of the wave vector k is a
real number1, so we enforce k · k = k2:

k2 = (k′ + ik′′) · (k′ + ik′′) = |k′|2 − |k′′|2 + 2i(k′ · k′′) , (12)

which yields the conditions k′ · k′′ = 0 and k2 = |k′|2 − |k′′|2, the first of which implies that k′ and
k′′ are orthogonal2. In addition to this we can use Maxwell’s equations to write

∇ ·E = 0 = ik ·E0e
i(k·x−ωt) ⇒ k ·E0 = 0 , (13)

(after dividing out i and the exponential) so the polarization is in the plane perpendicular to the
wave vector (as it should be). If we use the complex representation of the wave vector, we see

k′ ·E0 + ik′′ ·E0 = 0 , (14)

and since we enforced that E0 is real, each term must vanish independently. We therefore see that
the electric field and wave vector components form a mutually orthogonal set of vectors. Using
another of Maxwell’s equations, we have

∇×E = −µ∂H
∂t

⇒ ik×E = iµωH , (15)

where we have the magnetic field defined by

H = H0e
i(k·x−ωt) = (H1 + iH2)e

i(k·x−ωt) . (16)

Inserting the complex wave vector into Equation 15, we see

(k′ ×E0) + i(k′′ ×E0) = µω(H1 + iH2) , (17)

after dividing out the exponential factor common to both fields. Comparing real and imaginary
parts we see

H1 =
1

µω
k′ ×E0 =

k′E0

µω

(
k′′

k′′

)
(18)

H2 =
1

µω
k′′ ×E0 = −k

′′E0

µω

(
k′

k′

)
, (19)

1Since k2 = µεω2, we are assuming that {µ, ε, ω} ∈ R.
2Compare this to the argument given by Jackson, Classical Electrodynamics, 3 ed. Chapter 7, equation 7.15.
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it is arbitrary which component gets the negative sign, but one must be negative to maintain
a right-handed coordinate system spanned by {E0,k

′,k′′}, see Figure 1. If we align a standard
Cartesian coordinate system with ẑ aligned with the electric field, we can write the the magnetic
field as

H =
E0

µω
(k′x̂− ik′′ŷ)ei(k·x−ωt) . (20)

If we expand the complex exponential and take the real part, we see

<(H) =
E0

µω

(
k′ cos(k · x− ωt)x̂ + k′′ sin(k · x− ωt)ŷ

)
⇒

{
Hx = E0

µωk
′ cos(k · x− ωt)

Hy = E0
µωk

′′ sin(k · x− ωt) ,
(21)

which is elliptically polarized. At a time t, the locus of the end-point of a magnetic field line located
at a point x0 is

x0 +
E0

µω
k′ cos(k · x0 − ωt)x̂ +

E0

µω
k′′ sin(k · x0 − ωt)ŷ (22)

Figure 1: Relative positions of the electric field, real and imaginary parts of both the wave vector
and magnetic field.
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3 Relative Strength of Electromagnetic Wave Components in the
Vacuum.

Calculate the numerical value of the ratio of the E and H fields of an electromagnetic wave in a
vacuum, with appropriate units (use the simplest units possible).

An electromagnetic wave propagating in the n̂ direction has electric and magnetic fields at a location
x, at time t, given by

E(x, t) = E0e
i(kn̂·x−ωt) (23)

B(x, t) = E0e
i(kn̂·x−ωt) , (24)

which satisfy the Helmholtz wave equation3 given that k2n̂ · n̂ = µεω2, where µ and ε are the
permeability and permittivity of the substance the electromagnetic waves permeate, respectively.
Under this condition, we have4,

H =

√
ε0
µ0
E sin θEB , (25)

where θEB is the angle between the electric and magnetic field. Since these fields are perpendicular,
θEB = ±π/2 + 2πm with m ∈ Z, and the ratio is

E

H
=

√
µ0
ε0

=

√
1.257× 10−6

8.854× 10−12

(
N ·A−2

F ·m−1

)1/2

. (26)

Let us now investigate the units5:

1

A2

N ·m
F

=
1

A2

kg ·m2 · s−2

(J/V2)
=

V2

A2 , (27)

so the ratio of the electric and magnetic field magnitudes is

E

H
= 376.6 Ω , (28)

which is a resistance.

3See Jackson, Classical Electrodynamics, 3 ed. Chapter 7, equations 7.3 and 7.9.
4See Jackson, Classical Electrodynamics, 3 ed. Chapter 7, equation 7.11.
5N=newton, A=ampere, F=farad, J=joule, V=volt, Ω=ohm.
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4 Complex Components of Refractive Index for a Metal.

A linearly polarized wave is incident at an angle θi on the surface of a metal. The direction of the
electric field vector is at an angle π/4 to the plane of incidence. The experimentally determined
ratio of the perpendicular and parallel (to the plane of incidence) components of the reflected wave
is found to be R||/R⊥ = tan ρ, and the phase difference δ between the components is such that

R||

R⊥
= tan ρeiδ . (29)

Show that the real and imaginary parts of the refractive index n = n2/n1 = n′ + in′′ under the
condition |(n′)2 − (n′′)2| � sin2 θi are given by

n′ =
sin θi tan θi cos 2ρ

1 + sin 2ρ cos δ
(30)

n′′ = −sin θi tan θi sin 2ρ sin δ

1 + sin 2ρ cos δ
. (31)

Fresnel formulae give the amplitude of the parallel and perpendicular components of the reflected
waves

R|| = A||
n cos θi − cos θt
n cos θi + cos θt

R⊥ = A⊥
cos θi − n cos θt
cos θi + n cos θt

. (32)

Using Snell’s law, we have

n1 sin θi = n2 sin θt ⇒ n =
sin θi
sin θt

, (33)

with n = n2/n1. We can insert this into the Fresnel equations and take their ratio, which after
some simplification yields

R||

R⊥
=
A||

A⊥
(−1)

cos (θi + θt)

cos (θi − θt)
. (34)

If we use the fact that the electric field makes an angle π/4 with the plane of incidence the com-
ponents A|| and A⊥ must be equal, so the ratio is one6. The ratio of parallel to perpendicular
components of the reflected wave can now be represented as

R||

R⊥
= −cos θi cos θt − sin θi sin θt

cos θi cos θt + sin θi sin θt
. (35)

Once again, using Snell’s law we have

sin θt =
1

n
sin θi ⇒ 1

n2
sin2 θi + cos2 θt = 1 , (36)

and so cos θt = 1
n

√
n2 − sin2 θi, let us now introduce the complex refractive index n = m+ ik (note

we have switched notation n′ → m and n′′ → k). Snell’s law becomes

cos θt =
1

n

√
m2 − k2 + 2imk − sin2 θi ∼

1

n

√
m2 − k2 + 2imk =

1

n

√
n2 = 1 , (37)

6The parallel and perpendicular components are with respect to the plane of incidence.
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therefore using the condition |(n′)2 − (n′′)2| � sin2 θi we have that cos θt ∼ 1. If we introduce this,
and the condition given on the left of the arrow in Equation 36, back into the ratio in Equation 35,
we obtain the expression

R||

R⊥
= −

cos θi − 1
n sin2 θi

cos θi + 1
n sin2 θi

= −n cos θi − sin2 θi

n cos θi + sin2 θi
, (38)

after multiplying and dividing the refractive index. Inserting the complex refractive index to this
expression yields

R||

R⊥
= −(m+ ik) cos θi − sin2 θi

(m+ ik) cos θi + sin2 θi
= −(m cos θ − sin2 θi) + ik cos θi

(m cos θ + sin2 θi) + ik cos θi
, (39)

which we can multiply and divide by the complex conjugate of the denominator to ensure the
denominator is real. This gives the real and imaginary components of the ratio to be

<
(
R||

R⊥

)
=

sin4 θi − k2 cos2 θi −m2 cos2 θi

sin4 θi + k2 cos2 θi +m2 cos2 θi + 2m sin2 θi cos θi
(40)

=
(
R||

R⊥

)
= − 2k sin2 θi cos θi

sin4 θi + k2 cos2 θi +m2 cos2 θi + 2m sin2 θi cos θi
. (41)

Using the measured ratio given in the problem, and equating the real parts and imaginary parts
with the expressions above yield the two equations

tan ρ cos δ =
sin4 θi − k2 cos2 θi −m2 cos2 θi

sin4 θi + k2 cos2 θi +m2 cos2 θi + 2m sin2 θi cos θi
(42)

tan ρ sin δ = − 2k sin2 θi cos θi

sin4 θi + k2 cos2 θi +m2 cos2 θi + 2m sin2 θi cos θi
. (43)

Pleading Mathematica to solve these equations for m and k, we obtain the results

m =
sin(θi) tan(θi) cos(2ρ) sec2(ρ)

2 cos(δ) tan(ρ) + sec2(ρ)
=

sin θi tan θi cos 2ρ

1 + 2 cos δ tan ρ
sec2 ρ

(44)

k = −2 sin(δ) sin(θi) tan(θi) tan(ρ)

2 cos(δ) tan(ρ) + sec2(ρ)
= −

2 sin θi tan θi sin δ tan ρ
sec2 ρ

1 + 2 cos δ tan ρ
sec2 ρ

. (45)

Let us investigate the denominator:

1 +
2 cos δ tan ρ

sec2 ρ
= 1 + 2 cos δ sin ρ cos ρ = 1 + cos δ sin 2ρ , (46)

which is as desired. The last factor in the expression for k (including the prefactor of 2) is

2
tan ρ

sec2 ρ
= 2 sin ρ cos ρ = sin 2ρ , (47)

which yields the final result:

m = n′ =
sin θi tan θi cos 2ρ

1 + cos δ sin 2ρ
(48)

k = n′′ = −sin θi tan θi sin 2ρ sin δ

1 + cos δ sin 2ρ
. (49)

Page 7 of 11



Dylan J. Temples Northwestern University, Electrodynamics II : Solution Set Two

5 Electron Density of Interstellar Medium.

A pulsar emits a pulse with frequencies ω1, ω2 considerably larger than the plasma frequency ωp of
the interstellar medium. The times of arrival of the pulses with frequencies ω1, ω2 are measured.
Show that this permits the determination of the electron density of the medium integrated over
the distance L to the pulsar, i.e.,

∫ L
0 n(l)dl is the distance dependent electron density.

The wave number is related to the frequency of the wave by

k2 = εµω2 ∼ ε0µ0εr(ω)ω2 , (50)

which we can insert the definition7 of the relative permittivity of a plasma,

εr = 1−
ω2
p

ω2
, (51)

where ωp(z) is the distance dependent plasma frequency:

ω2
p(z) =

e2

mε0
N(z) , (52)

with e and m as the charge and effective mass of the charge carriers (in this case electrons) in
the plasma, respectively, and N(z) is the distance dependent density of charge carriers. Using the
permittivity of a plasma, we see

ω2 − ω2
p = c2k2 , (53)

where c = 1/
√
ε0µ0. The group velocity of the wave is then

vg =
dω

dk
=

(
dk

dω

)−1
=

(
d

dω

1

c

√
ω2 − ω2

p

)−1
=

(
1

c

d

dω

1

2

(
ω2 − ω2

p

)−1/2
(2ω)

)−1
, (54)

which we can invert to obtain the group velocity:

vg = c
√
ω2 − ω2

p

1

ω
= c

√
1−

ω2
p

ω2
. (55)

Using these relations, if a signal of frequency ω1 was emitted from a source at t = 0, at a distance
L away, the time to detect the signal is given by

t =

∫ L

0

dz

vg(z)
=

∫ L

0

dz

c
√
εr(z)

=

∫ L

0

dz

c

[
1− e2

mε0

N(z)

ω2
1

]−1/2
'
∫ L

0

dz

c

[
1 +

e2

2mε0

N(z)

ω2
1

]
, (56)

if we assume the frequency ω1 � ωp, which is the regime in which Equation 51 applies. If we now
consider two signals of frequencies ω1 and ω2, the time difference in their arrivals at a detector a
distance L away is

∆t = t2 − t1 '
∫ L

0

dz

c

[
1 +

e2

2mε0

N(z)

ω2
2

− 1− e2

2mε0

N(z)

ω2
1

]
=

e2

2mcε0

(
1

ω2
2

− 1

ω2
1

)∫ L

0
N(z)dz .

(57)
In the expression above the first factor is just a product of fundamental constants, so assuming the
frequencies of the two signals are known, and the time difference in their arrival can be measured,
the electron density of the medium integrated over the distance L can be determined:∫ L

0
N(z)dz = ε0

2mc(∆t)

e2
(ω1ω2)

2

ω2
1 − ω2

2

. (58)

7Jackson, Classical Electrodynamics, 3 ed. Chapter 7, equation 7.59.
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6 Electromagnetic Waves in a Plasma.

In the absence of absorption, permittivity of a plasma is given by

ε = ε0

(
1−

ω2
p

ω2

)
, (59)

where ω2
p = Ne2/mε0 (where e is the magnitude of the electron charge) defines the plasmon fre-

quency. Discuss the propagation of electromagnetic waves in a plasma whose concentration is
described by the linear function N(z) = N0z. Consider the case where a plane monochromatic
wave is incident normally on a non-homogeneous layer of plasma. (This is one model for the prop-
agation of radio waves in the ionosphere.)

First, we can note that the index of refraction is

n =

√
εµ

ε0µ0
=

√
µ

µ0

√
1−

ω2
p

ω2
, (60)

which is purely imaginary if the frequency of the wave is less than the plasma frequency:

ω2 <
N0e

2

mε0
z , (61)

below this the wave does not propagate. Now consider the Maxwell equations

∇×E = −∂B
∂t

(62)

∇×B = µε
∂E

∂t
, (63)

of which we can take the curl of the first and the partial derivative with respect to time of the
second, yielding

∇×∇×E = −∇× ∂B

∂t
= ∇(∇ ·E)−∇2E = −∇2E = −∇× ∂B

∂t
(64)

∇× ∂B

∂t
= µε

∂2E

∂t2
, (65)

which we can insert into each other yielding the differential equation

∇2E = µε
∂2E

∂t2
, (66)

which is the vector wave equation. We can then insert the permittivity of a plasma to the equation:

∇2E− µ
(
ε0 −

N0e
2

mω2
z

)
∂2E

∂t2
= 0 , (67)

and assume a harmonic solution of the form

E = F(z)ei(k·x−ωt) , (68)
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where F(z) is an arbitrary function of z. Inserting this to the wave equation yields

[∇2F(z)]ei(k·x−ωt) + F(z)[∇2ei(k·x−ωt)]− µ
(
ε0 −

N0e
2

mω2
z

)
(−ω2)F(z)ei(k·x−ωt) = 0 , (69)

which simplifies, after dividing out the exponential, to

∂2F

∂z2
− k2F + µ

(
ε0 −

N0e
2

mω2
z

)
ω2F = 0 , (70)

let us define q(z) ≡ −k2 + µε(z)ω2 = −k2 + µε0ω
2 − (µN0e

2/m)z. If we then assume µ ∼ µ0 then
we can write k2 = µ0ε0ω

2 and then cancels with the −k2 term8. We can express the differential
equation as

F′′ + q(z)F = F′′ − (
√
ε0µωp)

2 zF = 0 → F′′ −
(ω0

c

)2
zF = 0 , (71)

with ω2
0 = N0e2

mε0
, which is of the form of the Airy equation9. The solutions are then of the form

F (z) = C1A

((ω0

c

)2/3
z

)
+ C2B

((ω0

c

)2/3
z

)
, (72)

where A(z) and B(z) are the Airy functions. We can set C2 = 0 becuase the Airy function of the
second kind (B) diverges as z → ∞, while A → 0 and z → ∞, which is the desired behavior. As
we said in the beginning, there is some height at which the dielectric constant becomes negative,
and the index of refraction will be purely imaginary. Past this point, there is no propagation of a
wave, and it must be reflected (allowing for some absorption). This height is

z =
mε0ω

2

N0e2
. (73)

9Weisstein, Eric W. “Airy Differential Equation.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/AiryDifferentialEquation.html

Page 10 of 11

http://mathworld.wolfram.com/AiryDifferentialEquation.html


Dylan J. Temples Northwestern University, Electrodynamics II : Solution Set Two

6.1 Solution without Dispersion Relation Assumption.

We can express the differential equation as

F′′ + q(z)F = 0 , (74)

where the primes denote derivatives with respect to the coordinate z, with

q(z) = −k2 + µε0ω
2 − (µN0e

2/m)z (75)

This ODE can be represented as10

y′′(x) + ay′(x) + (bx+ c)y = 0 , (76)

with

a = 0 (77)

b = −µN0e
2

mω2
(78)

c = µε0 − k2 , (79)

and thus has solutions

F (z) =

√
z − (µε0 − k2)mω2

µN0e2

{
C1J1/3

(
2

3

√
−µN0e2

mω2

[
z − (µε0 − k2)mω2

µN0e2

]3/2)

+ C2Y1/3

(
2

3

√
−µN0e2

mω2

[
z − (µε0 − k2)mω2

µN0e2

]3/2)}
, (80)

where C1 and C2 are arbitrary constants, and J1/3 and Y1/3 are fractional Bessel functions. If we
consider z > 0 this is the solution, but for z ≥ 0 we can set C2 = 0, for the Bessel functions of the
second kind diverge at the origin. Both of the Bessel functions decay as z →∞ so the amplitudes
of waves farther into the plasma are much lower than those just near the surface of the plasma.

10Andrei D. Polyanin, EqWorld. http://eqworld.ipmnet.ru/en/solutions/ode/ode0204.pdf.
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