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1 Complex Dielectric Constant: Drude Approximation.

Plot the frequency dependence of the real and imaginary part of the dielectric constant as well as
the reflectivity of a metal in the Drude approximation, taking into account the frequency depen-
dence of the conductivity, but ignoring any contributions other than that from conduction electrons
in the metal. Make sure the frequency range covers all the relevant regions of interest.

The Drude approximation is one model for electrical conduction of metals in which the conduction
electrons are viewed as a classical electron gas. It uses a frequency dependent, complex relative
permittivity given by

εr(ω) = 1 + ω2
p

1

ω2
0 − ω2 − iγω

, (1)

where ω2
p = Ne2/meε0 is the plasma frequency and ω0 is the resonant frequency of the metal, and

γ = 1/τ is the inverse time constant of the metal

τ =
meσ

Ne2
=

1

ω2
pε0

σ , (2)

where σ is the conductivity. The relative permittivity has real and imaginary components given by

<{εr(ω)} = 1− ω2
p

ω2 − ω2
0

(ω2 − ω2
0)2 + γ2ω2

(3)

={εr(ω)} = ω2
p

γω

(ω2 − ω2
0)2 + γ2ω2

. (4)

The behavior of these components is shown in Figure 1 with ωp = 2, ω0 = 4, and γ = 1.4.

Figure 1: Relative permittivity of metals in the Drude model: real (blue) and imaginary (yellow,
dashed) components, with ω0 = 4, ωp = 2, and γ = 1.4.

This derivation of the dielectric constant using a harmonic model for atomic polarizability of the
conductor. If we ignore the resonance (equivalent to setting the restoring force of the harmonic
equation of motion in this model) we recover the expressions

<{εr(ω)} = 1− ω2
p

ω2

ω4 + γ2ω2
= 1− ω2

p

τ2

ω2τ2 + 1
(5)

={εr(ω)} = ω2
p

γω

ω4 + γ2ω2
= ω2

p

γω

ω4 + γ2ω2

τ3/ω

τ3/ω
= ω2

p

τ2

ω3τ3 + ωτ
. (6)
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(a) The real (blue) and imaginary (yellow,
dashed) components of relative permittivity,
with 1/(ωτ) = 0.7, for ω/ωp ∈ [0, 3].

(b) Reflectivity as a function of dimensionless fre-
quency ω/ωp ∈ [0, 3]. Note this is normalized and
has a maximum of one, as expected physically.

Figure 2: The simplified Drude model for conductivity in metals, with no resonances, for 1/(ωτ) =
0.7.

Let us divide the numerator and denominator of the second term of the real component by ω2
pτ

2,
which results in

<{εr(ω)} = 1− 1

(ω/ωp)2 + 1/(ωpτ)2
. (7)

While dividing the numerator and denominator of the imaginary component by ω3
pτ

3 yields

={εr(ω)} =
1

ωpτ

1

(ω/ωp)3 + (ω/ωp)/(ωpτ)2
, (8)

note the same quantities appear in both, which leads to the definition of the dimensionless frequency
w = ω/ωp and a dimensionless constant η = (ωpτ)−1. Finally, we can express the real and imaginary
components of the dielectric constant in terms of a single parameter and a dimensionless variable:

<{εr(w)} = 1− 1

w2 + η2
(9)

={εr(w)} = η
1

w3 + η2w
, (10)

which are shown in Figure 2a for η = 0.7 on the interval of w from zero to three.

The reflectivity is given by

R =

∣∣∣∣1− n1 + n

∣∣∣∣2 , (11)

but for metals, the index of refraction is n ∈ C, and is given by the square root of the relative
permittivity,

n =
√
<{εr(w)}+ i={εr(w)} =

√
1− 1

w2 + η2
+ iη

1

w3 + η2w
, (12)

shown in Figure 2b, for η = 0.7.
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2 Sokhotski–Plemelj Theorem.

In many advanced physics texts, one might see the strange equation

1

x± iε
= P 1

x
∓ iπδ(x) . (13)

Justify this equation, and in doing so, describe under what conditions it is valid.

The given equation, Sokhotski’s formula, is only valid in the limit that ε→ 0, but we most approach
from the positive side because we have ε > 0 (account for both possibilities with the ±). Here, P
represents the Cauchy principal value, which is a distribution, the same goes for the delta function.
In light of this, we may view the expression above as an operator expression treating the left and
right sides as operators. Now, consider the action of the left-hand side operator on a test function
f(x) (where f(x) is complex valued, and continuous on the real axis), and integrate over a region
of the distribution:

lim
ε→0+

∫ b

a

1

x± iε
f(x)dx , (14)

which has poles at x = ∓iε. Multiplying and dividing by the complex conjugagte of the denominator
yields the real and imaginary parts:

lim
ε→0+

∫ b

a
f(x)dx

1

x± iε
x∓ iε
x∓ iε

= lim
ε→0+

∫ b

a
f(x)dx

x∓ iε
x2 − (iε)2

, (15)

which we can separate:

lim
ε→0+

∫ b

a

1

x± iε
f(x)dx = lim

ε→0+

∫ b

a
f(x)dx

x

x2 + ε2
∓ lim
ε→0+

∫ b

a
f(x)dx

iε

x2 + ε2
, (16)

let us multiply and divide the first term on the right-hand side by x, and the do the same with the
second, but with π:

lim
ε→0+

∫ b

a

f(x)dx

x± iε
= lim

ε→0+

∫ b

a

f(x)dx

x

x2

x2 + ε2
∓ iπ

∫ b

a
f(x)dx lim

ε→0+

ε

π(x2 + ε2)
. (17)

The imaginary term represents a nascent delta function of the form

ηε(x) =
1

ε
η
(x
ε

)
with η(ξ) =

1

π(ξ2 + 1)
, (18)

which in the limit ε→ 0+, this approaches a Dirac delta function δ(x). In the following regions the
factor in the real term behaves as

lim
x�|ε|

x2

x2 + ε2
= 1 (19)

lim
x�|ε|

x2

x2 + ε2
= 0 , (20)

so the integral:∫
f(x)dx

x

x2

x2 + ε2
=

∫ −ε f(x)dx

x

x2

x2 + ε2
+

∫ ε

−ε

f(x)dx

x

x2

x2 + ε2
+

∫
ε

f(x)dx

x

x2

x2 + ε2
, (21)
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will reduce to ∫ −ε f(x)

x
dx+

∫
ε

f(x)

x
dx , (22)

which in the limit ε→ 0+ is simply the definition of the Cauchy principal value. Now the integral
in Equation 14 can be written∫ b

a

f(x)

x± iε
dx =

∫ b

a

{
P 1

x
∓ iπδ(x)

}
f(x)dx , (23)

in the limit ε→ 0. We can then identify the operator

1

x± iε
= P 1

x
∓ iπδ(x) , (24)

as the Sokhotski formula.
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3 Kramers-Kronig Relations.

Under the assumption that “cause” and “effect” are real quantities, derive the Kramers-Kronig
relations for the frequency dependent real and imaginary parts of the relative dielectric constant
ε(ω) = ε′(ω) + iε′′(ω):

ε′(ω)− 1 =
2

π
P
∫ ∞
0

dx
xε′′(x)

x2 − ω2
(25)

ε′′(ω) = − 2

π
ωP

∫ ∞
0

dx
ε′(x)− 1

x2 − ω2
. (26)

If we treat the electric displacement field as the effect caused by the electric field in the dielectric,
we may write this field1 as

D(x, t) = ε0

{
E(x, t) +

∫ ∞
0

G(τ)E(x, t− τ)dτ

}
, (27)

where G(τ) is the Fourier transform of the electric susceptibility χe = ε(ω)−1 (note we have defined
our ε such that it is the relative permittivity: ε = ε0εr(ω) where ε is the dielectric constant) given
by

G(τ) =
1

2π

∫ ∞
−∞

[ε(ω)− 1] e−iωtdω , (28)

which can be inverted to write

ε(ω) = 1 +

∫ ∞
0

G(τ)eiωτdτ . (29)

This model (Equation 27) is valid regardless of the model of the frequency dependent dielectric
constant, which in this case is a complex quantity. Given that the displacement (effect) and electric
(cause) fields are real, so must be G(τ), we use the form of the previous equation to write

ε(−ω) = 1 +

∫ ∞
0

G(τ)ei(−ω)τdτ (30)

ε∗(ω) = 1 +

∫ ∞
0

G(τ)e(−i)ωτdτ , (31)

so ε(−ω) = ε∗(ω∗) (we have ω ∈ R→ ω = ω∗), and is therefore analytic in the complex ε upper half
plane, given that G(τ) is well-behaved. Consider a complex-valued function f(z) which is analytic
in the complex upper half plane; using Cauchy’s integral formula, we can take the integral along
the closed contour C in the complex plane to obtain

f(z) =
1

2πi

∮
C

f(ω)

ω − z
dω . (32)

We can identify the function f(ω′) = ε(ω′) − 1, and similarly f(z) = ε(z) − 1, so using Cauchy’s
integral formula we write

ε(z)− 1 =
1

2πi

∮
C

ε(ω′)− 1

ω′ − z
dω′ , (33)

1Jackson, Classical Electrodynamics, 3ed. Equation 7.111.
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we can now use a contour C enclosing the upper half plane in a semicircle of infinite radius. This
contour consists of the real axis, an infinitesimal semicircular arc of radius ε below the origin (to
allow for the possibility of a singularity at the origin), and semicircular arc with R → ∞. The
integrand vanishes along the arc at infinity and does not contribute to the contour integral, leaving
only the integral along the real axis from negative to positive infinity and the infinitesimal arc
below the origin:

ε(z)− 1 =
1

2πi

∫ ∞
−∞

ε(ω′)− 1

ω′ − z
dω′ , (34)

where z is any point in the upper half complex plane. Consider the points z an infinitesimal
displacement δ away from the real axis: z = ω + iδ, and then take the limit δ → 0+:

lim
δ→0∗

ε(w + iδ)− 1 = ε(w)− 1 = lim
δ→0∗

1

2πi

∫ ∞
−∞

ε(ω′)− 1

ω′ − ω − iδ
dω′ . (35)

Rewriting this in terms of the function f(ω) = ε(w)− 1, we see

f(ω) = lim
δ→0∗

1

2πi

∫ ∞
−∞

f(ω′)

ω′ − ω − iδ
dω′ . (36)

We may then apply the Sokhotski formula (Equation 23 with x→ ω′−ω) to this integral, yielding

f(ω) =
1

2πi

∫ ∞
−∞

{
P 1

ω′ − ω
+ iπδ(ω′ − ω)

}
f(ω′)dω′ (37)

=
1

2

{
1

πi
P
∫ ∞
−∞

1

ω′ − ω
f(ω′)dω′ +

∫ ∞
−∞

δ(ω′ − ω)f(ω′)dω′
}

(38)

=
1

2

1

πi
P
∫ ∞
−∞

1

ω′ − ω
f(ω′)dω′ +

1

2
f(ω) (39)

f(ω) =
1

πi

∫ ∞
−∞
P f(ω′)

ω′ − ω
dω′ ⇒ ε(w) = 1 +

1

πi
P
∫ ∞
−∞

ε(ω′)− 1

ω′ − ω
dω′ . (40)

Let us expand this in real and imaginary components

ε(w) = 1 +
1

πi
P
∫ ∞
−∞

dω′

ω′ − ω
(
ε(ω′)− 1

)
(41)

= 1 +
1

πi
P
∫ ∞
−∞

dω′

ω′ − ω
{
<
(
ε(ω′)− 1

)
+ i=

(
ε(ω′)

)}
(42)

= 1 +
1

π
P
∫ ∞
−∞

dω′

ω′ − ω
=
(
ε(ω′)

)
− i
{

1

π

∫ ∞
−∞

dω′

ω′ − ω
<
(
ε(ω′)− 1

)}
. (43)

We can now easily identify the real and imaginary components ε′(ω) and ε′′(ω) to be

<[ε(ω)] = ε′(ω) = 1 +
1

π
P
∫ ∞
−∞

= [ε(ω′)]

ω′ − ω
dω′ (44)

=[ε(ω)] = ε′′(ω) = − 1

π
P
∫ ∞
−∞

< [ε(ω′)− 1]

ω′ − ω
dω′ . (45)

We may cast these in a form such that the integral does not range over negative frequency, first
by multiplying and dividing both integrals by the conjugate of the denominator. Consider the
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integrals:

P
∫ ∞
−∞

= [ε(ω′)]

ω′ − ω
ω′ + ω

ω′ + ω
dω′ = ωP

∫ ∞
−∞

= [ε(ω′)]

ω′2 − ω2
dω′ + P

∫ ∞
−∞

ω′
= [ε(ω′)]

ω′2 − ω2
(46)

P
∫ ∞
−∞

< [ε(ω′)− 1]

ω′ − ω
ω′ + ω

ω′ + ω
dω′ = ωP

∫ ∞
−∞

< [ε(ω′)− 1]

ω′2 − ω2
dω′ + P

∫ ∞
−∞

ω′
< [ε(ω′)− 1]

ω′2 − ω2
. (47)

We previously stated ε(−ω) = ε∗(ω), so let us investigate the repercussions of this with our definition
of the complex dielectric constant ε(ω) = ε′(ω) + iε′′(ω):

ε(−ω) = ε′(−ω) + iε′′(−ω) (48)

ε∗(ω) = ε′(ω)− iε′′(−ω) , (49)

and since these expressions are equivalent, we must have ε′(−ω) = ε′(ω) so <[ε(ω)− 1] is even in ω
and ε′′(−ω) = −ε′′(ω) so =[ε(ω)] is odd in ω. Using this fact the first integral in Equation 46, and
the second in Equation 47, are zero by symmetry. Therefore the real and imaginary parts of the
dielectric constant can be written

ε′(ω) = 1 +
1

π
P
∫ ∞
−∞

ω′ε′′(ω′)

ω′2 − ω2
dω′ = 1 +

2

π
P
∫ ∞
0

xε′′(x)

x2 − ω2
dx (50)

ε′′(ω) = −ω
π
P
∫ ∞
−∞

ε′(ω′)− 1

ω′2 − ω2
dω′ = −2ω

π
P
∫ ∞
0

ε′(x)− 1

x2 − ω2
dx , (51)

after writing <[ε(ω)−1] = <[ε(ω)]−1 = ε′(ω)−1 and =[ε(ω)] = ε′′(ω). Note the change in integration
limits, because the integrands are even functions. These are the Kramers-Kronig relations, in the
desired form.
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4 Position-Dependent Permittivity.

In deriving the wave equation satisfied by E and H fields, we have assumed that the permittivity
and the permeability are constants independent of position. Show that if the relative permittivity
is a function of position, the wave equation for the H field is modified to

∇2H + ε
ω2

c2
H +

1

ε
(∇ε)× (∇×H) = 0 , (52)

where µ ∼ µ0 and c2 = 1/(µ0ε0).

Let us begin from Maxwell’s equations

0 = ∇×E + µ0
∂H

∂t
(53)

0 = ∇×H− ε∂E
∂t

, (54)

where the permittivity is ε = ε0εr(x). Let us take the curl of the second, and the time derivative
of the first, which yields

0 = ∇× ∂E

∂t
+ µ0

∂2H

∂t2
⇒ ∇× ∂E

∂t
= −µ0

∂2H

∂t2
(55)

0 = ∇×∇×H−∇×
(
ε
∂E

∂t

)
⇒ ∇(∇ ·H)−∇2H =

(
∇ε× ∂E

∂t
+ ε∇× ∂E

∂t

)
, (56)

given that there are no magnetic monopoles the first term in the second equation is zero. We are
left with the equation

0 = ∇2H +

(
∇ε× ∂E

∂t
+ ε∇× ∂E

∂t

)
= ∇2H + ∇ε× ∂E

∂t
− µ0ε

∂2H

∂t2
, (57)

after inserting Equation 55. We can then insert Equation 54, and write the wave equation as

0 = ∇2H + ∇ε× 1

ε
(∇×H)− µ0ε

∂2H

∂t2
, (58)

and since we assume the magnetic field has a harmonic form,

H(x, t) = H0e
i(k·x−ωt) , (59)

the second time derivative contributes a factor of (−iω)2, so

0 = ∇2H + µ0εω
2H +

1

ε
(∇ε)× (∇×H) . (60)

Using the relative permittivity defined above, we see the equation has the form

0 = ∇2H + µ0ε0εr(x)ω2H +
1

εr(x)
(∇εr(x))× (∇×H) , (61)

and since µ0ε0 = c−2, we obtain the result

0 = ∇2H + εr(x)
ω2

c2
H +

1

εr(x)
(∇εr(x))× (∇×H) . (62)
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5 Surface Magnetic Field Wave at a Dielectric Boundary.

Show that a “surface” H wave can be propagated along a plane boundary between two media
whose dielectric permittivities ε1 and ε2 are of opposite sign. The wave is damped in both media.
Determine the relation between the frequency and wave number.

Let the boundary between the two dielectrics be the z = 0 plane, with dielectric constants ε1 for
z > 0 and ε2 for z < 0, which have opposite signs. Let the electromagnetic wave propagate in the y
direction, and define a x direction to complete the right-handed Cartesian coordinate system. We
have previously shown that complex wave vectors lead to damping in the direction of the imaginary
component, which motivates us to define the complex wave vectors

k1 = kŷ + iκ1ẑ (63)

k2 = kŷ − iκ2ẑ , (64)

with {k, κ1, κ2} ≥ 0, which describe the propagation of the wave in dielectric one (z > 0) and two
(z < 0), respectively. Note we must define k2 with a negative sign so when z < 0, the wave exhibits
exponential decay, not growth. We may then assume harmonic forms for the electric field in each
region

E1(r, t) = E1ẑe
i(k1·r−ωt) = E1ẑe

−κ1zei(ky−ωt) (65)

E2(r, t) = E2ẑe
i(k2·r−ωt) = E2ẑe

κ2zei(ky−ωt) , (66)

where we have neglected any phase difference, and we have Ei is perpendicular to the direction of
propagation. We may insert these into the wave equation

∇2Ei =
εi
c2
∂2Ei
∂t2

⇒
(
∂2

∂y2
+

∂2

∂z2

)
Ei = εi

(−iω)2

c2
Ei (67)

where we have assumed µ ∼ µ0 with i ∈ {1, 2}. Note we have written εi as the relative permittivity.
Performing the spatial derivatives yields

(
(ik)2 + (∓κi)2

)
Ei = εi

(−iω)2

c2
Ei ⇒ k2 − κ2i = εi

ω2

c2
, (68)

and we can identify the dispersion relation of free space and define k0 = ω/c. The condition at the
boundary z = 0 on the normal components of the electric displacement field gives

n̂ · (ε0ε2E2 − ε0ε1E1)

∣∣∣∣
z=0

= 0 , (69)

because there is no free surface charge on the boundary. Since the electric field is completely in the
normal direction, we have ε2E2 = ε1E1 because the complex exponentials cancel, and the decaying
terms are unity at z = 0. The magnetic field is given2 by the cross-product of the wave vector and
electric field:

Hi =

√
εiε0
µ0

ki ×Ei
|ki|

=

√
ε0
µ0

√
εi

(kŷ ± iκiẑ)× ẑ√
k2 + κ2i

Eie
∓κizei(ky−ωt) , (70)

2Jackson, Classical Electrodynamics, 3 ed. Equation 7.18.
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note the imaginary term in the wave vector vanishes after carrying out the cross product:

Hi =

√
ε0
µ0
k
√
εi
Eie
∓κizei(ky−ωt)√
k2 + κ2i

x̂ . (71)

Now, we may apply the condition on the tangential components of the magnetic field at the bound-
ary z = 0:

n̂× (H2 −H1)

∣∣∣∣
z=0

= 0 , (72)

and since the magnetic field at the boundary has only a tangential component, this reduces to

H2(z = 0) = H1(z = 0) ⇒
√
ε0
µ0
k
√
ε1
E1e

−κ1(0)ei(ky−ωt)√
k2 + κ21

=

√
ε0
µ0
k
√
ε2
E2e

κ2(0)ei(ky−ωt)√
k2 + κ22

, (73)

and after canceling the appropriate factors

√
ε1

E1√
k2 + κ21

=
√
ε2

E2√
k2 + κ22

⇒ E1

E2
=

√
ε2
ε1

k2 + κ21
k2 + κ22

. (74)

Let us collect our results from the dispersion relation (Equation 68), and the boundary conditions
(Equations 69 and 74):

κ21 = k2 − ε1k20 (75)

κ22 = k2 − ε2k20 (76)

E1

E2
=
ε2
ε1

(77)

E2
1

E2
2

=
ε2
ε1

k2 + κ21
k2 + κ22

. (78)

If we insert the thrid equation into the last, we obtain

ε2
ε1

=
k2 + κ21
k2 + κ22

, (79)

and then inserting the first two yields

ε2
ε1

=
2k2 − ε1k20
2k2 − ε2k20

⇒ (2k2 − ε2k20)(ε2) = (2k2 − ε1k20)(ε1) , (80)

which has the solution

k2 =
k20
2

(
ε22 − ε21
ε2 − ε1

)
⇒ k =

ω

c

√
1

2

ε22 − ε21
ε2 − ε1

, (81)

yielding the dispersion relation.
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