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1 Dielectric Response of Quantum Electron Gas.

As we noted in class, the dielectric response of the electron gas that we have studied is rather a
simple limit. Here we would like to derive a more sophisticated approximation (but still an approxi-
mation) taking into account the nature of the quantum gas. We still consider the electron gas to be
free, i.e., there are no external potentials aside from those imposed by the external electromagnetic
fields.

Consider then a free electron gas in an external field that we take into account through an external
potential φe(r, t). If n0 is the equilibrium density of the electrons, the external potential will lead to
a perturbation δn in the density of the electron in response, so that the density is now n = n0 + δn.
This will lead in turn to an internal potential φi(r, t) related to δn by Poisson’s equation

∇2φi(r, t) = − e

ε0
δn(r, t) . (1)

The total potential seen by the electrons is now φ = φe + φi.

In absence of the external field, the Hamiltonian of the system is given by

H0 |k〉 = − ~2

2m
∇2 |k〉 = E(k) |k〉 , (2)

and the equilibrium state of the electron gas is described by the density operator ρ0:

ρ0 |k〉 = f0(k) |k〉 , (3)

where f0(k) is the equilibrium Fermi distribution. Here |k〉 ∼ eiκ·r.

1.1 Heisenberg’s Equation of Motion.

We now think of the external time-dependent potential as a perturbation on this Hamiltonian,
i.e., H = H0 + V , where V = −eφ(r, t), which in turn will lead to a change in density ρ = ρ0 + δρ.
Using Heisenberg’s equation of motion show that

i~ 〈k′|∂(δρ)

∂t
|k〉 = (E(k′)− E(k)) 〈k′|δρ|k〉 − (f0(k

′)− f0(k)) 〈k′|V |k〉 . (4)

The Heisenberg equation of motion for the time dependent operator A is given by

d

dt
A(t) =

i

~
[H,A(t)] +

(
∂A

∂t

)
H

=
1

i~
[A(t), H] +

(
∂A

∂t

)
H

, (5)

where H is the Hamiltonian. However, since there is no parametric time dependence in the density
operator ρ, we use the quantum Liouville equation1:

∂ρ

∂t
=

1

i~
[H, ρ] . (6)

1Also known as the von Neumann equation. Schwabl, Statistical Mechanics, equation 1.4.8.
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Let us take the partial derivative of the operator ρ:

∂ρ

∂t
=
∂ρ0
∂t

+
∂(δρ)

∂t
⇒ 〈k′|∂(δρ)

∂t
|k〉 = 〈k′|∂ρ

∂t
|k〉 − 〈k′|∂ρ0

∂t
|k〉 . (7)

If we use Equation 6, we now see

〈k′|∂(δρ)

∂t
|k〉 =

1

i~
〈k′|[H, ρ]k〉 − 1

i~
〈k′|[H0, ρ0]|k〉 , (8)

note we have written the time derivative of the unperturbed density operator as the commutator of
this with the unperturbed Hamiltonian. Since the unperturbed density does depend on the potential
(is not changing with time) its time dependence would be totally due to the time dependence of the
unperturbed Hamiltonian (spoiler: there is none). It is also evident that because the unperturbed
Hamiltonian H0 and the unperturbed density operator ρ0 share common eigenfunctions, we have
that

[H0, ρ0] = 0 , (9)

using this, and the fact that neither operator is explicitly time-dependent, from Heisenberg’s equa-
tion of motion, we see

∂ρ0
∂t

= 0 , (10)

thus

i~ 〈k′|∂(δρ)

∂t
|k〉 = 〈k′|[H, ρ]k〉 . (11)

Let us now consider the commutator of the perturbed Hamiltonian and the perturbed density:

[H, ρ] = [H0 + V, ρ0 + δρ] = [H0, ρ0] + [H0, δρ] + [V, ρ0] + [V, δρ] , (12)

note the first commutator, we have shown, is zero. Additionally, we may neglect the last commu-
tator, because it is second-order in the perturbation: V is the time-dependent perturbation to the
Hamiltonian, and δρ is the resultant perturbation to the density function. Taking the bra- and ket-
with k′ and k, respectively, yields

〈k′|[H, ρ]|k〉 = 〈k′|[H0, δρ]|k〉+ 〈k′|[V, ρ0]|k〉 (13)

= 〈k′|H0δρ|k〉 − 〈k′|δρH0|k〉+ 〈k′|V ρ0|k〉 − 〈k′|ρ0V |k〉 (14)

= (E(k′)− E(k)) 〈k′|δρ|k〉+ (f0(k)− f0(k′)) 〈k′|V |k〉 (15)

= (E(k′)− E(k)) 〈k′|δρ|k〉 − (f0(k
′)− f0(k)) 〈k′|V |k〉 , (16)

and, using Equation 11 we obtain the result

i~ 〈k′|∂(δρ)

∂t
|k〉 = (E(k′)− E(k)) 〈k′|δρ|k〉 − (f0(k

′)− f0(k)) 〈k′|V |k〉 . (17)

1.2 Dielectric Constant - The Lindhard Formula.

The quantity 〈k′|V |k〉 can be defined as the Fourier transform of the perturbing potential V (r, t)

〈k′|V |k〉 =
I
V

∫
(d3r)e−ik

′·re−ik·rV (r, t) = Vq(t)/V , (18)

where q = k′ − k and V is the volume. We assume the time dependence of Ve(r, t) is given by
∼ e−iωteγt. The last exponential factor involving γ > 0 is an artifice to adiabatically turn on the
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external perturbation from t = −∞ to t = 0; later, we will take the limit as γ → 0. Assuming that
the time dependence of all the other potentials and the response δρ is of the same form, and noting
that

δn(r, t) =
∑
q

eiq·rδρq(t) , (19)

where
δρq(t) =

∑
k

〈q + k|δρ(t)|k〉 (20)

show that the dielectric constant (really the relative permittivity), defined as the ratio φe/φ is given
by the Lindhard formula

ε(q, ω) = 1− lim
γ→0

e2

Vε0q2
∑
k

f0(k + q)− f0(k)

E(k + q)− E(k)− ~ω − i~γ
. (21)

We are interested in determining the ratio

φe
φ

= 1− φi
φ
, (22)

where the potential energy is given by V = −eφ. The internal potential φi satisfies the Poisson
equation given in Equation 1, and has a discrete Fourier transform

φi(r) =
∑
q

eiq·rφi(q) . (23)

We may write the potential energy, given above, in q space:

1

φ(q)
= − e

Vq
, (24)

after Fourier transforming. If we insert the internal potential using the definition given by the
Fourier transform into Equation 1, we obtain the relation

∇2
r

∑
q

eiq·rφi(q) = − e

ε0
δn(r, t) , (25)

we may carry out the derivative over r, and insert Equations 19 and 20, to yield

−
∑
q

|q|2eiq·rφi(q) = − e

ε0

∑
q

eiq·r
∑
k

〈q + k|δρ(t)|k〉 . (26)

Using this result, we have an expression for the internal potential in q space:

φi(q) =
e

ε0|q|2
∑
k

〈q + k|δρ(t)|k〉 . (27)

Given the time dependence of the response δρ is exponential (∼ e−iωteγt), we may write

〈k + q|∂(δρ)

∂t
|k〉 = 〈k + q|(−iω + γ)δρ|k〉 = (−iω + γ) 〈k + q|δρ|k〉 . (28)

Page 4 of 19



Dylan J. Temples Northwestern University, Electrodynamics II : Solution Set Four

Using the identity given in Equation 4 to rewrite the left-hand side, and with a bit of rearranging,
we find

(f0(k + q)− f0(k)) 〈k + q|V |k〉 = (E(k + q)− E(k)) 〈k + q|δρ|k〉 − i~(−iω + γ) 〈k + q|δρ|k〉 (29)

f0(k + q)− f0(k)

E(k + q)− E(k)− ~ω − i~γ
〈k + q|V |k〉 = 〈k + q|δρ|k〉(30)

Let us insert Equation 30 into Equation 27, and combine with Equation 24 to rewrite Equation 22
as

φe
φ

= 1 +
e2

ε0|q|2
∑
k

f0(k + q)− f0(k)

E(k + q)− E(k)− ~ω − i~γ
〈k + q|V |k〉

Vq
, (31)

using Equation 18, we see the final factor is the inverse volume. Finally, we take the limit as γ → 0,
to obtain the Lindhard formula for the dielectric constant (relative permittivity):

ε(q, ω) = 1 + lim
γ→0

e2

ε0V|q|2
∑
k

f0(k + q)− f0(k)

E(k + q)− E(k)− ~ω − i~γ
. (32)
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2 Rectangular Waveguide.

Find the nature of the TE and TM waves that can propagate in a rectangular waveguide with
perfectly conducting walls and sides a and b. Determine the corresponding dispersion relations and
the field configurations, i.e., the dependence of the field components on the coordinates.

The longitudinal component of the field inside the waveguide is given by ψe±ikz, where ψ is Ez for
TM waves and Hz for TE waves. This scalar function satisfies

(∇2
t + γ2)ψ =

(
∂2

∂x2
+

∂2

∂y2
+ γ2

)
ψ = 0 , (33)

where γ2 = µεω2 − k2. If we assume a separable solution ψ = X(x)Y (y), and define γ2 = k2x + k2y,
we obtain the two equations

∂2X(x)

∂x2
= −k2xX(x) (34)

∂2Y (y)

∂y2
= −k2yY (y) , (35)

which has solutions

X(x) = Ax cos (kxx) +Bx sin (kxx) (36)

Y (y) = Ay cos (kyy) +By sin (kyy) , (37)

where the constants Ai, Bi are determined by the appropriate boundary conditions for each sup-
ported mode.

2.1 Transverse Electric (TE) Mode.

The boundary conditions for a TE mode are

∂ψ

∂n

∣∣∣∣
S

= 0 , (38)

where n is the normal direction to the surface S. For a rectangular waveguide of side lengths a and
b, we have the following conditions:

0 =
∂ψ

∂x

∣∣∣∣
x=0

=
∂ψ

∂x

∣∣∣∣
x=a

=
∂ψ

∂y

∣∣∣∣
y=0

=
∂ψ

∂y

∣∣∣∣
y=b

. (39)

For a TE wave ψ corresponds to the magnetic field in the axial direction, the derivatives of which
are given by

X ′(x) = −Axkx sin (kxx) +Bxkx cos (kxx) (40)

Y ′(y) = −Ayky sin (kyy) +Byky cos (kyy) . (41)

We now impose the boundary conditions:

X ′(0) = 0 = −Axkx sin (0) +Bxkx cos (0) ⇒ Bx = 0 (42)

Y ′(0) = 0 = −Ayky sin (0) +Byky cos (0) ⇒ By = 0 (43)

X ′(a) = 0 = −Axkx sin (kxa) +Bxkx cos (kxa) ⇒ kxa = nxπ (44)

Y ′(b) = 0 = −Ayky sin (kyb) +Byky cos (kyb) ⇒ Byb = nyπ , (45)
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where {nx, ny} ∈ Z, but because cos(x) = cos(−x), we may restrict these parameters to {nx, ny} ∈
N. Using this, we see the axial magnetic field is

Hz(x, y, z; t) = H0 cos
(nxπ
a
x
)

cos
(nyπ

b
y
)
eikz−iωt , (46)

with

γ2nxny = π2

(
n2x
a2

+
n2y
b2

)
. (47)

Using Jackson equation 8.38, we may define a cutoff frequency

ωnxny =
π
√
µε

√
n2x
a2

+
n2y
b2

. (48)

Let us note the rectangular waveguide cannot support a nx = ny = 0 mode because there will be
no wave. If we assume a > b, the lowest cutoff frequency (corresponding to the dominant mode) is
given by

ω10 =
π

a
√
µε

. (49)

The dispersion relation for TE waves can be determined by Jackson equation 8.37:

k2nxny = µεω2 − π2
(
n2x
a2

+
n2y
b2

)
, (50)

which now replaces k in Equation 46. Using the expression for the transverse components of the
magnetic field (Jackson equation 8.33), we see

Ht = ±
iknxny

π2
(
n2
x
a2 +

n2
y

b2

) ( ∂

∂x
x̂ +

∂

∂y
ŷ

)
H0 cos

(nxπ
a
x
)

cos
(nyπ

b
y
)

(51)

= ∓H0
iknxny

π2
(
n2
x
a2 +

n2
y

b2

) (πnx
a

sin
(nxπ
a
x
)

cos
(nyπ

b
y
)
x̂ +

πny
b

cos
(nxπ
a
x
)

sin
(nyπ

b
y
)
ŷ
)

(52)

(not including the implicit carrier wave exp[iknxnyz−iωt]) with Jackson equation 8.31 the transverse
components of the electric field can be found:

ẑ×Et = ẑ× (Exx̂ + Eyŷ) = Exŷ − Eyx̂ , (53)

so

Ex = ∓Z(ŷ ·Ht) = H0
iµωny

πb
(
n2
x
a2 +

n2
y

b2

) cos
(nxπ
a
x
)

sin
(nyπ

b
y
)

(54)

Ey = ±Z(x̂ ·Ht) = −H0
iµωnx

πa
(
n2
x
a2 +

n2
y

b2

) sin
(nxπ
a
x
)

cos
(nyπ

b
y
)
, (55)

where Znxny = µω/knxny , again not including the implicit carrier wave exp[iknxnyz − iωt].
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2.2 Transverse Magnetic (TM) Mode.

The boundary conditions for a TM mode are

ψ
∣∣
S

= 0 , (56)

where n is the normal direction to the surface S. For a rectangular waveguide of side lengths a and
b, we have the following conditions:

0 = ψ(0, y) = ψ(a, y) = ψ(x, 0) = ψ(x, b) , (57)

from which Equations 36 and 37 yield

X(0) = 0 = Ax cos (0) +Bx sin (0) ⇒ Ax = 0 (58)

Y (0) = 0 = Ay cos (0) +By sin (0) ⇒ Ay = 0 (59)

X(a) = 0 = Bx sin (kxa) ⇒ kxa = nxπ (60)

Y (b) = 0 = By sin (kyb) ⇒ Byb = nyπ , (61)

where {nx, ny} ∈ Z. Using this, we see the axial magnetic field is

Ez(x, y, z; t) = E0 sin
(nxπ
a
x
)

sin
(nyπ

b
y
)
eikz−iωt , (62)

with

γ2nxny = π2

(
n2x
a2

+
n2y
b2

)
. (63)

Using Jackson equation 8.38, we may define a cutoff frequency

ωnxny =
π
√
µε

√
n2x
a2

+
n2y
b2

. (64)

Let us note the rectangular waveguide cannot support a nx = ny = 0 mode because there will be
no wave. If we assume a > b, the lowest cutoff frequency is given by

ω10 =
π

a
√
µε

. (65)

The dispersion relation for TM waves can be determined by Jackson equation 8.37:

k2nxny = µεω2 − π2
(
n2x
a2

+
n2y
b2

)
, (66)

which now replaces k in Equation 62. Using the expression for the transverse components of the
electric field (Jackson equation 8.33), we see

Et = ±
iknxny

π2
(
n2
x
a2 +

n2
y

b2

) ( ∂

∂x
x̂ +

∂

∂y
ŷ

)
E0 sin

(nxπ
a
x
)

sin
(nyπ

b
y
)

(67)

= ±E0
iknxny

π2
(
n2
x
a2 +

n2
y

b2

) (πnx
a

cos
(nxπ
a
x
)

sin
(nyπ

b
y
)
x̂ +

πny
b

sin
(nxπ
a
x
)

cos
(nyπ

b
y
)
ŷ
)

(68)
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(not including the implicit carrier wave exp[iknxnyz−iωt]) with Jackson equation 8.31 the transverse
components of the magnetic field can be found:

Ht = Hxx̂ +Hyŷ =
1

Z
ẑ×Et =

1

Z
ẑ× (Exx̂ + Eyŷ) =

1

Z
(Exŷ − Eyx̂) , (69)

so

Hx = E0

i
[
µεω2 − π2

(
n2
x
a2 +

n2
y

b2

)]
ny

πεωb
(
n2
x
a2 +

n2
y

b2

) sin
(nxπ
a
x
)

cos
(nyπ

b
y
)

(70)

Hy = −E0

i
[
µεω2 − π2

(
n2
x
a2 +

n2
y

b2

)]
nx

πa
(
n2
x
a2 +

n2
y

b2

) cos
(nxπ
a
x
)

sin
(nyπ

b
y
)
, (71)

where Znxny = knxny/εω, again not including the implicit carrier wave exp[iknxnyz − iωt].
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3 Circular Waveguide.

Repeat the problem above for a cylindrical waveguide of circular cross-section of radius a.

The longitudinal component of the electric or magnetic field (for TM and TE modes, respectively)
is given by Jackson equation 8.34, in cylindrical coordinates:(

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2
∂2

∂φ2
+ γ2

)
ψ = 0 , (72)

where the longitudinal component is ψe±ikz, with γ2 = µεω2−k2. If we assume a separable solution
of the form ψ(ρ, φ) = R(ρ)Θ(φ), the equation above becomes

1

R
ρ

(
dR

dρ
+ ρ

d2R

dρ2

)
+

1

Θ

d2Θ

dφ2
+ γ2ρ2 = 0 , (73)

after dividing by R(ρ)Θ(φ) and multiplying through by ρ2. We have now separated the equation
into terms of only one coordinate, which implies

−l2Θ =
d2Θ

dφ2
(74)

l2R = ρ

(
dR

dρ
+ ρ

d2R

dρ2

)
+ γ2ρ2R , (75)

where l2 is some constant. The first of the above equations has harmonic solutions

Θ(φ) = A cos(lφ) +B cos(lφ) . (76)

The second can be rearranged to Bessel’s equation:

0 = ρ2
d2R

dρ2
+ ρ

dR

dρ
+ (γ2ρ2 − l2)R , (77)

which has solutions
R(ρ) ∼ Jl(γρ) , (78)

where we have ignored the Bessel functions of the second kind because they diverge at the origin.
Therefore the longitudinal waves have the form

ψ(ρ, φ) = Jl(γρ) (A sin(lφ) +B cos(lφ)) . (79)

We can immediately constrain the constant l for both TE and TM waves, by noting the behavior
of Θ(φ) is qualitatively the same as Θ′(φ). Consider the function

f(x) = C1 sin(lx) + C2 cos(lx) , (80)

which must obey periodicity:

f(x) = f(x+ 2π) = C1 sin(lx+ 2πl) + C2 cos(lx+ 2πl) . (81)

For this to be satisfied, it must be that l is an integer, this corresponds to our angular solution:
there can be no discontinuities in the field as we traverse around the axis of the circular waveguide,
i.e., the field at (ρ, φ, z) must equal the field at (ρ, φ+2π, z), which corresponds to the same physical
location inside the waveguide.
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3.1 Transverse Electric (TE) Mode.

The transverse electric mode has Ez = 0, and the axial magnetic field is

Hz = Jl(γρ) (A sin(lφ) +B cos(lφ)) eikz . (82)

The boundary condition for ψ = Hze
−ikz in a TE mode in a circular waveguide of radius a is

∂ψ

∂ρ

∣∣∣∣
ρ=a

= 0 , (83)

which gives us the condition2

∂

∂ρ
Jl(γρ)

∣∣∣∣
ρ=a

= 0 ⇒ γa = χ′nl ⇒ γnl =
χ′nl
a
, (84)

where χ′nl is the nth zero of the first derivative of the lth Bessel function of the first kind, see the
table Jackson, page 370. The dispersion relation is given by Jackson equation 8.37:

k2nl = µε
χ′2nl
a2

. (85)

Using Jackson equation 8.33 we can write the transverse components of the magnetic field as

Ht = ± iknla
2

χ′2nl

(
(A sin(lφ) +B cos(lφ))

∂

∂ρ
Jl(

χnl
a
ρ)ρ̂+

Jl(
χnl
a ρ)

ρ

∂

∂φ
(A sin(lφ) +B cos(lφ)) φ̂

)
Jackson equation 8.31 gives the relation

± Z(Hρρ̂+Hφφ̂) = Eρφ̂− Eφρ̂ , (86)

so

Eρ = ±Z(φ̂ ·Ht) =
iµωa2

χ′2nl

Jl(
χnl
a ρ)

ρ

∂

∂φ
(A sin(lφ) +B cos(lφ)) (87)

Eφ = ∓Z(ρ̂ ·Ht) = − iµωa
2

χ′2nl
(A sin(lφ) +B cos(lφ))

∂

∂ρ
Jl(

χnl
a
ρ) , (88)

after using Z = µω/knl. We can examine the behavior of the fields by investigating the case of
azimuthal symmetry (l = 0), which has an axial magnetic field given by

Hz = H0J0 (γρ) eikz . (89)

This satisfies the boundary condition

0 =
∂

∂ρ
J0(γρ)

∣∣∣∣
ρ=a

= −γJ1(γa) ⇒ γn0 =
χn1
a

, (90)

2An equivalent condition be seen by carrying out the explicit derivative of the Bessel function:

0 =
∂

∂ρ
Jl(γρ)

∣∣∣∣
ρ=a

=
1

2
γ(Jl−1(γa) − Jl+1(γa))

.
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where χn0 is the nth zero of the zero order Bessel function of the first kind. The dispersion relation
is given by k2n0 = µεω2 − (χn1/a)2, so the axial magnetic field of this mode is then

Hz = H0J0

(χn1
a
ρ
)
eikn0z . (91)

The transverse magnetic field is

Ht = ± ikn1a
2

χ2
n1

∂

∂ρ
J0(

χn1
a
ρ)ρ̂ = ∓ ikn0a

χn1
J1(

χn1
a
ρ)ρ̂ , (92)

and the transverse electric field is

Et = ± iµωa
2

χ2
n1

∂

∂ρ
J0(

χn1
a
ρ)φ̂ = ± iµωa

χn1
J1(

χn1
a
ρ)φ̂ . (93)

3.2 Transverse Magnetic (TM) Mode.

The transverse magnetic mode has Hz = 0, and the axial electric field is

Ez = Jl(γρ) (A sin(lφ) +B cos(lφ)) eikz , (94)

with l ∈ Z. These modes must satisfy the boundary conditions ψ(ρ = a, φ) = 0, which for this
functional form implies

Jl(γa) = 0 ⇒ γa = χnl , (95)

where χnl is the nth zero of the lth Bessel function of the first kind. Using the definition of γ2

given earlier (see Jackson equation 8.35) we see the dispersion relation is

k2nl = µεω2 −
χ2
nl

a2
, (96)

where now the wave number takes a different value for each mode {n, l} for a given frequency ω.
We can define a cutoff frequency using Jackson equation 8.38:

ωnl =
χnl
a
√
µε

(97)

The dispersion relation for TM waves can be determined by Jackson equation 8.37:

k2nl = µεω2 −
χ2
nl

a2
, (98)

which now replaces k in Equation 94. Using the expression for the transverse components of the
electric field (Jackson equation 8.33), we see

Et = ± iknl
χnl/a

(
∂

∂ρ
ρ̂+

1

ρ

∂

∂φ
φ̂

)
Jl(

χnl
a
ρ) (A sin(lφ) +B cos(lφ)) (99)

(not including the implicit carrier wave exp[iknxnyz − iωt]). Using Jackson equation 8.31 the
transverse components of the magnetic field can be found:

Ht = ±
ik2nla

εωχnl
ẑ×

(
(A sin(lφ) +B cos(lφ))

∂

∂ρ
Jl(

χnl
a
ρ)ρ̂+

Jl(
χnl
a ρ)

ρ

∂

∂φ
(A sin(lφ) +B cos(lφ)) φ̂

)
= ±

ik2nla

εωχnl

(
(A sin(lφ) +B cos(lφ))

∂

∂ρ
Jl(

χnl
a
ρ)ψ̂ −

Jl(
χnl
a ρ)

ρ

∂

∂φ
(A sin(lφ) +B cos(lφ)) ρ̂

)
.
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In order to solve these to demonstrate the fields’ behaviors, we will examine the case of azimuthal
symmetry (l = 0), which has the z component of the electric field given by

Ez = E0J0(
χn0
a
ρ)eikn0z , (100)

with k2n0 = µεω2 − (χn0/a)2. The transverse components for these modes are

Et = ±E0
i
[
µεω2 − (χn0/a)2

]
a

χn0

∂

∂ρ
J0(

χn0
a
ρ)ρ̂ , (101)

so

Eρ = ∓E0
i
[
µεω2 − (χn0/a)2

]
a

χn0

χn0
a
J1(

χn0
a
ρ) = ∓iE0

[
µεω2 − (χn0/a)2

]
J1(

χn0
a
ρ), (102)

and

Hφ = ∓ iE0

εω

[
µεω2 − (χn0/a)2

]3/2
J1(

χn0
a
ρ), (103)

not including the implicit carrier wave exp[iknxnyz − iωt].
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4 Transverse Electromagnetic (TEM) Modes in Coaxial Waveg-
uide.

Repeat the problem above for a TEM mode in a coaxial waveguide with inner radius a and outer
radius b.

The axial components of both the electric and magnetic fields in a TEM mode are zero, so

ETEM = Et + Ezẑ = Et HTEM = Ht +Hzẑ = Ht , (104)

we can substitute these into the Maxwell equations written in terms of transverse and axial
components, given by Jackson equations 8.23-8.25. Given that the axial components are zero:
Ez = Hz = 0, and using the equation above, these equations reduce to

∂ETEM

∂z
+ iµωẑ×HTEM = 0 ẑ · (∇t ×ETEM) = 0 (105)

∂HTEM

∂z
− iωεẑ×ETEM = 0 ẑ · (∇t ×HTEM) = 0 (106)

∇t ·ETEM = 0 ∇t ·HTEM = 0 . (107)

Using the right-hand expressions in Equations 105 and 106, we see that

∇t ×ETEM = 0 ∇t ×HTEM = 0 , (108)

noting that taking the transverse curl (no z component) of a transverse field (no z component) must
be entirely in the z direction: (∇t×FTEM) ‖ ẑ (where F is a generic field, i.e., electric or magnetic)
and if the dot product of the resulting vector with the z unit vector is zero, then the transverse
curl must be zero. The electric field satisfies Equation 108, so we may define the electric field to
be the gradient of a scalar field: Et = −∇ψ. Since the electric field also satisfies Equation 107, it
must be that ψ satisfies Laplace’s equation

∇2
tψ = 0 . (109)

Furthermore, we can take the transverse curl of Equation 108 and write

∇t ×∇t ×Et = ∇t(∇t ·Et)−∇2
tEt = ∇2

tEt = 0 , (110)

due to Equation 107, so the electric field also satisfies Laplace’s equation. Additionally, from the
wave equation, we may assume a harmonic form of the field

E(x, t) = E0(x, y)eikz−iωt , (111)

which allows the Helmholtz wave equation (Jackson equation 8.17) to be written[
∇2
t + (µεω2 − k2)

]
E0 = 0 . (112)

For this and Equation 109 to be simultaneously satisfied, the constant term in the Helmholtz wave
equation must be zero, and we obtain the dispersion relation

k = ω
√
µε , (113)

which is the infinite-medium value. We are considering a coaxial geometry, where the only media
are perfect conductors or vacuum, so the dispersion relation in the transmission region is simply
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k = ω
√
µ0ε0 = ω/c. We will assume a separable form for the electric field ψ(ρ, φ) = R(ρ)Θ(φ), so

Laplace’s equation becomes

0 =

[
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2
∂2

∂φ2

]
ψ(ρ, φ) = Θ(φ)

1

ρ

∂

∂ρ

(
ρ
∂R(ρ)

∂ρ

)
+R(ρ)

1

ρ2
∂2Θ(φ)

∂φ2
. (114)

Multiplying through by ρ2 and dividing by R(ρ)Θ(φ) yields the expression

ρ

R(ρ)

∂

∂ρ

(
ρ
∂R(ρ)

∂ρ

)
= − 1

Θ(φ)

∂2Θ(φ)

∂φ2
, (115)

which we can set equal to a constant `2 and obtain the separated ODEs:

ρ

(
∂R(ρ)

∂ρ
+ ρ

∂2R(ρ)

∂ρ2

)
= `2R(ρ) (116)

∂2Θ(φ)

∂φ2
= −`2Θ(φ) . (117)

The second of which has harmonic solutions:

Θ(φ) = A cos(`φ) +B sin(`φ) , (118)

where if we enforce periodicity: Θ(φ) = Θ(φ + 2π), we constain ` to be an integer, as shown in
Problem 3. Moving all of the terms from the radial ODE to one side yields the equation

ρ2R′′ + ρR′ − `2R = 0 , (119)

where the primes denote derivatives with respect to ρ. This is the Euler equation3 and has solutions
of the form

R(ρ) = Cρ` +Dρ−` , (120)

except in the special case l = 0, which has solutions

R0(ρ) = C0 +D0 ln ρ . (121)

Imagine we hold the inner conductor at a constant potential V0 and hold the outer conductor at
ground. To ensure the potential is continuous, we enforce

V0 = R(a) V0 = R0(a) (122)

0 = R(b) 0 = R0(b) , (123)

for any φ. Let us only consider the lowest mode l = 0 (which implies azimuthal symmetry), yielding
the boundary conditions

V0 = C0 +D0 ln a (124)

0 = C0 +D0 ln b . (125)

From the second, we see C0 = −D0 ln b, which makes the first

V0 = D0(ln a− ln b) ⇒ D0 =
V0

ln
(
a
b

) so C0 = −V0 ln b

ln
(
a
b

) . (126)

3Polyanin, “Second-Order Euler Equation”. EqWorld, http://eqworld.ipmnet.ru/en/solutions/ode/ode0212.pdf.
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For the ` = 0 TEM mode, the scalar potential is

ψ0(ρ) =
V0

ln
(
a
b

) (log ρ− log b) = V0
log(ρ/b)

log(a/b)
, (127)

and thus, the transverse electric field is given by

ETEM = −∇ψ0(ρ) = − V0
log(a/b)

d

dρ
log(ρ/b)ρ̂ = − V0

log(a/b)

1

ρ
ρ̂ , (128)

we now see that V0 is proportional to the electric field strength and a geometric factor. Since
the wave propagates along the z direction and the electric field only has a radial component, the
magnetic field must only have an azimuthal component. More specifically, Jackson equation 8.28
tells us the transverse magnetic field is

HTEM = ∓
√
ε0
µ0

V0
log(a/b)

1

ρ
φ̂ , (129)

both fields include the implicit carrier wave.
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5 Lumped Element Model.

In class, we have discussed the case of a two-wire transmission line with an inductance and capac-
itance per unit length. Here we would like to consider another example, that of a resistive wire of
length L above a ground plane of negligible resistance. In many circuits, one has devices, modeled
here by the wire, whose properties can be modified by applying a voltage to a gate, modeled here by
the ground plane the idea being to switch the characteristics as fast a possible (think of switching
a transistor on and off). Hence the impedance of the structure is important. The ground plane
is separated from the wire by a dielectric, but it is a leaky dielectric, so that there is a finite but
small conductance between the ground plane and wire.

Figure 1: A section of the structure in problem #5.

Using the lumped element model, calculate the admittance Y of structure, if a potential V is ap-
plied to the ground plane, and the resulting current I that emanates from one end of the wire is
measured (i.e., Y = I/V ), in terms of C, R, and G. To do this develop a differential equation for
either the current of the voltage as a function of position x along the wire, using the capacitance,
conductance, and resistance per unit length c = C/L, r = R/L, and g = G/L), as shown in Figure 1.

The current across a resistor of resistance R is I = V/R, while the current across a resistor of
conductance G is I = GV . The current across a capacitor of capacitance C is given by

I =
∂Q

∂t
= C

∂V

∂t
. (130)

To evaluate the circuit shown in Figure 1, it helps to consider the equivalent circuit pictured in
Figure 2.

Figure 2: Equivalent circiut to the lumped element model of the transmission line. The voltage at
node A is V (x) and the current is I(x). At node B (the same node as C) the voltage is V (x+ ∆x)
and the current is I(x+ ∆x).
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Let us apply Kirchhoff’s current law to the node B: the current coming into the node is I(x) and
splits into the three branches:

I(x)− (c∆x)
∂V (x+ ∆x)

∂t
− (g∆x)V (x+ ∆x)− I(x+ ∆x) = 0 . (131)

The voltage measured at node B is simply the sum of the voltage at node A and the voltage drop
across the resistor:

V (x)− (r∆x)I(x)− V (x+ ∆x) = 0 . (132)

To find differential equations, we can use the definition of the derivative4. First, divide both
equations by ∆x:

0 =
I(x)− I(x+ ∆x)

∆x
− c∂V (x+ ∆x)

∂t
− gV (x+ ∆x) (133)

0 =
V (x)− V (x+ ∆x)

∆x
− rI(x) , (134)

taking the limit ∆x→ 0, and moving the differentials to the other side yields

∂I

∂x
= −c∂V (x)

∂t
− gV (x) (135)

∂V

∂x
= −rI(x) . (136)

If we take the time spatial derivative of the second equation,

∂2V

∂x2
= −r∂I(x)

∂x
, (137)

and insert the first equation, we obtain the single partial differential equation for the voltage:

∂2V

∂x2
= cr

∂V (x)

∂t
+ grV (x) . (138)

If we assume we apply an AC current of frequency ω to the transmission line, the voltage will
oscillate sinusoidally in time (∼ e±iωt). Now carrying out the time derivative yields the ODE

∂2V

∂x2
= (g ± iωc)rV (x) = (G± iωC)

R

L2
V (x) , (139)

which has solutions of the form

V (x) = V
(+)
0 exp

{(√
(iωC ±G)R

x

L

)}
+ V

(−)
0 exp

{
−
(√

(iωC ±G)R
x

L

)}
. (140)

Using Equation 136, the current at a point x along the line is

I(x) =
L

R

√
(iωC ±G)R

1

L

[
V

(+)
0 exp

{(√
(iωC ±G)R

x

L

)}
− V (−)

0 exp
{
−
(√

(iωC ±G)R
x

L

)}]
I(x) =

√
iωC ±G

R

[
V

(+)
0 exp

{(√
(iωC ±G)R

x

L

)}
− V (−)

0 exp
{
−
(√

(iωC ±G)R
x

L

)}]
4The definition of a derivative is df

dx
= lim∆x→0

f(x+∆x)−f(x)
∆x

.
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We can now find the admittance Y = I/V by taking the ratio of the expression above and Equa-
tion 140:

Y =

√
iωC ±G

R

V
(+)
0 exp

{(√
(iωC ±G)R x

L

)}
− V (−)

0 exp
{
−
(√

(iωC ±G)R x
L

)}
V

(+)
0 exp

{(√
(iωC ±G)R x

L

)}
+ V

(−)
0 exp

{
−
(√

(iωC ±G)R x
L

)} (141)

=

√
iωC ±G

R
tanh

{√
(iωC ±G)R

x

L

}
. (142)

We can define the characteristic addmitance Y0 = I
(+)
0 /V

(+)
0 = −I(−)0 /V

(−)
0 , which is given by

Y0 =

√
iωC ±G

R
. (143)
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