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1 Fields of Moving Point Charge.

Starting from the relations between derivatives derived in class:

∂

∂t
=
r

s

∂

∂t′
(1)

∇r = ∇1 −
r

sc

∂

∂t′
, (2)

show that the fields of a moving point charge are given by

4πε0
e

E =
1

s3

(
r− ru

c

)(
1− u2

c2

)
+

1

c2s3

{
r×

[(
r− ru

c

)
× u̇

]}
(3)

4πε0c
2

e
B =

u× r

s3

(
1− u2

c2

)
+

1

c2s3
r

r
×
{

r×
[(

r− ru

c

)
× u̇

]}
. (4)

First let us define a coordinate (and notation) system, let R be the position of an observation
point relative to the origin and R′ the position of the charge. The position of the charge relative
to the observation point is then r = R−R′ (note un-bolded versions of these symbols correspond
to their magnitudes). The present time is t and the retarded time is t′, related to the separation
by r = c(t − t′). The velocity of the particle is u = dR′

dt′ = −dR
dt′ . The scalar and vector potentials

due to a moving point charge are

φ(r, t) =
1

4πε0

e

s
(5)

A(r, t) =
µ0
4π

ue

s
, (6)

where s is defined to be
s = r − r · u

c
, (7)

where u is the velocity of the point charge. Thus the observed electric field is given by E =
−∇Rφ − ∂A

∂t (where ∇R denotes derivatives with respect to the observation coordinates). The
gradient of the scalar potential is given by

−∇Rφ = − e

4πε0
∇R

1

s
= − e

4πε0

1

s2
∇Rs , (8)

using properties of derivatives. Applying the given derivative relation, and defining ∇1 = ∇R|t′ ,
we obtain

−∇Rφ = − e

4πε0

1

s2

(
∇1s−

r

sc

ds

dt′

)
, (9)

where

∇1s = ∇Rs|t′ = ∇Rr

∣∣∣∣
t′
−∇R

r · u
c

∣∣∣∣
t′
. (10)

Consider the gradient ∇R|R−R′| of which we inspect the component in the direction of xi:(
∇R|R−R′|

)
i

=
∑
j

∂

∂xi
êi

√
(xj − x′j)2 =

∑
j

1

2
√
xj − x′j

2(xj−x′j)
∂xj
∂xi

êi =
R−R′

|R−R′|
=

r

r
, (11)
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which gives the frist term in Equation 10. The second term can be found by examining

∇R
r · u
c

=
∂

∂xj
êj

(
(Ri −R′i)ui

c

)
=

∂

∂xj
êj

(
Riui
c
− R′iui

c

)
=

∂

∂xj
êj

(
Riui
c

)
(12)

=
ui
c

êjδij =
u

c
, (13)

and thus the gradient of the scalar potential is

−∇Rφ = − e

4πε0

1

s2

(
r

r

∣∣∣∣
t′
− u

c

∣∣∣∣
t′
− r

sc

ds

dt′

)
. (14)

The retarded time derivative of s is given by

d

dt′

(
r − r · u

c

)
=

dr

dt′
− 1

c

d

dt′
(r ·u) =

dr

dt′
− 1

c

{
dr

dt′
· u + r · du

dt′

}
=

dr

dt′
− 1

c
{−u · u + r · u̇} , (15)

and the retarded time derivative of r is

dr

dt′
=

d

dt′
|R−R′| = d

dt′

√
(xi − x′i)2 =

xi − x′i√
(xi − x′i)2

(
−∂x

′
i

∂t′

)
=

R−R′

|R−R′|
∂R′

∂t′
= −r

r
· u . (16)

Collecting the results, the scalar potential in Equation 14 can be written

−∇Rφ =
e

4πε0

1

s2

(
r

r

∣∣∣∣
t′
− u

c

∣∣∣∣
t′
− r

sc

[
−r

r
· u− 1

c
{−u · u + r · u̇}

])
(17)

−4πε0
e

∇Rφ =
1

s2

(r

r
− u

c

)
− r

s3c

[
−r · u

r
+
u2

c
− r · u̇

c

]
(18)

The time derivative vector potential is given by

− ∂A

∂t
= − e

4πε0c2
∂

∂t

(u

s

)
= − e

4πε0c2
r

s

∂

∂t′

(u

s

)
= − e

4πε0c2
r

s

[
1

s

∂u

∂t′
− u

s2
∂s

∂t′

]
. (19)

Using the results from Equations 15 and 16, this becomes

−4πε0
e

∂A

∂t
= − r

sc2

[
u̇

s
− u

s2

(
−r · u

r
+
u2

c
− r · u̇

c

)]
(20)

= − ru̇

s2c2
+

ru

s3c2

(
−r · u

r
+
u2

c
− r · u̇

c

)
, (21)

and so the electric field is given by

4πε0
e

E = −4πε0
e

∇Rφ−
4πε0
e

∂A

∂t
(22)

=
1

s2

(r

r
− u

c

)
+

r

s3c

[
r · u
r
− u2

c
+

r · u̇
c

]
− ru̇

s2c2
+

ru

s3c2

(
−r · u

r
+
u2

c
− r · u̇

c

)
(23)

We may multiply both sides by s3 to obtain

s3
4πε0
e

E = s
(r

r
− u

c

)
+

r

c

[
r · u
r
− u2

c
+

r · u̇
c

]
− sru̇

c2
+
ru

c2

(
−r · u

r
+
u2

c
− r · u̇

c

)
, (24)
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the terms with s remaining are

s
(r

r
− u

c

)
=

1

r

(
r− ru

c

)(
r − r · u

c

)
=
(
r− ru

c

)(
1− r̂ · u

c

)
= r− r(r̂ · u)

c
− ru

c
+
r(r̂ · u)u

c2

and

s
ru̇

c2
=
ru̇

c2

(
r − r · u

c

)
=
r2u̇

c2
− r(r · u)u̇

c3
. (25)

The expression for (s34πε0/e)E is now

r− r(r̂ · u)

c
− ru

c
+
r(r̂ · u)u

c2
+

r

c

r · u
r
− r

c

u2

c
+

r

c

r · u̇
c

− r2u̇

c2
+
r(r · u)u̇

c3
− ru

c2
r · u
r

+
ru

c2
u2

c
− ru

c2
r · u̇
c

, (26)

and we will count the terms starting from the left most, indexing from one. Note that terms 2 and
5 cancel, as well as 4 and 10:

r− ru

c
− r

c

u2

c
+

r

c

r · u̇
c
− r2u̇

c2
+
r(r · u)u̇

c3
+
ru

c2
u2

c
− ru

c2
r · u̇
c

, (27)

collecting terms gives

r

(
1− u2

c2

)
− ru

c

(
1− u2

c2

)
+

r

c

r · u̇
c
− r2u̇

c2
+
r(r · u)u̇

c3
− ru

c2
r · u̇
c

(28)(
r− ru

c

)(
1− u2

c2

)
+

r(r · u̇)

c2
− (r · r)u̇

c2
+
r(r · u)u̇

c3
− ru(r · u̇)

c3
, (29)

we can identify the vector triple product rule a× (b× c) = b(a · c)− c(a ·b) in the four last terms:

r(r · u̇)

c2
− (r · r)u̇

c2
=

1

c2
r× (r× u̇) (30)

r(r · u)u̇

c3
− ru(r · u̇)

c3
=

r

c3
r× (u̇× u) = − r

c3
r× (u× u̇) . (31)

Combining these results yields

s3
4πε0
e

E =
(
r− ru

c

)(
1− u2

c2

)
+

1

c2
r×

[(
r− ru

c

)
× u̇

]
, (32)

which is equivalent to Equation 3.

The magnetic field is given by

B = ∇R ×A =
µ0
4π

∇R ×
ue

s
=

e

4πε0c2
∇R ×

u

s
=

e

4πε0c2

(
1

s
∇R × u− u×∇R

1

s

)
. (33)

Using the definition of ∇R from above, the vector component from above become

1

s

(
∇1 −

r

sc

∂

∂t′

)
× u + u×

(
1

s2
∇1s−

r

s3c

∂s

∂t′

)
(34)
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1

s
∇1 × u− 1

s2c
r× u̇ + u×

[
1

s2r

(
r− ru

c

)
+

r

s3c

(
r · u
r

+
1

c
r · u̇− 1

c
u2
)]

, (35)

upon further expansion, we obtain

1

s
∇1 × u− 1

s3c

(
r − r · u

c

)
r× u̇ +

u× r

s2r
− u× u

s2c
+

(
r · u
r

u× r

s3c
+ r · u̇u× r

s3c2
− u2u× r

s3c2

)
1

s
∇1 × u− r(r× u̇)

s3c
− r · u
s3c2

(r× u̇) +
u× r

s3

(
1− r · u

rc

)
+

r · u
r

u× r

s3c
+ r · u̇u× r

s3c2
− u2u× r

s3c2

1

s
∇1 × u− r(r× u̇)

s3c
+

r · u
s3c2

(u̇× r) +
u× r

s3

(
1− u2

c2

)
+ r · u̇u× r

s3c2
.

Collecting terms yields

1

s
∇1 × u +

u× r

s3

(
1− u2

c2

)
− 1

s3cr

[(
r2 − rr · u

c

)
(r× u̇)− r · u̇ru× r

c

]
(36)

1

s
∇1 × u +

u× r

s3

(
1− u2

c2

)
− 1

s3cr

[
(r× u̇)

{
r ·
(
r− ru

c

)}
+ r× u

rr · u̇
c

]
(37)

1

s
∇1 × u +

u× r

s3

(
1− u2

c2

)
− 1

s3cr
r×

[
u̇
{

r ·
(
r− ru

c

)}
+
(ur

c

)
r · u̇

]
, (38)

due to the fact r × r = 0 we can insert a term proportional to r into the square brackets without
consequence:

1

s
∇1 × u +

u× r

s3

(
1− u2

c2

)
− 1

s3cr
r×

[
u̇
{

r ·
(
r− ru

c

)}
+
(
r− ru

c

)
r · u̇

]
, (39)

applying the same vector identity as used in the derivation of the electric field, we see this is
equivalent to

1

s
∇1 × u +

u× r

s3

(
1− u2

c2

)
− 1

s3c

r

r
×
[
r×

{(
r− ru

c

)
× u̇

}]
. (40)

The first term can be expressed as

1

s
∇1 × u = −1

s
∇1 ×

∂r

∂t′
= −1

s

∂

∂t′
(∇1 × r) = 0 , (41)

noting that ∇1 × r = 0. Using this, we obtain our result

B =
e

4πε0c2

(
u× r

s3

(
1− u2

c2

)
− 1

s3c

r

r
×
[
r×

{(
r− ru

c

)
× u̇

}])
, (42)

or equivalently,

B =
1

c

r

r
×E . (43)
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2 Point Charge with Constant Velocity.

A particle of charge q is traveling at a constant velocity u along the x axis.

2.1 Poynting Vector.

Show that the magnetic field B due to a moving particle can be written in terms of the electric
field E due to the particle as

B =
1

c2
u×E , (44)

and use this result to calculate the Poynting vector S entriely in terms of E.

Using Equation 3 for constant velocity u̇ = 0, the electric field of a point charge moving at a
constant velocity is

E =
q

4πε0

1

s3

(
r− ru

c

)(
1− u2

c2

)
, (45)

and similarly by Equation 4, the magnetic field is

B =
q

4πε0c2
u× r

s3

(
1− u2

c2

)
, (46)

note that u = ux̂. Now consider taking the vector product of u with the electric field:

1

c2
u×E =

q

4πε0c2
1

s3

(
u× r− ru× u

c

)(
1− u2

c2

)
=

q

4πε0c2
1

s3
u× r

(
1− u2

c2

)
, (47)

which is equivalent to Equation 46, thus

B =
1

c2
u×E . (48)

The Poynting vector is then

S = E× B

µ0
=

1

µ0c2
E× u×E , (49)

using the identity for the vector triple product gives

S =
1

µ0c2
(u(E ·E)−E(E× u)) =

1

µ0c2
(
uE2 −E(E · u)

)
. (50)

Figure 1: Depiction of geometry for problem #2.
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2.2 Direction of Observed Electric Field.

The electric field in part 2.1 involves the factor s = r − (r · u)/c, where r is the retarded position
of the charge with respect to the observation point. Referring to Figure 1, show that s can be
expressed in terms of the “present” position” of the charge r0, i.e., the position of the particle at
the instant when the information collection sphere converges on the observation point as

s = r0

√
1− u2

c2
sin2 θ , (51)

where θ is the angle between u and r0. Show also that the E is directed along r0.

Let us define the angle between r and r0 as ψ. Applying the law of sines to this triangle, we see

sinψ

r|u|/c
=

sin(π − θ)
r

⇒ sinψ =
u

c
sin(π − θ) =

u

c
sin θ. (52)

Consider the right triangle formed with r0 as the hypotenuse and s = r − r · u/c as one leg, it is
evident that

s = r0 cosψ = r0

√
1− sin2 ψ , (53)

which if we insert the result from the law of sines, we obtain

s = r0

√
1− u2

c2
sin2 θ . (54)

Using simple vector addition, we see

r− r

c
u = r0 , (55)

and then using Equation 45, we see

E =
q

4πε0

1

s3

(
1− u2

c2

)
r0 , (56)

and so E ‖ r0.

2.3 Total Power Through a Perpendicular Plane.

Using the result from section 2.2, calculate the total power passing through the plane at x = a, at
the instant when the particle is at the origin.

The power through the plane is given by ∫
A

S · x̂ dA , (57)

where A is the surface of the plane. Using the result of section 2.1, the Poynting vector is given by

S =
1

µ0c2
(
uE2 −E(E · u)

)
=

1

µ0c2
(
uE2x̂− uE(E · x̂)

)
. (58)

The x component of the Poynting vector is given by

Sx =
1

µ0c2
(
uE2 − u(E · x̂)2

)
=

1

µ0c2

(
q

4πε0

)2(
1− u2

c2

)2
u

s6
(
r20 − (r0 · x̂)2

)
. (59)
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The charge is located at the origin, and we are observing from a plane x = a, we then have that
r0 · x̂ = r0 cos θ = a because r0 will always terminate at a point on the x = a plane. Let us define
a polar coordinate system on the plane such that the origin is located at x = a, y = z = 0, with a
coordinate ρ as the distance from the origin. Since this geometry is cylindrically symmetric about
the particle’s velocity (x-axis) we may ignore the polar angle, because when we integrate over the
entire plane, we simply acquire a factor of 2π. Simple geometry tells us r20 = ρ2 + a2, so that the
energy flux per unit time through the surface x = a is

Sx =
1

µ0c2

(
q

4πε0

)2(
1− u2

c2

)2
u

s6
(
ρ2
)
, (60)

noting that the a2 from the Pythagorean theorem cancels with the −a2 from the projection of r0
onto the x axis. Note that there is still dependence on ρ in s - from Equation 54 we have

s2 = r20 −
u2

c2
r20 sin2 θ = ρ2 + a2 − u2

c2
ρ2 , (61)

noting that r0 sin θ = ρ. Finally we have that the x component of the Poynting vector is

Sx =
uq2

16π2µ0ε20c
2

(
1− u2

c2

)2
ρ2[

a2 + ρ2
(

1− u2

c2

)]3 , (62)

and thus the power through the plane at x = a is

P =

∫ ∞
0

Sx(2πρdρ) =
uq2

8πµ0ε20c
2

(
1− u2

c2

)2 ∫ ∞
0

ρ3[
a2 + ρ2

(
1− u2

c2

)]3dρ , (63)

using c2 = 1/µ0ε0, the coefficient simplifies to

P =
uq2

8πε0

(
1− u2

c2

)2 ∫ ∞
0

ρ3[
a2 + ρ2

(
1− u2

c2

)]3dρ . (64)

Letting Mathematica handle the integral, we obtain the result

P =
uq2

8πε0

(
1− u2

c2

)2
1

4a2

(
1− u2

c2

)−2
=

uq2

32πε0a2
. (65)
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3 Larmor Formula.

Using the equations derived in class for the radiation field of a moving charged particle, show that
the far-field power emitted by a charged electron in the limit u/c � 1 is given by the Larmor
formula

− dW

dt
=

e2u̇2

6πε0c3
, (66)

where u is the velocity of the electron. Compare this with the time average of the far-field power
emitted by an oscillating dipole.

Using the electric field of a moving point charge given by Equation 3, and the result from Equa-
tion 43, we see the Poynting vector is given by

S =
1

µ0
E×B =

1

µ0
E×

(
1

c

r

r
×E

)
=

1

µ0cr

[
E2r−E(E · r)

]
. (67)

Assuming the particle starts from rest, we have s = r and u = 0. Since we are interested in the far-
field solution, we can neglect terms of order r−2 or more negative powers. With these constraints,
the electric field is

4πε0
e

E =
1

r3
r +

1

c2r3
{r× r× u̇} ∼ 1

c2r3
{r× r× u̇} , (68)

in the far field. We should note that the vector triple product is in the direction of r, so when we
take the scalar product indicated in the Poynting vector, we get zero. Therefore

S =
1

µ0cr
E2r =

1

µ0c
E2r̂ =

(
e

4πε0

)2 1

µ0c5r6
|r× r× u̇|2 r̂ , (69)

if we factor out the magnitude of the separation vector, we obtain

S =

(
e

4πε0

)2 1

µ0c5r6
∣∣r2r̂× r̂× u̇

∣∣2 r̂ =

(
e

4πε0

)2 u̇2

µ0c5r2

∣∣∣r̂× r̂× ˆ̇u
∣∣∣2 r̂ . (70)

If we use the fact that that r̂ ‖ (r̂× ˆ̇u), then∣∣∣r̂× r̂× ˆ̇u
∣∣∣2 = sin2 θ, (71)

where θ is the angle between the velocity and the separation. As such, the Poynting vector is

S =

(
e

4πε0

)2 u̇2 sin2 θ

µ0c5r2
r̂ . (72)

The power radiated from the point charge is given by the integral of the power through a spherical
shell, of radius r:

P =

∫
S · dA = r2

∫ 2π

0
dφ

∫ π

0
sin θdθ

(
e

4πε0

)2 u̇2 sin2 θ

µ0c5r2
r̂ · r̂ , (73)

after integrating over the azimuthal angle, we obtain

P = 2π

(
e

4πε0

)2 u̇2

µ0c5

∫ π

0
sin3 θdθ = 2π

(
e

4πε0

)2 u̇2

µ0c5
4

3
=

e2u̇2

6πε0c3
. (74)

Since power is defined as work per unit time, we have

− dW

dt
=

e2u̇2

6πε0c3
, (75)

which is precisely the field as the average far-field power emitted by an oscillating dipole.
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4 Linear Motion of Charged Particle.

Derive the expression for the electric and magnetic fields of a charged particle if the acceleration of
the particle is parallel to its velocity. Plot the angular dependence of the radiation flux intensity
(the Poynting vector), that is, contours of equal intensity on a polar plot (i.e., for r, θ in polar
coordinates) for various values of u/c.

Let us define the z axis to be along the direction of the particle’s motion, then u = uẑ and
u̇ = du

dt = u̇ẑ, and thus (
r− ru

c

)
× u̇ = r× u̇ . (76)

Using this and the results of problem 1, the electric and magnetic fields are given by

4πε0
e

E =
1

s3

(
r− ru

c

)(
1− u2

c2

)
+

1

c2s3
{r× [r× u̇]} (77)

4πε0c
2

e
B =

u× r

s3

(
1− u2

c2

)
+

1

c2s3
r

r
× {r× [r× u̇]} . (78)

In the radiation zone, we can ignore the first terms because they of order r−2, thus

4πε0
e

E =
1

c2s3
{r× [r× u̇]} (79)

4πε0c
2

e
B =

1

c2s3
r

r
× {r× [r× u̇]} . (80)

Elementary vector analysis on the magnetic field gives

r× {r× [r× u̇]} = r (r · {r× u̇})− {r× u̇} (r · r) (81)

= r (u̇ · {r× r})− r2 {r× u̇} = r2 {u̇× r} , (82)

and so the electric and magnetic fields of a point charge accelerating in its direction of travel are

E =
e

4πε0

1

c2s3
{r× [r× u̇]} (83)

B =
e

4πε0

r

c2s3
{u̇× r} . (84)

The Poynting vector is then

S =
1

µ0
E×B =

1

µ0

(
e

4πε0

)2 r

c4s6
{r× [r× u̇]} × {u̇× r} , (85)

where

{r× [r× u̇]} × {u̇× r} = −{u̇× r} × {r× [r× u̇]} (86)

= [r× u̇] {{u̇× r} · r} − r {{u̇× r} · [r× u̇]} (87)

= r |r× u̇|2 = r(r2u̇2 sin2 θ) = (r3u̇2 sin2 θ)r̂ , (88)

where θ is the angle between the observation point r and the z axis. Therefore the Poynting vector
is

S =
1

ε0µ0

e2

16π2ε0

r4

c4s6
(u̇2 sin2 θ)r̂ =

e2

16π2ε0

r4

s6

(
u̇

c

)2

sin2 θr̂ , (89)
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and the flux of this vector through a differential solid angle dΩ at radius r, the differential power,
is

dP = S · da =
e2

16π2ε0

r4

s6

(
u̇

c

)2

sin2 θr̂ · r2dΩr̂ = k
r6

s6

(
u̇

c

)2

sin2 θdΩ = −dW

dt
. (90)

However, the derivative should be evaluated at the retarded time t′, so using the fact that dt′

dt = r/s,
we have

− dW

dt′
= −dW

dt

dt

dt′
= k

r5

s5

(
u̇

c

)2

sin2 θdΩ . (91)

The distance s is defined as

s = r − r · u
c

= r

(
1− r̂ · u

c

)
= r

(
1− u

c
cos θ

)
, (92)

substituting this into the differential power yields expressions for contours of constant intensity:

C =

(
u̇

c

)2 sin2 θ(
1− u

c cos θ
)5dΩ . (93)
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5 Energy of Proton from van de Graaff Accelerator.

A proton of charge q is given a constant acceleration in a van de Graaff accelerator by a potential
difference of 700 kV. The acceleration region has a length of 3 m. Calculate the ratio of the energy
emitted by the proton to its final kinetic energy, and estimate the numerical value of this ratio.
Assume the proton starts from rest.

Using the result from problem 3, the total far field energy emitted by an accelerating electron over
a time t is given by

W =
dW

dt
t =

q2u̇2

6πε0c3
t . (94)

Let us assume the acceleration of the proton is constant, which implies the velocity of the particle
at time t is simply u = u̇t, and as such the length the proton traveled in time t is

x =
1

2
u̇t2 =

ut

2
, (95)

and so the time it takes for a particle to cover a distance x (starting from rest) is t = 2x/u. Inserting
this into Equation 99, we obtain

W =
q2x

3πε0c3
u̇2

u
=

q2x

3πε0c3
(u/t)2

u
=

q2x

3πε0c3
(u2/2x)2

u
=

q2

12πε0x

u3

c3
, (96)

which is the energy lost by the proton as it radiates. The proton starts from rest in a potential φ,
and therefore has potential energy qφ. The energy of the proton when it has velocity u (which it
has after it travels for time t/distance x) is 1

2mpu
2. If we assume the energy lost to radiation is

small, we can conserve energy to find

1

2
mpu

2 = qφ ⇒ u =

√
2qφ

mp
. (97)

The ratio of emitted energy to final kinetic energy is

Γ =
W

1
2mpu2

=
q2

6πε0xmpu2
u3

c3
=

q2

6πε0

u

xmpc3
, (98)

and if we insert our result for the final velocity of the proton, we obtain

Γ =
q2

6πε0

1

xmpc3

√
2qφ

mp
=

√
2q5/2

6πε0m
3/2
p c3

√
φ

x
. (99)

We may evaluate the physics constants using SI units:

Γ = (5× 10−23)

[
s3/2 ·A1/2

kg1/2

] √
φ

x

[
V1/2

m

]
, (100)

where now φ and x are dimensionless. The indicated units cancel exactly, and the ratio Γ is
dimensionless, as expected, with a value of

Γ = (5× 10−23)

√
7× 105

3
= 1.39× 10−20 , (101)

so our assumption that the energy lost to radiation is small was valid.
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