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1 Hertz Vector - Partial Field Expansion.

In class, we derived the expansion for the fields corresponding to the n = 0 partial field expansion
of the Hertz vector, Hg. Suppose the current distribution is such that only the magnetic dipole
moment m is important.

1.1 Field Expansion for n = 1.

Using the expressions derived in class for IT., show that the electric and magnetic fields are given

by
k2 1 , .
Et,low — M\/'LTS (r + l{::"2> e sin 0 , (1)
and
1 1 1k
H}w =5 <r3 ;) e*"'m cos 0 (2)
1 /1 ik k?
H(}w = <r3 — 7% — 7“) e sin 0 (3)

In class, we found the expression for the n = 1 mode of the Hertz vector to be

ik 1 i .M X T
Hl —_ - v ikr 4
Y dme (r * kr2> © Triw )

using a spherical coordinate system, and aligning the z axis with the magnetic moment such that
m = mz, simplifies this to

mk (1 7 g Z X T
Hl — - s ikr ) 5
Y Areow (r - kr2> c r 5)
The vector product is given by
e y Z
ZXT= 0 0 1 | =x%x(—rsinfsin¢)+ y(rsinf cos ¢) (6)
rsinfcos¢ rsinfsing 7rcosb
= rsin 6 (—sin ¢x + cos ¢y) = rsin ¢ (7)

so the Hertz vector for this mode is

. 1 ; ) .
I, =11} ¢ = _mk_ ( + Z> e*r sin 0 . (8)

1 9211}
Bl = - + V(V L), (9)
let’s first examine the second term:
N N 15)
VI, =V -1,¢=V I ¢x I, =0, (10)
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because Héw has no dependence on the azimuthal coordinate. If we assume a harmonic time

dependence for the fields, Equation 9 can be written

1 . w? omk (1 i

1 _ 2 _
Ew__g(_w )Hw_ ; W

) e sinf¢ |

2 4megw
then using the dispersion relation w = kc, this becomes

9 1 . ' . ka 1 ] . ~
El . mk <+ v )eZkTSiH9¢:Mm(+ ! >€ZkTSin9¢,

Y Awege \ 1 kr? 4meg r o kr?

noting the speed of light is ¢ = 1/,/ug€g. Final simplification gives the expected result

K2 fno (1 i ,
1 _ 0 k :
E, = i\ & (r+ kr2> e "'msin .

The magnetic field is related to the electric field by

1 OTI! iw .
Bl - —v VvV x IT! = Vv x II
w2 x éhfw 2 x w T X g

We have that Héw =11}, = 0, so carrying out the curl yields
1w 1 0, 4 . . 10 41\,
B,=-2 { ( 5in 6 96 o Sm@)) B <7~a/““¢w oy
Let us examine the radial component:
} 1 9 w 1 mk (1 i g O
Bl — MW _* 9l gne ) = (2 MV (1Y) i 9 2y
e c? (r sin ¢ 80( oo $106) c? \rsinf 4reow \r TEz) ¢ e

imk 1 (1 i\ g 1 =ik 1\ 4
Ry E— <r+kr2> ™ (2sinf cos ) = CE— <+r> e""mcos@ ,

which simplifies to

Bﬁw:%(rg—ﬂ>elrm0089 = Hﬁw:% 32 e "mecos@ .

The polar coordinate of the magnetic field is
iw (10 w  k 10 i ’
Bl el Ml Hl _ v no | == 1(1 v ikr
b ™ 2 <r ar ¢w> c2 47T60wmsm (r or ( + kr) ¢
iw k 1 : i (iket*r et
_ ing= ik ikr v _
c? 47reowmsm r <Z o k < r 72 >>

1 K2 ik 1Y
(— ! + 3) e*msin |
T

r o r2

using the derivative:

This simplifies to

1 ik K2\ . 1 /1 ik k2
B(}w—ZO<—Z—> e*msing = H§W—<—Z—> e msing .
T

(22)

(23)
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1.2 Far-field Time-averaged Flux.

Show that the time-averaged flux of far field radiation from this magnetic dipole is given by
dW k‘4 Mo
- — . 24
il v i (24)

The Poynting vector for the n = 1 partial wave is given by

1

1 :
S, =B, xH =3

( EL HiE + EL H1*6> : (25)

the flux of this vector (the power) through a sphere of radius r is

P= / SL.dA = / S - (2772 sin #dO) = 27r? / Sl sinfde (26)
where ]
Sl = —iE;ng;; : (27)

If we are only concerned with the far field radiation, we can approximate the fields by retaining
only the terms with the highest power of r:

k2 140 ezkr

E! 2
o dn\ e 7 (28)
1 k:2 —ikr
Hyjy =1 er msin@ | (29)
and so the negative of their product is
1 k4 2 2 6
s LKIm?sin’ 6 fuy (30)
2 16m2r2 €0
The far field power radiated from the magnetic dipole is then
dw 1k*m Ho 4 E*(m2)  [uo
- =P =2 30d0 = Z(2) = = 31
dt 2167 'r2 \/ € / sin 167r 3 or Ve o GY

where (m?) is the time-averaged magnitude of the magnetic moment.

1.3 Power Radiated from Conducting Loop.

Consider now a conducting loop of radius ry with an oscillating current of amplitude I flowing
through it. Such a loop has negligible electric dipole moment. Find an expression for the power ra-
diated at large distances from the resulting magnetic dipole in terms of Iy, ro and the wavelength A.

The magnitude of the magnetic dipole moment of a loop of radius rg with current Iy coswt is given
by

2
m = nlgcos(wt)ry = (m?) = 73rI3{cos® wt) = %7’0[0 : (32)
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The wavenumber k is related to the wavelength by k& = 27/, and so the far field power is

4 2
po LI oo _ Ui oroys i @
0

127 €0 23

so the average power is

2 4
p="Ip2 (@) Ko (34)
€0

1.4 Power Through Resistor.

If the oscillating current of maximum amplitude Iy were to flow through a resistance R, calculate
the value this resistance must have in order to dissipate the same amount of power that you found
in part 1.3.

The power through a resistor is
1
P=IRR = (P)=(I}))R= 51373 : (35)
so to dissipate the power found previously the value of R must be

R — 2P o 4 (L’FO>4 Ho (36)

T2 3\ €
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2 Alternative Solutions to the Wave Equation.

Let 1 be a solution of the wave equation

102
v%—c—m—:f =V + k% =0. (37)

2.1 Solution: Derivatives of 1.

Show that the derivatives of v are also a solution to the wave equation.

Let us define the derivatives of the solution as

=V, (38)

which if we insert into the wave equation yields

2, 1% o _10°vy
v ¢ 02 8752 - v (V¢) 02 atg ) (39)
which can be separated into components
3 2
L T I L P S E R K B

Ve c? Ot? Z c? Ot? Ox; N ; ox; (V 1/]) 2 dx; 012 ' (40)

The time derivative and Laplacian both commute with the derivative with respect to a single
coordinate. If we pull the derivative outside the sum

1 9%°¢ 1 0%
2 .
Vi - 202 " om Z[ @@tz}xi’ (41)
we see the summand is the wave equation for ) which is satisfied. Therefore,
1 0%¢
2
_ — 42
V ¢ 02 8t2 0 Y ( )

and so the derivatives of ¢, ¢ = V1 satisfy the wave equation. Note the derivative with respect
to time commutes in a similar way with both the Laplacian and second time derivative. This can
also be shown using the form of the wave equation with the time derivative carried out:

0=V*(Vy) + k* (V) (43)
=V (V- -VY) -V x(V x V) +EX(V), (44)

using vector identity (1)!. Noting that V x V1) = 0, yields the condition which is satisfied if V4
is a solution to the wave equation:

V(V - Vi) = —k*(VY) . (45)
Let us examine the left-hand side:

V(V-VY) =V (V) , (46)
using the definition of the Laplacian. The wave equation for 9 tells us V2 = —k?1), so

V(V V) =V(-k*) (47)

and we may factor out the —k? because it is a scalar, and see that the condition in Equation 45 is
satisfied and therefore V1) is a solution to the wave equation.

!See section 7, page 15.
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2.2 Solution: r x V1.

Show that r x V1) is a solution to the wave equation.

Let us define

p=rxVi, (48)
which if we insert into the wave equation yields
Vi — 1%¢ _ Vi(r x V) — 1o (rx Vi) = V2(r x Vi) + k2 (r x Vi) =0 (49)
2 ot c2 0t? N o

Let us expand the first term using vector identity (1):
Vi x V) =V{V-(rx Vi)} =V x{V x (rx Vi)} , (50)
which we can also examine term-by-term. The first of which is, by vector identity (3):
V- (rxVyY)=Vy-(Vxr)—r- (VxVyY)=Vy - (Vxr), (51)
using V x V¢ = 0. If we permute the order of the vectors in the remaining term, we see
V- (Vxr)=r- (Vi xV)=—-r-(VxVy)=0, (52)

and thus the first term on the right-hand side of Equation 50 is zero. We therefore have, using
vector identity (2):

V3(rx Vi) = =V x {V x (r x V)} (53)
=-Vx{r(V-V¢)=V(V-r)+ (V- V)r—(r- V)V} . (54)
The vector r is the coordinate of a point, and as such the vector relations V-r =3 and V xr =0

hold (the second identity would have made Equation 51 vanish without much work). The expression
above then simplifies to

V3(r x Vi) = =V x {r(V*)) = 3VY + (V- V)r — (r- V)V } (55)
= -V xr(—k*) =3V x Vi +V x (V- V)r—V x (r- V)V (56)
={k*V x (r¢)} +{V x (V¥ - V)r} —{V x (r- V)V¢} . (57)

Let us examine this term-by-term, the first of which is
2V x (r) = k* (Vi x v+ 9V x 1) = —k*(r x V) , (58)

which is the desired result. If the other two terms are both zero, or cancel each other identically,
then we have

V3(r x Vi) = —k%(r x V) , (59)

which satisfies Equation 49, and thus r x V1 is a solution to the wave equation. Let us return
to the remaining two terms. In the first remaining term, the vector having its curl taken can be
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expanded in Cartesian coordinates:

(V-9 = (V0)ag + (VO + (F0):5 ) v (60)

— (Vg + (W)ﬁ + (vw@ X (61

((Vzp) Xy (Vo (szai) y (62)
+ ((waajc + <Vw>y8{/ + <w§j) 2 (63)
= (Vi)sk 4 (Vi) + (Vih)s2 = V) (64)

and as such, is zero when we take it’s curl. The final remaining term can be evaluated in Cartesian
coordinates:

V x(r- V)V = Vx(ZxZ%)vqp Z(Vx 3@wa> i(Vmivgi>. (65)

=1

Let us now define ¢} as the derivative with respect to the ith coordinate, so the above is equivalent
to

3 3
SV xaVY)) => (V<o (P, % + ¢, 3 + .2} . (66)
=1 =1

Consider the x component (i = 1)
V ox @ {Y,X + ¥,y + ¥ 2}
=X (xwglvzy - xqzz)/myz) + 5’ (x¢;mz - [wgzz + Smb;czm]) + 2 ([wéy + xwg/vym] - xw:,nmy) ’ (67)
which simplifies to
V xaVi, = =0,y + 4,7, (68)

and through permutation, we find similarly

V X va; = —¢’yxi + wlyzfc (69)
Summing these results gives
3
Vx(@-V)Vy=> (VxzVi)=0, (71)
=1

because each component cancels exactly. We now return to Equation 57, and see that the only the
first term is nonzero, which was shown to give the desired result. Therefore r x V1 is a solution
to the wave equation.
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3 Vector Solutions to the Wave Equation.

As we have see, the time dependent electric and magnetic fields are solutions to the wave equation

1 O’°E
2
1 0°H
2

For scalar functions satisfying the wave equation, we know in principle how to obtain the solutions,
but for vector functions, things are not so straightforward. In Cartesian coordinates, we can split
up each vector field into its three component scalar fields, and solve for them independently, but
it is not clear how to do this for a general curvilinear coordinate system, where the unit vectors
themselves may be functions of position. This is the case for spherical coordinates, which we shall
look into in this problem.

One way to get around this problem in the case when the divergence of the vector field vanishes
(as is the case for source-free regions) is to break up the vector fields into the sum of two partial
fields.

3.1 Divergence-less Fields.

From the result of the problem above, we see that if 1 is a scalar function, then r x V1 is a solution
to the wave equation. Show that if we express the electric field as E = r x V), then the divergence
of the resulting electric and magnetic fields vanish. (Conversely, if H = r x V1, the divergences
also vanish.)

The divergence of the electric field, by vector identity (3), is

V-E=V: - (rxVy)=Vy(Vxr)—r - (VxVy). (74)
Using vector identity (5), and noting that r is the coordinate of a point so V x r = 0, we have that
V-E=0. (75)
Using Maxwell’s equations, we see
0B
VXE:E:—iw,uH, (76)
for harmonic fields. Taking the divergence of both sides yields
1
V-H=—V - (VxXE)=0, (77)
iwp

because the divergence of the curl of a vector is zero. Therefore both the electric and magnetic
fields are divergence-less.

3.2 Analog to Waveguides

It can be seen that E; = r x V1 cannot be the full general solution of the wave equation, since
this electric field has no component parallel to r. However, a second, linearly independent solution
E- can be obtained by defining the magnetic field as Hy = r x V1, and obtaining the electric field
—iweEy = V x Hs. Since E; has no component in the radial direction, it can be thought of as
being the analog of a TE wave, while Ho can be thought of as being the analog of a TM wave.
Consider now the solutions of the wave equations inside a conducting spherical shell of radius rg.
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3.2.1 TE Mode Allowed Frequencies.

Show that for the “TE” modes, the allowed frequencies are given by

Wi, = din , (78)
o

where ay,, is the nth zero of the spherical Bessel function j;(z).
In this analog to waveguides, the transverse component is the radial component in spherical co-

ordinates. Therefore, for a “TE” mode, we have E, = 0 and the condition that H;|g = 0. The
transverse component of the magnetic field satisfies the Helmholtz equation

(Vi+ k) =0, (79)
where H, = 9e'**~“!) and k = w/c. The solutions to this differential equation are of the form

¢(7’7 0, ¢) = Rl(kr))/lm(ev ¢) ) (80)

where Y, (0, ¢) are the spherical harmonics. The radial function is a linear combination of spherical
Bessel functions of the first and second kind. The boundary conditions are

0= 77b(7'07 9) ¢) = Rl(kTo)Ylm(e, ¢) 3 (81)
for all 8,¢. The volume of interest contains the origin, so we may exclude the spherical Bessel

functions of the second kind. The boundary conditions then give

ko) =0 = k=21 (82)

o
where ay,, is the nth zero of the ith spherical Bessel function. Using k = w/c we get the result

w=cn (83)

o

3.2.2 TM Mode Allowed Frequencies.
Find out the condition that determines the frequencies of the “TM” modes.
Similarly, for a “TM” mode, we have H, = 0 and the condition that d3E;|s = 0, where 03 denotes

the normal derivative. The solution to the Helmholtz equation v has the same functional form,
but represents the radial electric field E, = 1e**=“) The boundary condition gives

o . }
0= 5 gilkr) T gi(kro) (84)
so we have
o 85
k= ln
= (35)

where o), is the nth zero of the first derivative of the ith spherical Bessel function. Again, we

usek = w/c we get the result

/
w=coln (86)
7o
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4 Covariant Tensor - Change of Coordinate Basis.

2

A covariant tensor has components xy, 2y — z“, rz in rectangular coordinates. Find its covariant

components in spherical coordinates.

Under a change of coordinates, a covariant tensor transforms as
- ox'

Aj = —

oz

where the A; are the coefficients of the basis vectors in the source coordinates. Consider a ten-

sor with covariant components A;, in the basis z* € {z,vy, 2}, with components flj in spherical
coordinates 77 € {r, 60, ¢}. The transformed components are thus

_ Oxt Ox? ox3

A; (87)

where the untransformed components are
Ay = zta? Ag = 227 — (23)? Az =x'a® . (89)
In terms of the destination coordinates, the source coordinates are
r=a'=rcospsingd = 2! =2z'coszsinz? (90)
y=2°=rsingsingd = z?=z'sinz>sinz? (91)
z=a3=rcos® = 23=z'cosz?, (92)
so the components in the source basis can be expressed
Ay = z'2? = (rsinf)? cos psin ¢ = (z1)?(sin £2)? cos 72 sin 73 (93)
Ag =227 — (%)% = 2(r cos ¢psin 0)? — (rcos0)? = 2(z1)?(cos %)% (sinz%)? — (z')*(cos 7%)*  (94)
Az = 223 = r? cos psin 0 cos 6 = (&) cos 73 sin 72 cos T2 . (95)
The transformed coordinates are
A = @Al + @Ag + %Ag = cos ¢sinBA; + sin ¢ sin #As + cos 6 A3 (96)
or or or
=r2sing {cos2 $sin ¢psin® @ + sin ¢ (2(cos $sinh)? — cos? 9) + cos ¢ cos? 9} (97)
= r?sin 6 {(sin ¢ + 2sin @) cos® psin® § + (— sin @ + cos @) cos® } (98)
- 0 0 0
Ay = 8739;141 + 87?;142 + B—ZAg =rcos¢gcosfA; + rsin¢gcos Ay — rsin Az (99)
=13 cosf {0052 G sin psin® 0 + sin ¢ (2(cos $sinf)? — cos? 0) — sin 6 cos ¢ sin 9} (100)
=13 cosf {(3cos ¢sing — 1) cos $sin? § — sin ¢ cos? 6} (101)
(102)
A = gZAl + gZAQ + g;Ag = —rsin¢gsinfA; + rcos¢psinfAs (103)
= r?sin 0 {— cos ¢ sin® ¢ sin® 6 + cos ¢ (2(cos ¢ sin §)* — cos? 6) } (104)
= r3sinf cos ¢ { (2 cos? ¢ — sin? qﬁ) sin? 6 — cos? 0} (105)
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5 Contraction of Tensor.

Prove that the contraction of the tensor T} is a scalar or invariant.

A tensor with rank greater than or equal to rank 2 is contracted by setting two indices equal, and
carrying out the implied sum over the repeated index. Thus, the contraction of the tensor Ty is
T4. This operation reduces the rank of a tensor by two, and therefore the contraction of T7, a rank
2 tensor, results in a rank zero tensor, which is a scalar. Consider this tensor under a coordinate

transformation: B
T- - 83:, 8xq P

[ - 106
J 8.CCp a.i’j 47 ( )
which we may contract by setting i = j:
_.  0T; Ox ox
b= L Ae = AP 107
¢ 8xp oz; 9 aaip g ( )
The remaining derivative is a Kronecker delta, so we are left with
T} = 0y TP = TY (108)

which is the contraction of the tensor in the original coordinate basis. Therefore the contraction of
a rank 2 tensor is invariant under change of coordinates, and is therefore a scalar, confirming the
claim above.
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6 Metric Tensors.

Determine the metric tensor g;; in cylindrical and spherical coordinates.

A metric tensor is defined as

oxy, Oxy,
109
Z 0q; aQJ ( )

with 4,5 € {1,2,3}. The coordinates z; are the Cartesian coordinates x,y, z and the g; are the coor-
dinates of the destination system (e.g., cylindrical, spherical). Note that since scalar multiplication
is commutative, we have

9ij = Gji » (110)
so the metric tensor is symmetric. Additionally, the diagonal elements are given by

3 9y, \ 2
wi=3 (5] = (1)

k=1

where h; are the scale factors.

6.1 Cylindrical Coordinates.

In cylindrical coordinates ¢; = {p, ¢, 2}, the Cartesian coordinates can be expressed as

x] = psingp xg = psing x3=2, (112)
and the relevant derivatives are
61'1 8:1@1
e 11 ox ) — =0 115
o ¥ (113) Tq; =—psing  (114) dg3 (115)
6.%'2 . 821?2 83?2
—— =sin 116 —— = pcos 117 — =0 118
o ; @ (116) %% 8p e - (117) 2"3 (118)
L3 T3 L3
— =0 119 — =0 120 — =1 121
90 (119) 9 (120) 9 (121)
From this we see that any off-diagonal term g¢;3 = g3; must be zero:
0
gi3:8x18x1+ xg% 8373% , (122)
0q¢; 0q3 ~ 0q; Oq3  Oq; Oq3
since i # 3, this reduces to
ox1 O0x9 Ox3
i3 = + 0)+(0)=—=0. 123

The other off-diagonal terms are

81’1 3331 81'2 a$2 . .
+ "= = —psinpcosp + pcospsing =0, 124
gi2 = 90 002 a1 g P8I Y COS P + P COS Y SIN Y (124)

and thus the metric tensor is diagonal. The diagonal terms are

g11 = (cosp)? + (sinp)? = 1 (125)
922 = (—psing)? + (peosg)? = (126)
g33 =1, (127)
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which gives the metric tensor in cylindrical coordinates to be

0 0
P2 0| . (128)
0 1

9ij =

S O =
(3]

6.2 Cylindrical Coordinates.

In spherical coordinates ¢; = {r, 0, ¢}, the Cartesian coordinates can be expressed as
x1 = rsinfcos o = rsinfsin xr3 =7rcosf , (129)

and the relevant derivatives are

81’1

21 _ sinfcose  (130) 021 _ rcosfcosp  (131) e —rsinfsing (132)
q dq2
o 0z Oz2 _ 7 sin 6 cos (135)
——2 —sinfsing  (133) ——2 —rcosfsing (134) 943 v
£ g 0
L3 L3 . T3
—— =cosf 136 —— = —rsinf 137 — =0 138
i (136) %% (137) 945 (138)
The diagonal terms of the metric are given by
g11 = (sin@cos )2 + (sin @ sin p)* + (cosh)? = 1 (139)
g22 = (rcosfcosp)? + (rcosfsinp)? + (—rsinf)* = r? (140)
q33 = (—rsin@sinp)? + (rsinfcos )? + 0 = r?sin’ 4 | (141)

and the off-diagonal elements are

g12 = (sin 6 cos ¢)(r cos cos ) + (sin @ sin @) (r cos § sin @) + (cos ) (—rsin b)
= rsinf cosf(cos® ¢ +sin®p — 1) = 0

g13 = (sin 6 cos ) (—rsin @ sin ) + (sin @ sin ) (r sin O cos ) + (cos H)(0)
= rsin? §(— cos @sin ¢ + sin @ cos @) =0

g23 = (7 cos @ cos p)(—rsinfsin ) + (r cos @ sin ) (rsinf cos ¢) + (—rsind)(0)

N TN N N /N /N
N = Y S
N S~ SN
N O Ot =W N
N~ N e N N N

= r%(— cos f cos psin fsin ¢ + cos fsin psinf cos p) =0 ,
and therefore the metric in spherical coordinates is

1 0 0
0 0 r2sin?6
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7 Vector Identities.

Relevant vector identities given by Jackson, Classical Electrodynamics, 3 ed.
1. Vx(Vxa)=V(V-a) - V?a
2. Vx(axb)=a(V-b)—b(V-a)+(b-V)a—(a-V)b
3. V-(axb)=b-(Vxa)—a-(V xb)
4. V x (pa) =V xa+9yV xa
5. VxVy=0
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