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1 The Metric Tensor.

From the fact that ds® = gjkdxj dz* is an invariant, show that gjk is a symmetric covariant tensor
of rank 2.

Consider transforming the differentials to a new coordinate frame:

oFd
dz? = —d p 1
o =g de (1)
ok
_k . q
dz 9t dx? | (2)
which allows us to write the line element in these coordinates
oz oz
J P q
ds? = gjrdzidz® = gjka Sdz D dz? . (3)

However, the line element is invariant under coordinate transform, so we may set the quantity from
both frames equal:

. 7 7k
girdalda® = ﬁa‘k?‘”p?dxq ' @

oz’ oz*
gpgdaPdx? = g]ka p%dxpdxq , (5)
gathering terms yields
079 0%
<gpq 9% 35 B q) daPdz? =0 . (6)
For this to be valid for all dz? and dx?, we must have that
B (%Uj 65;

This form is exactly that of a transformation of a covariant, rank two tensor, and thus g;; is a
covariant, rank two tensor.

Furthermore, the metric tensor can be expressed as

1
=(9jk — grj) = Ajr + B , (8)

1
5 (Gsk + 9155) + 5

gjk:2

where the first term is defined to be Aj;, a symmetric rank two tensor, and the second term is
defined to be Bj, an anti-symmetric rank two tensor. This allows us to write

gixda?da® = (Ajy, + Bjj,)da?da” 9)
which, after some rearranging yields

(gjr — Aj)da?da® = Bjpdaida® (10)
Let us examine the right-hand side:

Bjkd:cjdxk = Bk.jdazkdxj , (11)
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by swapping the dummy indices. Using the fact that Bj; is anti-symmetric gives us
Bjpdalda® = —Bjpdatda? =  2Bjdaidat =0. (12)
Using this result, Equation 10 reduces to
(95k — Ajk)dxjd:ck =0, (13)

so that g;, = Aji. By definition we have A;, = Aj; so it is symmetric, and therefore so is the
metric, gjx. Combining this with the result from Equation 7 we see that g, is a symmetric tensor
of rank two.
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2 Covariant Derivative of Scalar.

Show that gfl transforms as a covariant tensor of rank one, where ¢ is a scalar.

Let us define ¢; = %, and consider this quantity in a transformed coordinate system:

_ oy
Prk = ok (14)
using the chain rule for differentiation, we have
dp 0z Ox'
k= ri ok ozk (15)
Thus we see that ¢; = g;’i transforms as a covariant tensor of tank one.
3 Covariant Derivative of a Covector.
Show that g;@ is not a tensor, even if ¢; is a tensor of rank one.
Consider the transformation of the tensor ¢; to another coordinate frame:
_ 0z’
which is a covariant transformation. We can now take the derivative with respect to z!:
ot, 0 [ 0x 02zt ozt Ot;
7—%:7—1 it ) = 5ot t o p o (17)
0T ozt \ 0T 0z 0T 0z" 0T

using the product rule for differentiation. Applying the chain rule to the second term, we obtain

oty 9%t ozt Ot; OxI

iR t — 18
ozl ozlozk ™ 0z OxI Oz (18)
thus we see o7 Bt 8 B 2
t z* Oz’ Ot; '
521 = 5% 55 507+ BaipaEt - (19)
0T ozF 0z dx1 ~ 0%'0%
A tensor transforms in the following ways:
) - ozl 9x™
covariant : A;; = 97 o7 Aim (20)
_. 0%t oI
contravariant : AY = Z— = Alm 21
v Oxt oz™ (21)
— oz’ Oz™
: Y l
mixed : A'; = ol D57 AL (22)
so if the second term in Equation 19 were identically zero, the quantity g;g- would transform as a
tensor. Since this term is not guaranteed to be zero, we conclude that g;@ is not a tensor.

Page 4 of 14



Dylan J. Temples Northwestern University, Electrodynamics II : Solution Set Seven

4 FEuler - Lagrange Equations.

Prove that a necessary condition that

to
I :/ F(t,z,z)dt , (23)
t1
be an extremum (maximum or minimum is that F' satisfies the Euler-Lagrange equation
oF doF
= _ = _. 24
Or dt 0t 0 (24)
Consider a differential of this quantity:
t2 2 (OF oF
dI:d/ F(t,x,x dt:/ (dq—l—.dcj)dt. 25
) (t,, @) .\ 9 (25)
Using the definition ¢ = %, we have
2 (OF OF d(dq)
dI:/ (d +,>dt. 26
W \og 1T ag at (26)
Consider integrating the second term by parts with
oL d oL
= — du=——dt 2
“To T T dtog 27)
dv=d(dg) = wv=dg, (28)
such that , . .
2 OF d(dgq) oL 2 /2 d oL
— == — dg)——==dt . 29
o o] A (29)
The differential of I is then
oL 2t 9F d oL
dl = .dq} +/ <dq— dg ,>dt. 30
Gia)| [ (G- @ g (30)

The endpoints ¢|;, and g|s, are fixed while the path between them varies, therefore dgl¢, = dqls, =0,
so the boundary term from integration by parts vanishes. We are left with

2 /9F d oL
dI:/ <—_)ddt. 31
+t \Oq dtdq 4 (31)
For I to be an extremum (stationary value of I), we have that dI = 0 for all dg:
dr 2 (9F dOL
—=0= — — —— | dt 32
0=, (5~ doq) )
which is valid for all choices of t; and to if
OF doL
= — = 33
dq dtoq’ (33)

which is the Euler-Lagrange equation.
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5 Special Relativity.
In special relativity, as discussed in class the metric in Minkowski space-time is given by
ds? = Adt? — da® — dy® — d2? | (34)

with ds?> > 0 for all velocities less than ¢, and has the same value in all Galilean coordinate
systems. This defines an improper Euclidean space V; with a signature (4, —, —, —). The Galilean
coordinates define an orthogonal rectilinear coordinate system for this space, with an orthonormal
frame in V4 defined by the reduced Galilean coordinates x®

=z, 2=y, 2=z 2"=c, (35)

which enables the metric to be rewritten in the form
ds? = (dz®)? — (dzh)? — (dz?)? — (dz®)? (36)

or
ds? = nepdr®da? (37)

where all 7,4 are zero except:
M1 =122 = N33 = —noo = —1. (38)

5.1 Unit Velocity Vector.

Consider a mass at a point P which describes a trajectory C in V4. C can be defined by giving the
coordinates of the mass x® as a function of some parameter s measure along C. Define the unit
velocity vector by

dz®
= — =0,1,2,3).
U o (=0,1,2,3) (39)
Show that ]
i v , 0 1
= —— (1=1,2,3); v =—— (40)

cy/1— 32 V1-p52

where v = fBc is the velocity of the mass and v’ = da?/dt.

The magnitude of the velocity is given by

o= v = () () () m

The metric can be rewritten as

ds\? 9 dz\? dy 2 dz\? 9 9 9 v?
(&) == (&) (&) ~(§) =e—=2(-5) “2)

but since 2° = ct, we have that dt = dz"/c and so
ds 2 o [ ds 2 9 v?
(@) =(@n) -=(-5) =
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and as such
dz0

1 1
ds 1_%;_ /T— 32

Using the chain rule, the unit velocity components are given by

(44)

a1t
da0 ds e dt V1 -2

Using the definitions from Equation 35, the Cartesian unit velocities (i = 1,2, 3) are

[e%

(45)

ul A — (46)

T dt o1

The time-like component is given by

1 dz” 1 dt 1
0o_ 2% S (47)

1
= - — frd Cc—
cdt \J1-p52 ¢/1-—p2 dt /132
5.2 Minkowski Equations of Motion.

Minkowski’s reformulation of Newton’s equations of motion in the relativistic case take the form

«

— =0, 48
ot - (48)

Here mg is a parameter that has the dimensions of a mass, and ® is a generalization of the
Newtonian force vector. Using this equation and the results above, show that

d ‘ ,
mOa (\/11}_752) =f (Z = 17273) (49)

mo(i(dlc_m)_fo’ (50)
where
o= /T— 52, (51)

and consequently, the usual Newtonian motions are replaced by

d v
| — ) =f 52
modt< %152) (52)
in ordinary vector notation.

The equations of motion can be written

i (53)

d dz® d dt (dz*dt
e el ()

“dsds M dtds \ dt ds
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using Equation 42 this becomes

9 1 d (dz® 1 e
moc (W) T (dtﬂ) = o, (54)

Simplification yields the expression

d [da® 1 N
mo (dt\/ﬁ) = *\/1- 2 . (55)

For the space-like coordinates (i = 1,2, 3), we have

moL (dwi ! ) —i\/1- 32, (56)

Car \ At \/1—
and therefore we obtain

d v’ i _ i
moa <W>:<b\/152_f . (57)

For the time-like component, we have

d dl‘o 1 o d de¢ 1 - d & _(1)0\/172_ 0 58
m()a ﬁiﬁ—ﬂQ —m()a 057,71_62 —m0a 7/71—52 = —p2 = ( )

5.3 Force and Velocity.

The derivative du®/ds is perpendicular to u®, so that ®*u, = 0. Using this fact, show that
f% = (f-v)/c and consequently that

d moc?
dt<1_52>:fhnv' (59)

Using the fact ®*u, = 0, we have
g — Pluy — ®%uy — PPuz = 0= %y — ® -u, (60)
where
up = goau® = goou” = u’ (61)
since the Minkowski metric is diagonal. Inserting the results from the previous two sections yields
0= V=S (11_7) Vi (m) , (62
yielding the result
- =40 (63)
With this result, Equation 50 becomes

g c _fev ot _i moc? (64)
modt T = V—dt 7*1_52 .
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5.4 Energy-Momentum Vector.

In Newtonian mechanics, the time dependence of the energy E of a mass is given by

OF

which suggests that the term in the parenthesis in part ¢ should be identified with the relativistic

energy of the mass

2
o _C (66)

V1-p2'
which as you know, does not go to zero as v — 0, but tends to the rest energy FEy = mgc?. Defining
the momentum-energy vector by the equation

p* = mocu®, (67)
determine the space-like and time-like components of p in terms of mg, v; and E.

The space-like component is simply

1 1 mgc?
0 0 0
P = mocu- = mocC = — =F/c, 68
e = (68)
and the space-like components are given by

‘ mov* 1 moc? V!

‘= F— . (69)

p' = mocu' = mgc

v
B 1P
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6 The Potential Tensor.

6.1 Sourceless Field Tensor.

Consider the differential equation for the field tensor in the absence of any sources (J* = 0)

O FM =0 . (70)
Show that this can be written in the form

MF,, =0, (71)
and consequently the potential A, obeys the equation

(0,0") Ay — 0,(0"A,) =0 . (72)

Multiplying the metric on the right of Equation 70 yields
0=0,F" g, , (73)

inserting the identity,
0= (09" (90 F"900) = (07) (g FLY) = O Fy (74)
relabeling the dummy indices produces Equation 71. The potential is related to the field tensor by
Fu = 04Ay — 00 A, , (75)

and differentiation gives
oMFy,, = 0"(0,A,) —0"(0,A,) =0 . (76)

Contracting the first term, and using the fact that the derivatives commute, this may be written
as

(0,0")A, — 0, (0"A,) =0. (77)
6.2 Potential Tensor.

Assuming a solution of the form A
Ay(z) = €™ (78)

where the vector €, is the polarization vector, show that

(pup)ev = (P'en)py - (79)
First, let us note 9, = g,,0", so
M =% + ey + O%ey + Des (80)
9, = 0pe® — d1e! — B1e? — 9,€? (81)
and thus
0" =03 — 0} — 95 — 05 . (82)
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Inserting the ansatz into the first term in Equation 77 yields

(8,;8“)@61."”3A = (02 -0 - 093 8%)6,,6“’0300ei’””ﬂl6111’29”26“””3 (83)
. . . . ; A . . pY

= ((ipo)? — (ip1)? — (ip2)? — (ip3)})e, €™ = —(pd — p? — p3 — ip2)e, T (84)

= —(pup")e e (85)

The second term in Equation 77 is

0y (0" e, ™) = 8, ((0% + 0'e1 + O%es + Des) ™) (86)
=9, ((z'poeo +ipter + ipPes + ip363) eip”xu) =10, (p“e”eip”xy) , (87)

now the remaining derivative commutes, so

0y (0M ™) = ipte 0, (eP"") = ipe, (ipoe® — ipre' — ipae® — ipse®) e (88)
= —p"eu (poe” — pre' — pae® — p3e?) e = —ple,p e (89)
Combining these as in Equation 77 yields
0= (~ur)ee™) = (peune™) (90
0= —(pup")ev + Peupy (91)
(pur™)ev = (P"€u) pv (92)
proving Equation 79.
6.3 Gauge Transformation.
If p,p* # 0, then the result of part 6.2 gives
_ Pl
€& = pupupu ) (93)

so that ¢, o p,. Using this fact, show that with a choice of a suitable gauge transformation, one can
make a potential A, vanish, so that p,p" # 0 corresponds to a trivial solution of the wave equation.

We may select a scalar gauge () which makes the potential

Ay — A\ = A+, (94)
such that the potential is
Al (z) = ]fj;iipueipvx” + () , (95)
which vanishes if
A s LU (96)
so by inspection we see
P(z) = z';’i;ieiw” : (97)
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Let us insert this into the expression for the gauged potential

\ = A+ 0y <Z’pu€” eipVQCV) =A\+ Z'p%“ o (e™™) (98)
PudH DupH
= Ay + ip“eu (ipy) (eip”xu) =A, — p“eMpA (eip”:”y) =A,—-A,=0 (99)
Pupt pupt ’

and we see that it vanishes. We see that in the case p,p" # 0, the potential vanishes and the wave
equation, Equation 77, is simply

0 = (9,0") AL — 0, (9" AL,) (100)
0=0, (101)

which is a trivial solution.

6.4 Mass of Electromagnetic Field.

If we do not have p,p* # 0, then p,p" = 0. Using the results of Problem 5, show that this condition
implies that the electromagnetic field is massless.

The non-trivial solutions to the wave equation, require
pup = 0= (") = (0')* — (»*)* - (»*)*, (102)
which if we insert the results from Equations 68 and 69 becomes

0= (B/0 = (ymo)? (01 + 02 + (07) = 25— ymie? (103)

where v2 = (v1)2 4 (v?)? 4 (v3)? is the velocity and v = (1 — 52)~1/2. Rearranging and using the
definition of momentum p = ymgv, we have

E? = pc2 . (104)
However, in general, the relativistic energy includes the kinetic term and the rest mass term
E? = p*c® 4 (moc?)? (105)

but since the speed of light is a constant, we have that my = 0, and thus the rest mass of the
electromagnetic field is zero.
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7 Transverse Electromagnetic Waves.

Consider the non-trivial solution to the potential of Problem 6 above, with p,p* = 0, and consider
a wave propagating in the z direction, so that p, = (0,0,k,w/c). Using an appropriate gauge
transformation, show that non-transverse components of A, can be made to vanish so that the
resulting wave is purely transverse.

The non-trivial solution to the wave equation gives us the condition

pup! = 0=pu(9"'py) = (W/C)Q —k*=0 ) (106)

which yields the dispersion relation w = ck and thus py = p3. Furthermore, using the form of the
wave equation in Equation 79, we see

0= (p'eu) pv » (107)
if we use the potential of the form '
Ay(z) = e (108)
In general, p, # 0, so we have
w
0= p'e, = p’eo + pes = poeo — p3es = 0~ kes (109)
and using the dispersion relation yields
€0 = €3 . (110)
For the given momentum, we see
w
pox’ = pox’ + prat + pox? + paad = ;xo + kad | (111)
so the potential has the form
A, = eue"powoeip"‘“”“3 = euei%f"’oeilm3 . (112)

Choosing a gauge 1, sets the new potential to be
Al = e e L g (113)

but we are interested in a potential with only transverse components (u = 1,2), so A = A5 = 0,
and as such we have the conditions

0=Ap+ 0w = 90 eoeipo“””’oeim:D3 (114)
0=A3+03¢ = —% = egeipogﬁoe"pw3 = eoeil’oxoeimgg3 . (115)

The solution to these differential equations is
%= Eoeipoac?’pioeipomo _ j)e/oceipua;l’ _ :lje/ocei(“;x%kz?’) ’ (116)
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to verify, the derivatives are

Aot = ;1:/; _ i‘*cff/ocei(jx%kxi‘) — el = — A,
oy = % =0
Oop = % =0
31 = % = Cie/()cei(ﬁx%k:c?’) = —%eip”xy = —636”’”””” =—As.

Therefore the components of the potential with the gauge 1 is
0=A0+ (—=49) =0
All =A1+0= A4,
A/2 =As+0= Ay
3=A3+(—A3)=0,

which has only transverse components, as expected.
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