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1 The Metric Tensor.

From the fact that ds2 = gjkdx
jdxk is an invariant, show that gjk is a symmetric covariant tensor

of rank 2.

Consider transforming the differentials to a new coordinate frame:

dx̄j =
∂x̄j

∂xp
dxp (1)

dx̄k =
∂x̄k

∂xq
dxq , (2)

which allows us to write the line element in these coordinates

ds2 = ḡjkdx̄
jdx̄k = ḡjk

∂x̄j

∂xp
dxp

∂x̄k

∂xq
dxq . (3)

However, the line element is invariant under coordinate transform, so we may set the quantity from
both frames equal:

gjkdx
jdxk = ḡjk

∂x̄j

∂xp
dxp

∂x̄k

∂xq
dxq . (4)

Let us relabel the dummy indices on the right-had side, and slightly rearrange the right:

gpqdx
pdxq = ḡjk

∂x̄j

∂xp
∂x̄k

∂xq
dxpdxq , (5)

gathering terms yields (
gpq − ḡjk

∂x̄j

∂xp
∂x̄k

∂xq

)
dxpdxq = 0 . (6)

For this to be valid for all dxp and dxq, we must have that

gpq = ḡjk
∂x̄j

∂xp
∂x̄k

∂xq
. (7)

This form is exactly that of a transformation of a covariant, rank two tensor, and thus gij is a
covariant, rank two tensor.

Furthermore, the metric tensor can be expressed as

gjk =
1

2
(gjk + gkjj) +

1

2
(gjk − gkj) ≡ Ajk +Bjk , (8)

where the first term is defined to be Ajk, a symmetric rank two tensor, and the second term is
defined to be Bjk, an anti-symmetric rank two tensor. This allows us to write

gjkdx
jdxk = (Ajk +Bjk)dx

jdxk , (9)

which, after some rearranging yields

(gjk −Ajk)dxjdxk = Bjkdx
jdxk . (10)

Let us examine the right-hand side:

Bjkdx
jdxk = Bkjdx

kdxj , (11)
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by swapping the dummy indices. Using the fact that Bjk is anti-symmetric gives us

Bjkdx
jdxk = −Bjkdxkdxj ⇒ 2Bjkdx

jdxk = 0 . (12)

Using this result, Equation 10 reduces to

(gjk −Ajk)dxjdxk = 0 , (13)

so that gjk = Ajk. By definition we have Ajk = Akj so it is symmetric, and therefore so is the
metric, gjk. Combining this with the result from Equation 7 we see that gjk is a symmetric tensor
of rank two.
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2 Covariant Derivative of Scalar.

Show that ∂ϕ
∂xi

transforms as a covariant tensor of rank one, where φ is a scalar.

Let us define ϕi = ∂ϕ
∂xi

, and consider this quantity in a transformed coordinate system:

ϕ̄k =
∂ϕ

∂x̄k
, (14)

using the chain rule for differentiation, we have

ϕ̄k =
∂ϕ

∂xi
∂xi

∂x̄k
=
∂xi

∂x̄k
ϕi . (15)

Thus we see that φi = ∂ϕ
∂xi

transforms as a covariant tensor of tank one.

3 Covariant Derivative of a Covector.

Show that ∂ti
∂xj

is not a tensor, even if ti is a tensor of rank one.

Consider the transformation of the tensor ti to another coordinate frame:

t̄k =
∂xi

∂x̄k
ti , (16)

which is a covariant transformation. We can now take the derivative with respect to x̄l:

∂t̄k
∂x̄l

=
∂

∂x̄l

(
∂xi

∂x̄k
ti

)
=

∂2xi

∂x̄l∂x̄k
ti +

∂xi

∂x̄k
∂ti
∂x̄l

, (17)

using the product rule for differentiation. Applying the chain rule to the second term, we obtain

∂t̄k
∂x̄l

=
∂2xi

∂x̄l∂x̄k
ti +

∂xi

∂x̄k
∂ti
∂xj

∂xj

∂x̄l
, (18)

thus we see
∂t̄k
∂x̄l

=
∂xi

∂x̄k
∂xj

∂x̄l
∂ti
∂xj

+
∂2xi

∂x̄l∂x̄k
ti . (19)

A tensor transforms in the following ways:

covariant : Āij =
∂xl

∂x̄i
∂xm

∂x̄j
Alm (20)

contravariant : Āij =
∂x̄i

∂xl
∂x̄j

∂xm
Alm (21)

mixed : Āij =
∂x̄i

∂xl
∂xm

∂x̄j
Alm , (22)

so if the second term in Equation 19 were identically zero, the quantity ∂ti
∂xj

would transform as a

tensor. Since this term is not guaranteed to be zero, we conclude that ∂ti
∂xj

is not a tensor.
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4 Euler - Lagrange Equations.

Prove that a necessary condition that

I =

∫ t2

t1

F (t, x, ẋ)dt , (23)

be an extremum (maximum or minimum is that F satisfies the Euler-Lagrange equation

∂F

∂x
− d

dt

∂F

∂ẋ
= 0 . (24)

Consider a differential of this quantity:

dI = d

∫ t2

t1

F (t, x, ẋ)dt =

∫ t2

t1

(
∂F

∂q
dq +

∂F

∂q̇
dq̇

)
dt . (25)

Using the definition q̇ = dq
dt , we have

dI =

∫ t2

t1

(
∂F

∂q
dq +

∂F

∂q̇

d(dq)

dt

)
dt . (26)

Consider integrating the second term by parts with

u =
∂L

∂q̇
⇒ du =

d

dt

∂L

∂q̇
dt (27)

dv = d(dq) ⇒ v = dq , (28)

such that ∫ t2

ti

∂F

∂q̇

d(dq)

dt
=

[
∂L

∂q̇
(dq)

] ∣∣∣∣t2
ti

−
∫ t2

ti

(dq)
d

dt

∂L

∂q̇
dt . (29)

The differential of I is then

dI =

[
∂L

∂q̇
(dq)

] ∣∣∣∣t2
ti

+

∫ t2

t1

(
∂F

∂q
dq − (dq)

d

dt

∂L

∂q̇

)
dt . (30)

The endpoints q|t1 and q|t2 are fixed while the path between them varies, therefore dq|t1 = dq|t2 = 0,
so the boundary term from integration by parts vanishes. We are left with

dI =

∫ t2

t1

(
∂F

∂q
− d

dt

∂L

∂q̇

)
dqdt . (31)

For I to be an extremum (stationary value of I), we have that dI = 0 for all dq:

dI

dq
= 0 =

∫ t2

t1

(
∂F

∂q
− d

dt

∂L

∂q̇

)
dt , (32)

which is valid for all choices of t1 and t2 if

0 =
∂F

∂q
− d

dt

∂L

∂q̇
, (33)

which is the Euler-Lagrange equation.
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5 Special Relativity.

In special relativity, as discussed in class the metric in Minkowski space-time is given by

ds2 = c2dt2 − dx2 − dy2 − dz2 , (34)

with ds2 ≥ 0 for all velocities less than c, and has the same value in all Galilean coordinate
systems. This defines an improper Euclidean space V4 with a signature (+,−,−,−). The Galilean
coordinates define an orthogonal rectilinear coordinate system for this space, with an orthonormal
frame in V4 defined by the reduced Galilean coordinates xα

x1 = x, x2 = y, x3 = z, x0 = ct, (35)

which enables the metric to be rewritten in the form

ds2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 (36)

or
ds2 = ηαβdxαdxβ , (37)

where all ηαβ are zero except:

η11 = η22 = η33 = −η00 = −1. (38)

5.1 Unit Velocity Vector.

Consider a mass at a point P which describes a trajectory C in V4. C can be defined by giving the
coordinates of the mass xα as a function of some parameter s measure along C. Define the unit
velocity vector by

uα =
dxα

ds
, (α = 0, 1, 2, 3). (39)

Show that

ui =
vi

c
√

1− β2
, (i = 1, 2, 3); u0 =

1√
1− β2

, (40)

where v = βc is the velocity of the mass and vi = dxi/dt.

The magnitude of the velocity is given by

v =
√

(v1)2 + (v2)2 + (v3)2 =

√(
dx1

dt

)2

+

(
dx2

dt

)2

+

(
dx3

dt

)2

. (41)

The metric can be rewritten as(
ds

dt

)2

= c2 −
(

dx

dt

)2

−
(

dy

dt

)2

−
(

dz

dt

)2

= c2 − v2 = c2
(

1− v2

c2

)
, (42)

but since x0 = ct, we have that dt = dx0/c and so(
ds

dt

)2

= c2
(

ds

dx0

)2

= c2
(

1− v2

c2

)
, (43)
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and as such
dx0

ds
=

1√
1− v2

c2

=
1√

1− β2
(44)

Using the chain rule, the unit velocity components are given by

uα =
dxα

dx0
dx0

ds
=

1

c

dxα

dt

1√
1− β2

(45)

Using the definitions from Equation 35, the Cartesian unit velocities (i = 1, 2, 3) are

ui =
1

c
√

1− β2
dxi

dt
=

vi

c
√

1− β2
. (46)

The time-like component is given by

u0 =
1

c

dx0

dt

1√
1− β2

=
1

c
√

1− β2
c
dt

dt
=

1√
1− β2

. (47)

5.2 Minkowski Equations of Motion.

Minkowski’s reformulation of Newton’s equations of motion in the relativistic case take the form

m0c
2duα

ds
= Φα . (48)

Here m0 is a parameter that has the dimensions of a mass, and Φα is a generalization of the
Newtonian force vector. Using this equation and the results above, show that

m0
d

dt

(
vi√

1− β2

)
= f i, (i = 1, 2, 3) (49)

m0
d

dt

(
c√

1− β2

)
= f0 , (50)

where

fα = Φα
√

1− β2 , (51)

and consequently, the usual Newtonian motions are replaced by

m0
d

dt

(
v√

1− β2

)
= f (52)

in ordinary vector notation.

The equations of motion can be written

m0c
2 d

ds

dxα

ds
= m0c

2 d

dt

dt

ds

(
dxα

dt

dt

ds

)
= Φα , (53)

Page 7 of 14



Dylan J. Temples Northwestern University, Electrodynamics II : Solution Set Seven

using Equation 42 this becomes

m0c
2

(
1

c
√

1− β2

)
d

dt

(
dxα

dt

1

c
√

1− β2

)
= Φα . (54)

Simplification yields the expression

m0
d

dt

(
dxα

dt

1√
1− β2

)
= Φα

√
1− β2 . (55)

For the space-like coordinates (i = 1, 2, 3), we have

m0
d

dt

(
dxi

dt

1√
1− β2

)
= Φi

√
1− β2 , (56)

and therefore we obtain

m0
d

dt

(
vi√

1− β2

)
= Φi

√
1− β2 = f i . (57)

For the time-like component, we have

m0
d

dt

(
dx0

dt

1√
1− β2

)
= m0

d

dt

(
c
dt

dt

1√
1− β2

)
= m0

d

dt

(
c√

1− β2

)
= Φ0

√
1− β2 = f0 . (58)

5.3 Force and Velocity.

The derivative duα/ds is perpendicular to uα, so that Φαuα = 0. Using this fact, show that
f0 = (f · v)/c and consequently that

d

dt

(
m0c

2√
1− β2

)
= f · v . (59)

Using the fact Φαuα = 0, we have

Φ0u0 − Φ1u1 − Φ2u2 − Φ3u3 = 0 = Φ0u0 −Φ · u , (60)

where
u0 = g0αu

α = g00u
0 = u0 , (61)

since the Minkowski metric is diagonal. Inserting the results from the previous two sections yields

0 =
√

1− β2f0
(

1√
1− β2

)
−
√

1− β2f ·

(
v

c
√

1− β2

)
, (62)

yielding the result
f · v
c

= f0 . (63)

With this result, Equation 50 becomes

m0
d

dt

(
c√

1− β2

)
=

f · v
c

⇒ f · v =
d

dt

(
m0c

2√
1− β2

)
. (64)
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5.4 Energy-Momentum Vector.

In Newtonian mechanics, the time dependence of the energy E of a mass is given by

∂E

∂t
= f · v, (65)

which suggests that the term in the parenthesis in part c should be identified with the relativistic
energy of the mass

E =
m0c

2√
1− β2

, (66)

which as you know, does not go to zero as v → 0, but tends to the rest energy E0 = m0c
2. Defining

the momentum-energy vector by the equation

pα = m0cu
α, (67)

determine the space-like and time-like components of p in terms of m0, vi and E.

The space-like component is simply

p0 = m0cu
0 = m0c

1√
1− β2

=
1

c

m0c
2√

1− β2
= E/c , (68)

and the space-like components are given by

pi = m0cu
i = m0c

vi

c
√

1− β2
=

m0v
i√

1− β2
=

1

c2
m0c

2√
1− β2

vi = E
vi

c2
. (69)
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6 The Potential Tensor.

6.1 Sourceless Field Tensor.

Consider the differential equation for the field tensor in the absence of any sources (Jλ = 0)

∂µF
λµ = 0 . (70)

Show that this can be written in the form

∂µFνµ = 0 , (71)

and consequently the potential Aµ obeys the equation

(∂µ∂
µ)Aν − ∂ν(∂µAµ) = 0 . (72)

Multiplying the metric on the right of Equation 70 yields

0 = ∂µF
µλgλν , (73)

inserting the identity,

0 = (∂µg
µγ)
(
gµγF

µλgλν

)
= (∂γ) (gµγF

µ
ν ) = ∂γFγν , (74)

relabeling the dummy indices produces Equation 71. The potential is related to the field tensor by

Fµν = ∂µAν − ∂νAµ , (75)

and differentiation gives
∂µFµν = ∂µ(∂µAν)− ∂µ(∂νAµ) = 0 . (76)

Contracting the first term, and using the fact that the derivatives commute, this may be written
as

(∂µ∂
µ)Aν − ∂ν(∂µAµ) = 0 . (77)

6.2 Potential Tensor.

Assuming a solution of the form
Aµ(x) = εµe

ipνxν , (78)

where the vector εµ is the polarization vector, show that

(pµp
µ)εν = (pµεµ)pν . (79)

First, let us note ∂ν = gµν∂
ν , so

∂µ = ∂0e0 + ∂1e1 + ∂2e2 + ∂3e3 (80)

∂ν = ∂0e
0 − ∂1e1 − ∂1e2 − ∂1e3 , (81)

and thus

∂µ∂
µ = ∂20 − ∂21 − ∂22 − ∂23 . (82)
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Inserting the ansatz into the first term in Equation 77 yields

(∂µ∂
µ)ενe

ipλx
λ

= (∂20 − ∂21 − ∂22 − ∂23)ενe
ip0x0eip1x

1
eip2x

2
eip3x

3
(83)

= ((ip0)
2 − (ip1)

2 − (ip2)
2 − (ip3)

2)ενe
ipλx

λ
= −(p20 − p21 − p22 − ip23)ενeipλx

λ
(84)

= −(pµp
µ)ενe

ipλx
λ
. (85)

The second term in Equation 77 is

∂ν(∂µεµe
ipνxν ) = ∂ν

((
∂0ε0 + ∂1ε1 + ∂2ε2 + ∂3ε3

)
eipνx

ν)
(86)

= ∂ν
((
ip0ε0 + ip1ε1 + ip2ε2 + ip3ε3

)
eipνx

ν)
= i∂ν

(
pµεµe

ipνxν
)
, (87)

now the remaining derivative commutes, so

∂ν(∂µεµe
ipνxν ) = ipµεµ∂ν

(
eipνx

ν)
= ipµεµ

(
ip0e

0 − ip1e1 − ip2e2 − ip3e3
)
eipνx

ν
(88)

= −pµεµ
(
p0e

0 − p1e1 − p2e2 − p3e3
)
eipνx

ν
= −pµεµpνeipνx

ν
. (89)

Combining these as in Equation 77 yields

0 =
(
−(pµp

µ)ενe
ipλx

λ
)
−
(
−pµεµpνeipνx

ν)
(90)

0 = −(pµp
µ)εν + pµεµpν (91)

(pµp
µ)εν = (pµεµ) pν , (92)

proving Equation 79.

6.3 Gauge Transformation.

If pµp
µ 6= 0, then the result of part 6.2 gives

εν =
pµεµ
pµpµ

pν , (93)

so that εν ∝ pν . Using this fact, show that with a choice of a suitable gauge transformation, one can
make a potential Aµ vanish, so that pµp

µ 6= 0 corresponds to a trivial solution of the wave equation.

We may select a scalar gauge ψ(x) which makes the potential

Aλ → A′λ = Aλ + ∂λψ , (94)

such that the potential is

A′µ(x) =
pλελ
pλpλ

pµe
ipνxν + ∂µψ(x) , (95)

which vanishes if

∂µψ(x) = − p
λελ
pλpλ

pµe
ipνxν = − p

λελ
pλpλ

1

i
∂µe

ipνxν , (96)

so by inspection we see

ψ(x) = i
pλελ
pλpλ

eipνx
ν
. (97)
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Let us insert this into the expression for the gauged potential

A′λ = Aλ + ∂λ

(
i
pµεµ
pµpµ

eipνx
ν

)
= Aλ + i

pµεµ
pµpµ

∂λ
(
eipνx

ν)
(98)

= Aλ + i
pµεµ
pµpµ

(ipλ)
(
eipνx

ν)
= Aλ −

pµεµ
pµpµ

pλ
(
eipνx

ν)
= Aλ −Aλ = 0 , (99)

and we see that it vanishes. We see that in the case pµp
µ 6= 0, the potential vanishes and the wave

equation, Equation 77, is simply

0 = (∂µ∂
µ)A′ν − ∂ν(∂µA′µ) (100)

0 = 0 , (101)

which is a trivial solution.

6.4 Mass of Electromagnetic Field.

If we do not have pµp
µ 6= 0, then pµp

µ = 0. Using the results of Problem 5, show that this condition
implies that the electromagnetic field is massless.

The non-trivial solutions to the wave equation, require

pµp
µ = 0 = (p0)2 − (p1)2 − (p2)2 − (p3)2 , (102)

which if we insert the results from Equations 68 and 69 becomes

0 = (E/c)2 − (γm0)
2
(
(v1)2 + (v2)2 + (v3)2

)
=
E2

c2
− γ2m2

0v
2 , (103)

where v2 = (v1)2 + (v2)2 + (v3)2 is the velocity and γ = (1 − β2)−1/2. Rearranging and using the
definition of momentum p = γm0v, we have

E2 = p2c2 . (104)

However, in general, the relativistic energy includes the kinetic term and the rest mass term

E2 = p2c2 + (m0c
2)2 , (105)

but since the speed of light is a constant, we have that m0 = 0, and thus the rest mass of the
electromagnetic field is zero.
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7 Transverse Electromagnetic Waves.

Consider the non-trivial solution to the potential of Problem 6 above, with pµp
µ = 0, and consider

a wave propagating in the z direction, so that pµ = (0, 0, k, ω/c). Using an appropriate gauge
transformation, show that non-transverse components of Aµ can be made to vanish so that the
resulting wave is purely transverse.

The non-trivial solution to the wave equation gives us the condition

pµp
µ = 0 = pµ(gµνpν) = (ω/c)2 − k2 = 0 , (106)

which yields the dispersion relation ω = ck and thus p0 = p3. Furthermore, using the form of the
wave equation in Equation 79, we see

0 = (pµεµ) pν , (107)

if we use the potential of the form
Aµ(x) = εµe

ipνxν . (108)

In general, pν 6= 0, so we have

0 = pµεµ = p0ε0 + p3ε3 = p0ε0 − p3ε3 =
ω

c
ε0 − kε3 , (109)

and using the dispersion relation yields
ε0 = ε3 . (110)

For the given momentum, we see

pνx
ν = p0x

0 + p1x
1 + p2x

2 + p3x
3 =

ω

c
x0 + kx3 , (111)

so the potential has the form

Aµ = εµe
ip0x0eip3x

3
= εµe

iω
c
x0eikx

3
. (112)

Choosing a gauge ψ, sets the new potential to be

A′µ = εµe
iω
c
x0eikx

3
+ ∂µψ , (113)

but we are interested in a potential with only transverse components (µ = 1, 2), so A′0 = A′3 = 0,
and as such we have the conditions

0 = A0 + ∂0ψ ⇒ − ∂ψ
∂x0

= ε0e
ip0x0eip3x

3
(114)

0 = A3 + ∂3ψ ⇒ − ∂ψ
∂x3

= ε3e
ip0x0eip3x

3
= ε0e

ip0x0eip0x
3
. (115)

The solution to these differential equations is

ψ = ε0e
ip0x3 i

p0
eip0x

0
=

iε0
ω/c

eipνx
ν

=
iε0
ω/c

ei(
ω
c
x0+kx3) , (116)
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to verify, the derivatives are

∂0ψ =
∂ψ

∂x0
= i

ω

c

iε0
ω/c

ei(
ω
c
x0+kx3) = −ε0eipνx

ν
= −A0 (117)

∂1ψ =
∂ψ

∂x1
= 0 (118)

∂2ψ =
∂ψ

∂x2
= 0 (119)

∂3ψ =
∂ψ

∂x3
= k

iε0
ω/c

ei(
ω
c
x0+kx3) = −kε0

k
eipνx

ν
= −ε3eipνx

ν
= −A3 . (120)

Therefore the components of the potential with the gauge ψ is

A′0 = A0 + (−A0) = 0 (121)

A′1 = A1 + 0 = A1 (122)

A′2 = A2 + 0 = A2 (123)

A′3 = A3 + (−A3) = 0 , (124)

which has only transverse components, as expected.
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