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Dylan J. Temples Garrod : Chapters 2 & 3

1 Problem #1: Half the Microstates of Most Probable Macrostate.

Consider N coins (or equivalently, non-interacting spin-1/2 particles), where N is very large. Find
the ratio of heads to tails (or spin up to spin down) for which the number of microstates is half
that of the most probable macrostate (N/2 heads, N/2 tails).

The most probable macrostate (50-50) has some amplitude (number of microstates) associated
with it, so the macrostate (ratio of heads to tails) of interest is when the ratio of the amplitudes
(probabilities) is a half,

R =
1

2
=

P (fN)

P (N/2)
, (1)

where P (η) is the probability of getting η heads (or spin up particles). In class it was shown that
this function is

P (η) =
1

2N

(
N

n

)
=

1

2N
N !

n!(N − n)!
, (2)

so the ratio is

R =
(N2 )!(N2 )!

(fN)!(N − fN)!
. (3)

For large N the distribution is sharply peaked at the most probable macrostate, in this case 1
2

(ratio of heads to N), so the macrostate with half as many microstates will be very close to 1
2 as

well. We can therefore introduce a small parameter δ such that

f =
1

2
− δ , (4)

which makes Equation 3 into
1

2
=

(N2 !)2

(N2 − δN)!(N2 + δN)!
, (5)

of which we can take the natural logarithm,

ln
1

2
= 2 ln

(
N

2
!

)
− ln

{
(
N

2
− δN)!

}
− ln

{
(
N

2
+ δN)!

}
, (6)

which allows us to use Stirling’s approximation, lnN ' N lnN −N , to get

ln
1

2
= 2

{
N

2
ln
N

2
− N

2

}
−(
N

2
−δN) ln

{
N

2
− δN

}
+(
N

2
−δN)−(

N

2
+δN) ln

{
N

2
+ δN

}
+(
N

2
+δN) ,

note the two δN terms cancel and the −N cancels with the two N/2 terms, yielding

ln
1

2
= N ln

N

2
− N

2
ln

{(
N

2
− δN

)(
N

2
+ δN

)}
+ δN ln

{
N
2 − δN
N
2 + δN

}
, (7)

which simplifies to

ln
1

2
= N ln

N

2
− N

2
ln

{
N2

(
1

4
− δ2

)}
+ δN ln

{
1− 2δ

1 + 2δ

}
. (8)

Using Mathematica to expand the logs to second order in the small parameter δ, we get

ln
1

2
= N ln

N

2
− N

2
ln
N2

4
− 2Nδ2 +O(δ3) = −2Nδ2 +O(δ3) , (9)
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because the power of two inside the second log can be pulled down to be a coefficient. Therefore
the value of the small parameter is

δ(N) = ±
√

ln 2

2N
, (10)

and the macrostate with half as many microstates as the most probable state has a heads to total
ratio of f = 1

2 ± (ln 2/2N)1/2. So the ratio of heads to tails is

NH

NT
=

NH

N −NH
=

fN

(1− f)N
=

1
2 ± (ln 2/2N)1/2

1
2 ∓ (ln 2/2N)1/2

. (11)
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2 Garrod 2.23: Combinatorics of Multi-Particle Systems.

Consider a quantum-mechanical system of four particles in a one-dimensional harmonic oscillator
potential. The one-particle energy eigenvalues are (n + 1

2)~ω and are nondegenerate. For Bose-
Einstein particles and Fermi-Dirac particles, determine the number of four-particle quantum states
with an energy of 8~ω. Assume that the Fermi-Dirac particles have zero spin, although that can
be shown to be impossible.

Given the total energy, we have that

8~ω = ~ω[(n1 +
1

2
) + (n2 +

1

2
) + (n3 +

1

2
) + (n4 +

1

2
)] ⇒ 6 = n1 + n2 + n3 + n4 , (12)

where ni is the energy state of the ith particle. Note that the particles are indistinguishable, so
exchanging particles does not add microstates. For example {ni} = (0, 1, 2, 3) is the same microstate
as (1, 3, 0, 2).

2.1 Bose-Einstein Particles.

The number of microstates available to this system is all the ways you can add four positive
integers to equal six. Due to the fact the particles are indistinguishable, we can have the following
microstates

{ni} = (6, 0, 0, 0) (13)

= (5, 1, 0, 0) (14)

= (4, 2, 0, 0) (15)

= (4, 1, 1, 0) (16)

= (3, 3, 0, 0) (17)

= (3, 2, 1, 0) (18)

= (3, 1, 1, 1) (19)

= (2, 2, 2, 0) (20)

= (2, 2, 1, 1) , (21)

which totals nine microstates. While this method works for a system with N = 4, it soon becomes
intractable for larger N .

2.2 Fermi-Dirac Particles.

Due to the Pauli principle, no two particles can occupy the same quantum state, in this case, no
two ni can be equal (spin is ignored). Therefore there is only one microstate, {ni} = (0, 1, 2, 3).
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3 Garrod 2.26: Number of Particles in Harmonic Potential.

Consider a system of spinless one-dimensional particles in a harmonic oscillator potential of angular
frequency ω. The energy spectrum is then εn = (n + 1

2)~ω. Using Equations (2.63) and (2.64),
evaluate the number of particles in the system as a function of the affinity α and the temperature
T for the case α� 1 for both fermions and bosons.

We begin by noting the distribution functions for both types of particles

fFD(εn) =
1

exp[α+ βεn] + 1
(22)

fBE(εn) =
1

exp[α+ βεn]− 1
, (23)

where β = 1/(kT ) with k being Boltzmann’s constant. If we take the limit that α � 1, the ±1
term in the denominator is dwarfed by the exponential, so

f(εn) = fFD(εn) = fBE(εn) = e−α exp

[
−β~ω

(
n+

1

2

)]
= e−αe−β~ωne−−β~ω/2 . (24)

The number of particles of the system is the sum over all discrete energy states,

N =
∞∑
n=0

e−αe−β~ωne−β~ω/2 = e−αe−β~ω/2
∞∑
n=0

(e−β~ω)n , (25)

now let us define γ = ~ω/k so that

N = e−αe−γ/(2T )
∞∑
n=0

(e−γ/T )n =
1

exp
[
α+ γ

2T

] ( 1

1− e−γ/T

)
. (26)
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4 Garrod 3.8: Particles in One-Dimensional Box.

A system of N noninteracting one-dimensional particles are constrained to an interval of length L
and have a total energy E = Nε.

4.1 Probability Density.

Write an explicit formula for the uniform ensemble probability density P (x1, . . . , xN ; p1, . . . , pN).

We can begin by writing the Hamiltonian of the particles, which is just that of N free particles,

H(x1, . . . , xN ; p1, . . . , pN ) =
N∑
i=1

p2
i

2m
=

N∑
i=1

q2
i , (27)

using a change of variables qi = pi/
√

2m. Using this, and Garrod Equation 3.16, we can write the
normalization constant, which is the total number of states

C(E) =

∫
Ω

Θ

(
Nε−

N∑
i=1

q2
i

)
dNxi d

N [(2m)1/2qi] , (28)

we can immediately integrate over the spatial variables that do not appear in the integrand, so we
pull out N factors of the spatial scale,

C(E) = (L
√

2m)N
∫

Ω
Θ

(
Nε−

N∑
i=1

q2
i

)
dNqi . (29)

This is the equation for the surface of a sphere in N dimensional phase-space, as shown in Garrod
Equation A.30. Using the result given in the appendix, we find that

C(E) = (L
√

2m)N
πN/2

(N/2)!

(√
Nε
)N

=
(L
√

2πmNε)N

(N/2)!
. (30)

Therefore the expression for the probability distribution is given by Garrod Equation 3.14,

P (xi, pi) =
1

C(E)
Θ

(
Nε−

N∑
i=1

p2
i

2m

)
=

(N/2)!

(L
√

2πmNε)N
Θ

(
Nε−

N∑
i=1

p2
i

2m

)
. (31)

4.2 Momentum of Nth Particle.

By integrating over all coordinates and momenta except pN , determine the probability distribution
for the momentum of the Nth particle.

Starting from Equation 31, we can integrate this distribution over all position space and all momenta
except that of the last particle, which will give the probability distribution for the momentum of the
last (Nth) particle. We have an integral of the form of Equation 28, just with one less integration
over momentum, so we can write

P (pM ) =
(L
√

2m)N−1

C(E)

∫
Ω

Θ

(
Nε−

p2
N

2m
−
N−1∑
i=1

q2
i

)
dN−1qi , (32)
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which again is a sphere in phase space with radius R =
√
Nε− p2

N/2m. Therefore, using the

Appendix again, we can write

P (pN ) =
(N/2)!

(L
√

2πmNε)N
(LN )(

√
2m)N−1 π(N−1)/2

((N − 1)/2)!
(Nε− p2

N/2m)(N−1)/2 . (33)

Note that we can write x(a−1)/2 = xa/2/
√
x, so the above expression becomes

P (pN ) =
N
2 !

N−1
2 !

1

(Nε)N/2
1√

2πm

[
(Nε)

(
1−

p2
N

2mNε

)](N−1)/2

(34)

=
N
2 !

N−1
2 !

(2πmNε)−1/2

(
1−

p2
N

2mNε

)(N−1)/2

, (35)

which gives the probability distribution for the momentum of the Nth particle in the ensemble.

4.3 Relation to Maxwell Distribution.

Take the logarithm of the result obtained in (b), assuming that N � 1, use Stirling’s approximation
to rewrite it, and then exponentiate the result to show that the momentum distribution associated
with the uniform ensemble is just the Maxwell distribution.

We can express the logarithm of the probability distribution obtained in section 1.2 as

ln[P (pN )] = ln

[
N

2
!

]
− ln

[
N − 1

2
!

]
− 1

2
ln [2πmNε] +

N − 1

2
ln

[
1−

p2
N

2mNε

]
. (36)

If we assume that N � 1, we can use Stirling’s approximation to rewrite the first two logarithms
as

N

2
ln

[
N

2

]
− N

2
− N − 1

2
ln

[
N − 1

2

]
+
N − 1

2
(37)

= −1

2
[1 + ln 2−N lnN +N ln(N − 1)− ln(N − 1)] (38)

= −1

2

{
1 + ln 2−N lnN +N ln

[
N
(
1− 1

N

)]
− ln

[
N
(
1− 1

N

)]}
(39)

= −1

2

{
1 + ln 2−N lnN +N lnN +N ln

[
1− 1

N

]
− lnN − ln

[
1− 1

N

]}
. (40)

Now we can expand the logarithms in the large N limit, so 1/N � 1 and therefore the logarithm
of one plus a small parameter is just the small parameter. After cancelling the N lnN terms in the
above expression, and expanding the logs, we get

− 1

2

{
1 + ln 2 +N

[
− 1
N

]
− lnN + 1

N

}
= −1

2

{
ln 2− lnN + 1

N

}
. (41)

Plugging this back in to the probability distribution, Equation 36, factoring out a −1
2 out of the

remaining terms, and multiplying through by −2, gives us

− 2 ln[P ] = ln 2− lnN + 1
N + ln [2πmNε]− (N − 1) ln

[
1−

p2
N

2mNε

]
. (42)
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Again we expand the right-most logarithm in large N to zeroth order in 1/N ,

(N − 1) ln

[
1−

p2
N

2mNε

]
= N(1− 1

N )

[
−

p2
N

2mNε

]
= −

p2
N

2mε
+O( 1

N ) . (43)

Finally, the expression for the log of the probability distribution is

ln[P (pN )] = −1

2

[
ln

(
(2)2πmNε

N

)
+

1

N
+

p2
N

2mε

]
= ln

[
1√

4πmε

]
−

p2
N

4mε
+O( 1

N ) (44)

We can now exponentiate both sides of the equation and neglect terms of order 1/N , to get

P (pN ) =
1√

4πmε
exp

[
−
p2
N

4mε

]
(45)

which is just the Maxwell-Boltzmann distribution, with kB = 1.
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5 Garrod 3.16: Particles Confined in Cylindrical Volume.

Consider a system of N noninteracting particles, confined to move within a smooth circular cylinder
of radius R and length `. The axis of the cylinder is the z axis. Suppose that, besides fixing the
number of particles in the system, we fix the total energy to be E and the z component of angular
momentum to be Lz.

5.1 Equilibrium Distribution.

By the method used to derive the Maxwell-Boltzmann distribution in the previous chapter, show
that the equilibrium distribution function is of the form, f(r,v) = C exp[−β(mv2/2 −mΩ(xvy −
yvx))].

We follow the Garrod’s treatment of the derivation of the Maxwell-Boltzmann distribution in section
2.3. We assume all microstates are equally probable, and we impose the following conservations
must be satisfied:

N =
∑

Nkl E =
∑

EklNkl Lz =
∑

`klNkl , (46)

where k is a momentum space index, and l is a position space index. Let `kl be the z projection of
the total angular momentum of the particles in the klth phase space bin. Additionally we note the
definition of the z component of angular momentum,

Lz = m(xpy − ypx) , (47)

where pi is the ith component of a particle’s linear momentum. We want to maximize the function
G with the constraints listed above, which is given by

G = F − α
∑

Nkl − β
∑

EklNkl − γ
∑

`klNkl , (48)

where F is given by Garrod Equation 2.12. Let us note the dimensions of the Lagrange multipli-
ers, whose values will be determined later. The expression for G must be dimensionless, so α is
dimensionless, β has units of inverse energy, and γ has units of inverse momentum. To maximize
G we take the partial derivative with respect to Nkl and set it to zero,

0 =
∂G

∂Nkl
= − logNkl − α− βEkl − γ`kl . (49)

We can now solve this for Nkl, the occupancy number for the klth bin in phase space,

Nkl = exp [−α− βEkl − γ`kl] = C exp

[
−β
(
Ekl +

γ

β
`kl

)]
, (50)

where C is the exponential of negative α. Note that γ/β has units of momentum per energy, which
is just inverse time, so we will call it a frequency Ω. We can write the distribution function in terms
of the components of a particles momentum and position, using Garrod Equation 2.6. In our case,
there is no potential, so we get the result

f(r; v) = C exp[−β(Ekl + Ω`kl)] (51)

and using Equation 47, and the definition of the linear kinetic energy, we see that the equilibrium
distribution function is

f(r; v) = C exp[−β(mv2/2 +mΩ(xvy − yvx))] . (52)
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5.2 Average Particle Velocity.

Calculate the average velocity of particles at position (x, y, z) and show that it is identical to what
would be obtained for rigid body rotation about the z axis with angular velocity Ω.

Let us expand the argument of the exponential,

−β(mv2/2−mΩ(xvy − yvx)) =
−βm

2

(
v2
x + v2

y + v2
z − 2Ωxvy + 2Ωyvx

)
, (53)

and we can complete the squares for vx and vy, such that

−βm
2

(
v2
x + 2Ωyvx + (Ωy)2 − (Ωy)2 + v2

y − 2Ωxvy + (Ωx)2 − (Ωx)2 + v2
z

)
(54)

=
−βm

2

[
(vx + Ωy)2 − (Ωy)2 + (vy − Ωx)2 − (Ωx)2 + v2

z

]
. (55)

We can put this back into the exponential, and separate terms with vi,

f(r; v) = C exp

[
−βm

2
[(vx + Ωy)2 − (Ωy)2]

]
exp

[
−βm

2
[(vy − Ωx)2 − (Ωx)2]

]
exp

[
−βm

2
v2
z

]
,

(56)
we can now move the position variables to their own exponential,

f = C exp
[
ξ(vx + Ωy)2

]
exp

[
ξ[(vy − Ωx)2]

]
exp

[
ξv2
z

]
exp

[
−ξ((Ωx)2 + (Ωy)2)

]
, (57)

where ξ = −βm/2. We can note that each term with velocity dependence is in the form of a
Gaussian. It is important to note that the average value in a Gaussian is the value at which the
peak is centered. By inspection, we can see the average values for the velocity components are

〈vx(x, y, z)〉 = −Ωy 〈vy(x, y, z)〉 = Ωx 〈vz(x, y, z)〉 = 0 . (58)

Consider a rigid body rotating the z axis in the x− y plane with frequency Ω. At a position (x, y)
the rotator has tangential velocity given by

v = ω × r = Ωẑ× (xx̂ + yŷ) = (−Ωy)x̂ + (Ωx)ŷ , (59)

which is exactly what we found as the average velocity of the particles in the cylinder.

5.3 Particle Density.

Show that the particle density n(r) has the form C exp[−φ(r) = kT ], where φ = −1
2mΩ2(x2 + y2)

is the centrifugal potential.

Given that we have the distribution function

f(r,v) = Ce−
1
2
βm(vx+Ωy)2e−

1
2
βm(vy+Ωx)2e−

1
2
βmv2ze+ 1

2
βmΩ2(x2+y2) , (60)

we can write the particle density as a function of position by integrating over the three dimensional
momentum,

n(r) =

∫
f(r,v)d3v = g(r)

∫
fvx(r)dvx

∫
fvy(r)dvy

∫
fvz(r)dvz (61)
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where g is an arbitrary function of position only. If we define the centrifugal potential φ(r) =
−1

2mΩ2(x2 + y2), we can write the particle density as

n(r) = Ce−βφ(r)

∫
e−

1
2
βm(vx+Ωy)2dvx

∫
e−

1
2
βm(vy+Ωx)2dvy

∫
e−

1
2
βmv2zdvz , (62)

which is now just a matter of solving elementary integrals. Using your favorite method to integrate
these, we find that

n(r) = Ce−βφ(r)

(
2π

βm

)3/2

, (63)

where C is still some arbitrary constant.
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6 Garrod 3.25: Ensemble of Distinguishable One-Dimensional
Oscillators.

Using the uniform ensemble, evaluate the entropy S(N,E) for a system of N distinguishable one-
dimensional harmonic oscillators. When the particles are distinguishable, the factor of 1/N ! is left
out of the definition of S given in Garrod Eq. (3.84).

Consider a system of N distinguishable one-dimensional harmonic oscillators, in the uniform en-
semble. The entropy of a system is given by Garrod Equation 3.84, with the factor of 1/N ! removed
because the particles are distinguishable,

S = log

[
1

(2π~)N

∫
Θ(E −H(x, p))dNx dNp

]
, (64)

where H is the Hamiltonian of the system, and we have set the Boltzmann constant kB = 1. In
this system, the Hamiltonian is

H =
N∑
i=1

p2
i

2m
−

N∑
i=1

mω2x2
i

2
, (65)

where m is the mass of each oscillator, and ω is their frequency. Let us now make a change of
variables such that ρ = p√

2m

χ =
√

mω2

2 x
⇒

d
Nr =

√
2m

N
dNρ

dNx =
√

2
mω2

N

dNχ
. (66)

We can now write the integral in Equation 64(
2

ω

)N ∫
Θ

(
E −

N∑
i=1

ρ2
i −

N∑
i=1

χ2
i

)
dNχ dNρ , (67)

but we can note that this is still of the form as the integral of a sphere in 2N dimensions, given
by Garrod Equation A.30. Each term in the infinite series in the given integral is integrated
independently from the other terms, which is exactly what is happening in the above integral.
Therefore we can use the result given by Garrod Equation A.35, but as if we had evaluated the
single infinite sum over 2N integrations. Therefore, the entropy of the system is

S = log

[
1

(2π~)N

(
2

ω

)N (πE)N

N !

]
= log

[(
E

~ω

)N 1

N !

]
, (68)

which we can take the logarithm to obtain

S = N log

[
E

~ω

]
− log[N !] . (69)

If we assume N is large, we can use Stirling’s approximation to find the entropy:

S = N log

[
E

~ω

]
−N log[N ]−N = N log

[
E

N~ω

]
−N . (70)
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6.1 Temperature Dependence of Energy.

The temperature of the system is defined to be the inverse of the partial derivative of the entropy
with respect to energy,

∂S

∂E
= β =

N

E
=

1

T
, (71)

so the energy of the system at a specific temperature is

E(T ) = kBNT , (72)

where we have reinserted kB to get the correct units.
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