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Dylan J. Temples Garrod : Chapter 4

1 Garrod 4.7: One-Dimensional Crystal Lattice.

Shown in Figure 1 (Garrod Fig. 4.10) is a simple model of a one-dimensional crystal. The springs
all have spring constant k and, at equilibrium, the particles are all separated by length ` Let xn be
the deviation from equilibrium of the nth particle.

Figure 1: Diagram of the crystal structure (Garrod Figure 4.10)

1.1 Equations of Motion.

Let us consider the nth particle in the crystal, which if it only interacts with the springs directly
attached to it has the Lagrangian

L =
1

2
mẍ2

n −
1

2
k(xn+1 − xn)2 − 1

2
k(xn−1 − xn)2 (1)

=
1

2
mẍ2

n −
1

2
k(x2

n+1 + x2
n − 2xn+1xn + x2

n−1 + x2
n − 2xn−1xn) , (2)

which gives the Euler-Lagrange equation

mẍn = −1

2
k[4xn − 2xn+1 − 2xn−1] = k (xn+1 + xn−1 − 2xn) , (3)

where n = 1, . . . , N . Let us impose that x0 and xN+1 are defined to be zero for all t.

1.2 Solutions to Equation of Motion.

To solve this coupled system of differential equations would involve dealing with and diagonalizing
a N × N matrix, which I do not believe to be the point of this exercise. The general solution to
differential equations is1

xn(t) = A cos(θn) cos(ωt) +B cos(θn) sin(ωt) + C sin(θn) cos(ωt) +D sin(θn) sin(ωt) , (4)

where A,B,C,D, θ are arbitrary constants, which we can constrain using some boundary conditions.
If we know that x0 must be zero for all t, we can write

x0(t) = 0 = A cos(θn) cos(ωt) +B cos(θn) sin(ωt) + C sin(0) cos(ωt) +D sin(0) sin(ωt) , (5)

which is only true for any time is A = B = 0. Similarly, we can investigate the xN+1 = 0 solution,

xN+1(t) = 0 = C sin(θ(N + 1)) cos(ωt) +D sin(θ(N + 1)) sin(ωt) , (6)

which is satisfied for all time if

sin(θ(N + 1)) = 0 so θ(N + 1) = Kπ , (7)

1David Morin, Harvard University. Normal Modes, pg 12.
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where K is an integer from 1 to N . We can limit the range of K to this because the sine will
have the same value for K > N as it did for one of the K < N , it will just acquire a phase, which
will be unimportant when calculating frequencies (additionally, the ω are normal mode frequencies,
and for N particles, there are only N normal modes). This implies there are N solutions to each
differential equation for xn, each of the form

xn(t) = α sin

(
π

K

N + 1
n

)
cos(ωKt+ δ) , (8)

where we have incorporated the constants C and D in the amplitude α and the arbitrary phase δ,
which we will set to zero.

We can solve for the normal modes of the system by inserting the solution above back into the
differential equation. First note the second derivative of xn with respect to time is

ẍn = −αω2
K sin

(
π

K

N + 1
n

)
cos(ωKt) . (9)

We can notice immediately that each term will have factors of α cos(ωKt), so we can substitute our
solutions into Equation 3 and divide through by this factor to get

−
(
ωK
ω0

)2

sin (ηn) = sin (η(n+ 1)) + sin (η(n− 1))− 2 sin (ηn) , (10)

where ω0 =
√
k/m and η = πK/(N + 1). We simplify the sines with sums in their arguments to

sin(ηn) cos(η) + cos(ηn) sin(η) + sin(ηn) cos(η)− cos(ηn) sin(η) , (11)

of which the second and fourth terms cancel, and the first and third sum. If we substitute this in
to Equation 10, and divide through by sin(ηn), we find

−
(
ωK
ω0

)2

= 2 cos(η)− 2 , (12)

which gives the normal mode frequencies to be

ω2
K = 2ω2

0

[
1− cos

(
π

K

N + 1

)]
= 4ω2

0 sin2

(
π

K

N + 1

)
. (13)

1.3 Thermal Energy.

Treating the system quantum mechanically, the thermal energy of the crystal is given by Garrod
Equation 4.23. The thermal energy is the energy at temperature T relative to the ground state
energy. We begin by defining a variable k as the argument of the sine in the normal mode frequen-
cies, which, for large N , has the range 0, < k < π. We can rewrite the sum in the thermal energy
over the index K as an integral over k by noting dk = π/(N + 1)dK, so

E(T ) =

∫ π

0

N + 1

π
dk

[
2~ω0 sin(k)

exp[2~ω0 sin(k)/kBT ]− 1

]
, (14)

where kB is the Boltzmann constant. If we are in the large N limit, we can say N + 1→ N in the
above expression. So a simplified form of the thermal energy is

E(T ) =
2~ω0N

π

∫ π

0

 sin(k)

exp
[

2~ω0
kBT

sin(k)
]
− 1

 dk . (15)
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1.4 Dulong-Petit Value.

The exponential may be expanded in a power series of Planck’s constant; terms higher than linear
order in ~ will have negligible contributions to the integral. For small x, exp[x] ∼ 1 + x+ 1

2x
2, so

the thermal energy can be approximated to linear order as

E(T ) =
2~ω0N

π

∫ π

0

[
sin(k)

2~ω0
kBT

sin(k)
+O(~2)

]
dk =

2~ω0N

π

∫ π

0

kBT

2~ω0
dk = NkBT , (16)

which is the classical thermal energy, the Dulong-Petit value.

1.5 Quantum Mechanical Correction.

If we kept the quadratic term in ~ from the power series, we find that

E(T ) =
2~ω0N

π

∫ π

0

 sin(k)

2~ω0
kBT

sin(k) +
2~2ω2

0

k2BT
2 sin2(k)

+O(~3)

 dk (17)

=
NkBT

π

∫ π

0

[
1

1 + ~ω0
kBT

sin(k)

]
dk . (18)

We can again use a Taylor expansion in ~ to approximate the integrand as

1

1 + ~ω0
kBT

sin(k)
= 1− ~ω0

kBT
sin(k) +O(~2) , (19)

which can be evaluated yielding,

E(T ) =
NkBT

π

∫ π

0

[
1− ~ω0

kBT
sin(k)

]
dk =

NkBT

π

(
π − 2

~ω0

kBT

)
. (20)

Let us define the ratio of the quantum correction term to the classical value term from the expansion,

ρ = 2
~ω0

kBT

1

π
= . (21)

If we take ω0 =
√
k/m = 1013rad/sec (a reasonable value for real crystals) and T = 300K, we find

that
ρ = 0.1531506307 , (22)

so the quantum correction contributes 15% of the total thermal energy, which is not a negligible
effect.
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2 Garrod 4.15: Two-Dimensional Crystal.

In Figure 3 (Garrod Fig. 4.11) is shown the surface or upper boundary of a two-dimensional square
crystal. In this solid-on-solid model, we assume that there are no overhangs (filled lattice sites that
lie above empty ones). The configuration of the surface can then be defined by N integer height
variables y1, y2, . . . , yN . (In the figure, y1 = 0 and y2 = −1.) The surface energy is assumed to
be proportional to the length of the surface. If we assign zero energy to the straight surface, then
E = ε

∑N
n=1 |yn − yn−1|, where y0 = 0. The canonical partition for the system is

Z(N, β) =
∑
y1

. . .
∑
yN

exp
[
−βε

∑
|yn − yn−1|

]
. (23)

2.1 Transformation of Variables.

By a transformation of variables, un = yn − yn−1, evaluate Z(N, β).

Using the specified transformation of variables, it is easy to see

Z(N, β) =

∞∑
u1=−∞

. . .

∞∑
uN=−∞

exp
[
−βε

∑
|un|

]
, (24)

where the sums over yn can be transformed to over un by noting that yn − yn−1 and un take the
same range of values. If we expand the sum in the exponential, we can write this as a product of
single-term exponentials. Then each term is over a single un, so we can distribute the exponential
to the corresponding summation, i.e.

Z(N, β) =

[ ∞∑
u1=−∞

e−βε|u1|

]
. . .

[ ∞∑
uN=−∞

e−βε|uN |

]
=

[ ∞∑
u=−∞

e−βε|u|

]N
, (25)

because this results in N terms that are exactly the same. We can change the range of summation
from (−∞,∞) to [0,∞) to remove the absolute value, but we must subtract one, so we are not
double-counting the u = 0 term. Then the partition function is

Z(N, β) =

[
2

∞∑
u=0

e−βεu − 1

]N
=

[
2

∞∑
u=0

(e−βε)u − 1

]N
, (26)

so we may use the geometric series to write this as

Z(N, β) =

[
2

1− e−βε
− 1

]N
= cothN

βε

2
=

[
eβε + 1

eβε − 1

]N
, (27)

by Mathematica.

2.2 Probability Distribution.

Determine the probability distribution for the step height un. It should be independent of n.
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We are interested on the probability of the nth step having a height of x, so we must integrate over
all the other uk (for k 6= n). This integration is really just the sum given by the partition function
but not including the nth particle,

Z ′ =

N∏
i=1

∞∑
ui=−∞

(
exp

[
−βε

∑
|ui|
]

(1− δin)
)
, (28)

where δin is the Kronecker delta function and is 0 for n = i, so the product excludes this term.
From the analysis in section 1.1, we see

Z ′ =

[
eβε + 1

eβε − 1

]N−1

, (29)

so the probability of the nth step having a height x is

P (un = x) =
e−βε|un|

Z
Z ′ = e−βε|x|

[
eβε + 1

eβε − 1

]−N [
eβε + 1

eβε − 1

]N−1

= e−βε|x|
[
eβε − 1

eβε + 1

]
, (30)

this distribution is shown in Figure 2, and has a maximum value of (eβε − 1)/(eβε + 1).

Figure 2: Probability distribution of the nth step having a height of x. Clearly, we see the most
probable height is zero, with the maximum defined by (β, ε) : P (0) = tanhβε. Note we have set
βε = 1, because only the functional form matters.

2.3 Central Limit Theorem.

Using the central limit theorem, determine the probability distribution for the coordinate of the
last step, yN .

We will follow the treatment in Garrod section 1.14 and Appendix A.1. We have the sum of our
independent variables:

U =

N∑
n=1

un =

N∑
n=1

(yn − yn + 1) = (y1 − 0) + (y2 − y1) + (y3 − y2) + . . .+ (yN − yN−1) = yN , (31)

we must note the central limit theorem is concerned with the average value of some set of indepen-
dent variables, while we are interested only in the sum, so we will use our U = NX (where X is

Page 6 of 12



Dylan J. Temples Garrod : Chapter 4

the average of the sum of independent variables, see section Garrod 1.14), i.e. when the book uses
dx, we will use du/N , therefore

P (u)du = PX(x)dx =
1

N
PX( uN )du . (32)

Using this, Garrod Equation A.16 becomes

P (u) =
1

N

√
N

2πa2
exp

[
−N

( u
N

)2
/2a2

]
= (2πNa2)−1/2 exp

[
− u2

2Na2

]
, (33)

where a is the mean square uncertainty (Garrod Equation 1.58). Each of our independent variables
un, has the same uncertainty, so our a2 is simply ∆u2, given by

a2 = ∆u2 = 〈u2〉 − 〈u〉2 . (34)

We have previously shown (Equation 30 and Figure 2) that the most probable step height is zero,
so 〈u〉 = 0. The expectation value of u2 is

〈u2〉 =

∞∑
u=−∞

u2P (u) =

∞∑
u=−∞

u2Z
′

Z
= 2

[
eβε − 1

eβε + 1

] ∞∑
u=0

u2e−βεu , (35)

note we do not need to subtract one for double counting because for u = 0 the term in the sum is
zero. The expectation value (and uncertainty), then, is

∆u2 = 〈u2〉 = 2

[
eβε − 1

eβε + 1

](
eβε
(
eβε + 1

)
(eβε − 1)

3

)
=

2eβε

(eβε − 1)
2 =

1

cosh(βε)− 1
, (36)

using Mathematica to compute the sum, and simplify. We now see the probability of the last
particle (because the sum of our independent variables is our parameter of interest) to be a height
x on the right wall is

P (yN = x) =

√
cosh(βε)− 1

2πN
exp

[
−x

2(coshβε− 1)

2N

]
, (37)

which again is maximized for x = 0, as expected.
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3 Garrod 4.16: Two-Dimensional Crystal - Alternate Model.

Another model of the surface of a two-dimensional crystal is shown in Fiure 4 (Garrod Fig. 4.12).
A configuration of the surface can be described by a sequence of N variables σ1, . . . , σn that take
the values σ = ±1 according to the scheme shown in the figure. The y coordinate of the right-hand
end (in appropriate units) is y =

∑
σn. If there is an interaction between the crystal particles and

the right-hand wall, then it is reasonable to assume that the energy is given by E = εy, where ε < 0
for an attractive interaction and ε > 0 for a repulsive one.

3.1 Canonical Potential.

Calculate the canonical potential, ψ, as a function of N , β, and ε.

We begin by writing the partition function, combining the definition of energy and the y position,

Z =
∑

Ω

exp

[
−βε

N∑
n=1

σi

]
, (38)

where the sum is over all possible microstates. We note that each σi may take one of two values
and the combination of all of these possibilities can be written as

Z =
∑
σ1=±1

∑
σ2=±1

. . .
∑

σN=±1

exp [−βε(σ1 + σ2 + . . .+ σ1)] . (39)

As done in section 1, we can write the exponential of a sum as a product of exponential terms and
associate each one with its corresponding sum

Z =

[ ∑
σ=±1

e−βεσ

]N
=
[
eβε + e−βε

]N
= [2 cosh(βε)]N . (40)

Using the definition (Garrod Equation 4.45), we find the canonical potential is given by

φ(N, β, ε) = logZ = N log[2 cosh(βε)] . (41)

3.2 Expectation Value of y.

Show that 〈y〉 = ∂φ/∂ε and calculate 〈y〉 as a function of N , β, and ε.

Using the definition of energy, we find 〈E〉 = ε 〈y〉, with the expectation value of energy given by

〈E〉 = ε 〈y〉 = −∂φ
∂β

= −Nε tanh[βε] , (42)

so that the expectation value of the height of the crystal on the right hand wall is

〈y〉 = −N tanh[βε] , (43)

which for an attractive wall (−ε), the expected y is positive (hyperbolic tangent is symmetric about
the origin), which is expected. Similarly for a repulsive interaction, the expected y is positive. The
attractive potential would mean more particles are attempting to pile up on the right wall while a
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repulsive one makes the particles crowd up on the left hand wall.

We can find the expected value of y using the formula given by Garrod,

〈y〉 =
∂φ

∂ε
= Nβ tanh[βε] , (44)

which is not consistent with the result found previously. Silly Garrod, consistency is for kids.
Evidently, we are trying to prove that

〈y〉 = −1

ε

∂φ

∂β
=
∂φ

∂ε
, (45)

which cannot be the case because both of the parameters we are differentiating to are in the
argument of the hyperbolic tangent. For this to be consistent, we would have to have

− 1

ε

∂φ

∂β
= − 1

β

∂φ

∂ε
, (46)

which makes more sense from a purely aesthetic view.

Figure 3: Depiction of the crystal structure used
in Problem #1 (Garrod Fig. 4.11).

Figure 4: Depiction of the crystal structure used
in Problem #2 (Garrod Fig. 4.12).
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4 Garrod 4.19: Rotational Partition Function of Diatomic Molecules.

The rotational partition function of a diatomic molecule calculated by classical mechanics is z(rot) =
2I/β~2. Calculated quantum mechanically, z(rot) is given by the following sum over rotational
states

z(rot) =
∑
`

g` exp(−βε`) , (47)

where g` = (2` + 1) is the degeneracy of the rotational state of angular momentum
√
`(`+ 1)/~

and ε` = `(`+ 1)~2/2I.

4.1 Integral Representation.

Show that, if the quantum mechanical sum is approximated by an integral over a continuous
` variable, the classical value is obtained. This procedure would be valid for small values of
β~2/2I (kT � ~2/2I).

In the classical limit, the separations in ` are infinitesimal, so we may take ` to be continuous and
replace the sum with an integral

z(rot) =

∫ ∞
0

(2`+ 1) exp
[
−β`(`+ 1)~2/2I

]
d` , (48)

which if we define L = 2I/β~2, we see the integral is just

z(rot) =

∫ ∞
0

(2`+ 1)e−`(`+1)/Ld` = L , (49)

by noting that d
d` [`

2 + `] = 2`+ 1. We see from the definition of L, that the integral results in the
classical value, as expected.

4.2 Numerical Evaluation of Sum.

Evaluate the sum numerically for β~2/2I = 1, 0.5, and 0.1 and compare your result with the
classical approximation.

Using the same definition of L, the sum can be written explicitly as

z(rot) =

∞∑
`=0

(2`+ 1)e−L`(`+1) , (50)

which we can evaluate in Mathematica for values of L, to find

L = 1.0 : z(rot) = 1.41844 zcl = 1/L = 1 (51)

L = 0.5 : z(rot) = 2.37034 zcl = 2 (52)

L = 0.1 : z(rot) = 10.3401 zcl = 10 , (53)

where zcl is the classical partition function. The partition function increases as temperature in-
creases, as expected. Additionally, the classical value approaches the actual value as the tempera-
ture increases (and the other parameters - I - remain constant).
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5 Garrod 4.25: Polymer of Two-State Monomers.

A long polymer under tension τ is made up of N monomers that can each be in a compact or an
elongated state. Thus the polymer has 2N possible states. Assume that the length of the polymer
is L = Nc`c + Ne`e, where `e > `c and Nc and Ne are the numbers of compact and elongated
monomers, respectively.

5.1 Average Length.

Take the energy as E = τ(N`e − L) and calculate the average length as a function of T and τ .

Using the definition of L we find the energy to be

E = τ(N`e − L) = τ([Ne +Nc]`e −Nc`c −Ne`e) = τ(Nc`e −Nc`c) = τNc∆` , (54)

where ∆` = `e−`c, which is a positive number if the elongated length is longer than the contracted
length of the monomer. The number of marcostates is easily defined∑

e−βτ∆`Nc , (55)

but this does not include the degeneracy of the microstates that lead to the same macrostate. The
degeneracy factor is

N !

Nc!(N −Nc)!
=

N !

Ne!Nc!
=

(
N

Ne

)
=

(
N

Nc

)
, (56)

so the partition function is

Z =

N∑
Nc=0

(
N

Nc

)
e−βτ∆`Nc . (57)

Alternatively, we could view this system similarly to problems 1 and 2, where each independent
variable (monomer state) can take one of two values, `e or `c. We can define a new independent
variable ηi, which can take the value one or zero, corresponding to

ηi =

{
0 extended

1 contracted
, (58)

so we can now write a partition function

Z =

1∑
η0=0

1∑
η1=0

. . .

1∑
ηN=0

e−βτ∆`
∑N

i=1 ηi =

 1∑
η=0

e−βτ∆`η

N =
[
1 + e−βτ∆`

]N
. (59)

From Equation 54, we find that 〈E〉 = τ∆` 〈Nc〉, so

〈E〉 = −∂ logZ

∂β
= −

[
−Nτ∆`

e−βτ∆`

1 + e−βτ∆`

]
= Nτ∆`(1 + e−βτ∆`)−1 , (60)

thus the expected number of contracted monomers is

〈Nc〉 =
N

1 + e−βτ∆`
. (61)

Therefore, using the definition of L in terms of the number of each state, we see

〈L〉 = 〈Nc〉 `c + (N − 〈Nc〉)`e = ∆` 〈Nc〉+N`e =
N∆`

1 + e−βτ∆`
+N`e . (62)
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5.2 Response to Temperature Change.

Consider the polymer chain under nonzero tension τ . Does its length increase or decrease when
the temperature is increased? (Justify mathematically, and explain physically.)

When we examine Equation 62, we see the exponential of −1/T is in the denominator, so at
low temperature, the exponential becomes negligible compared to one, so the denominator is just
one, which maximizes this function. At high temperature, the exponential approaches one, so the
denominator is about 2, which minimizes the function, as seen in Figure 5 (note that the x-axis is
in terms of 1/T ). The physical meaning of this is that at high temperatures (low β), the energy
due to heat goes into putting each monomer into it’s contracted state. This is to say the contracted
states have higher internal energy. We can consider a polymer chain that at some temperature has
the majority of the monomers in the elongated state, where the polymer can cross over itself in
arbitrary ways, which has high entropy. As we remove energy (lower the temperature), the size of
each monomer reduces and the chain “straightens” out. which is a state with much higher order,
or lower entropy. This can be seen in two examples. If you hold a rubber band to your lips while
it is untensioned, and stretch it out, you will feel its temperature drop. Additionally, if you point
a hair dryer at plastic wrap, it shrinks and shrivels up (i.e. Shrinky DinksTM).

Figure 5: The expected length (Equation 62) of a polymer change depending on its temperature.
The x-axis is expressed as 1/T , high values are low temperatures. Note we have set τ = ∆` = 1,
and N = 100, 000, but the axes values are not displayed because only the functional form matters.
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