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1 Garrod #5.2: Entropy of Substance - Equation of State.

One mole of a substance satisfies the equations of state

T = λε2/3v−1/2 and pv =
3

2
ε , (1)

where λ is a constant. Determine s(ε, v) within an arbitrary constant.

From Garrod equations 5.6 and 5.11, we find

∂s

∂v
= γ = βp =

1

kBλ
ε−2/3v1/2

(
3ε

2v

)
=

3

2kBλ
ε1/3v−1/2 , (2)

where γ is the free expansion coefficient and kB is the Boltzmann constant. If we take the en-
ergy density to be independent of the volume per particle (volume density), we can integrate this
expression with respect to v and find∫

∂s

∂v
dv =

3

2kBλ
ε1/3

∫
v−1/2dv (3)

s(ε, v) =
3

kBλ
ε1/3v1/2 + F (ε) , (4)

where F (ε) is an arbitrary function of energy density only, picked up from integrating the partial
derivative. We must now enforce the relation of entropy and temperature,

∂s

∂ε
=

3

kBλ
v1/2

(
1

3
ε−2/3

)
+

dF (ε)

dε
= β =

1

kBT
. (5)

From the first equation of state we see

1

kBλ
v1/2ε−2/3 +

dF (ε)

dε
=

1

kB

(
λε2/3v−1/2

)−1
, (6)

which requires dF/dε = 0. Now we see that F 6= F (ε), so we may replace it with a constant. We
now have a complete description of the entropy of this substance,

s(ε, v) =
3

kBλ
ε1/3v1/2 + f , (7)

where f is some arbitrary constant.
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2 Garrod #5.3: Gibbs Phase Rule.

Consider a substance containing K different types of particles. For example, K = 3 for a water,
sugar, and salt solution. Let the spatial densities of the particles be called n1, . . . , nK . For a single
phase of the substance, we can independently vary the K densities and the temperature, but all
other physical quantities are then determined by those K+ 1 parameters. Thus, for a single phase,
we have K + 1 free variables. For an equilibrium state of the substance containing two phases in

contact (a two-phase state), one has the 2K + 1 variables n
(1)
1 , . . . , n

(1)
K , n

(2)
1 , . . . , n

(2)
K , and β, but

these are restricted by K + 1 equilibrium conditions, α
(1)
1 = α

(2)
1 , . . . , α

(1)
K = α

(2)
K , and p(1) = p(2).

This leaves only K free variables. Show that, for a state containing P phases in equilibrium, the
number of free variables is F = K − P + 2. This is the Gibbs phase rule. Notice that it says that
the triple point of a simple substance has no free variables - there is a unique temperature and
pressure at which three phases of a simple substance can be in equilibrium.

We notice that each equilibrium condition imposes an equation that describes the relationship
between a variable in each state. In this case, each phase has K densities (n1, . . . , nK), and a

temperature (β). Therefore there is one equation for each pair of densities (e.g., n
(1)
i , n

(2)
i ), so in

a two-phase state this contributes K variables and 2K conditions (equations) per phase. For the
last variable β, we get the final equation for the pressure of each phase (p(1) = p(2)) which must be
determined by the corresponding β, and we get the total

V = K + 1 and C = 2K + 1 , (8)

where V is the total number of variables and C is the total number of equilibrium conditions. For
a system of V variables and C equations, we know there are F = V −C arbitrary (free) variables.

We can extend this to P phases in equilibrium. In each phase there are still K variables for the
densities, and the state has variable β, so we see

V = PK + 1 . (9)

Let us examine the equilibrium conditions for the phases in contact. The affinity ak for each number
density nk, must be the same in each phase:

(α
(1)
1 = α

(2)
1 ), (α

(1)
1 = α

(3)
1 ), . . . , (α

(1)
1 = α

(P )
1 ) (10)

(α
(2)
1 = α

(3)
1 ), . . . , (α

(2)
1 = α

(P )
1 ) (11)

. . . (12)

(α
(P−1)
1 = α

(P )
1 ) , (13)

but this is really only P − 1 equations because by ensuring (α
(1)
1 = α

(2)
1 ) and (α

(2)
1 = α

(3)
1 ), we

automatically ensure (α
(1)
1 = α

(3)
1 ), and so on. Each phase has K + 1 parameters that are subject

to conditions (αi and p), and there are P − 1 phases, so we see the total number of conditions is

C = (K + 1)(P − 1) = KP + P −K − 1 . (14)

We now see that for a state of P phases with K different types of particles in each phase, the total
number of free parameters is

F = (PK + 1)− (KP + P −K − 1) = K − P + 2 . (15)
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3 Garrod #5.9: Ideal Gas Adiabatic and Isothermal Curves.

Many ideal gases satisfy equations of state of the form pV = NkBT and E = KNkBT . (For
monatomic gases, K = 3

2 , for diatomic gases with only rotational kinetic energy, K = 5
2 , and, for

diatomic gases in which rotational and vibrational degrees of freedom can be treated classically,
K = 7

2 .)

3.1 Adiabatic Curves.

For such an ideal gas, show that, along an adiabatic curve,

pV (K+1)/K = const. and V EK = const. (16)

Let us begin by finding a condition that is satisfied by an adiabatic process. Consider the total
differential of the entropy S(N,E, V ), for a system with a fixed number of particles:

dS = βdE + γdV , (17)

where α, β are defined in Garrod equation 5.6. From the definition of mechanical pressure p (in
units such that kb = 1) we see

dS = β(dE + pdV ) ⇒ TdS = dE + pdV , (18)

where TdS is simply the change in heat dQ. In an adiabatic process, no heat is exchanged so
dQ = 0, so the condition

dE = −pdV , (19)

must be satisfied by an adiabatic process.

From the equations of state of the ideal gas, we see

dE = KNdT = Kd(pV ) = K(pdV + V dp) , (20)

using the differential chain rule. We can now equate Equations 19 and 20,

0 = K(pdV + V dp) + pdV (21)

−KV dp = (K + 1)pdV , (22)

and after gathering differentials with their variables, we see

K + 1

K

dV

V
= −dp

p
. (23)

We can integrate both sides to find

K + 1

K
log V = − log p+ C , (24)

where C ′ is a constant of integration. Upon exponentiation of this expression, we get

V (K+1)/K = eC
1

p
⇒ pV (K+1)/K = const. (25)
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Similarly, we can substitute the equation of state involving pressure into Equation 19, to get the
expression

dE = −
(
NT

V

)
dV = −

(
E/K

V

)
dV , (26)

from the first equation of state. Combining differentials with the corresponding variable and inte-
grating gets us

K
dE

E
= −dV

V
(27)

log(V EK) = D , (28)

after exponentiation we receive the desired result

V EK = const. (29)

3.2 Isothermal Curve Comparison.

Also show that, in the E − V plane, the adiabatic curves are steeper than the isotherms.

Consider an adiabatic decrease in volume (dS = 0). The fundamental thermodynamic relation
(Garrod equation 5.19)

dE = TdS − pdV , (30)

tells us the work done by the system must go completely into raising the internal energy of the gas,
because the entropy must remain unchanged. Now consider the same change of volume, but done
isothermally. In this case the work done by the system can go into heat or the internal energy of
the gas. Therefore a change in volume has a larger effect on energy in an adiabatic process than
an isothermal one. In the E − V plane, this represents adiabatic curves having a steeper1 slope
than isothermal curves.

Mathematically, we can see this by examining Equation 30 in the adiabatic case:

dE = −pdV , (31)

which if we take p to be independent of V , we see(
∂E

∂V

) ∣∣∣∣
T

= −p , (32)

which corresponds to the slope of an adiabatic curve in the E − V plane. Alternatively, for an
isothermal process, we have (

∂E

∂V

) ∣∣∣∣
T

= −p+ T

(
∂S

∂V

)
T

, (33)

where the second term is a positive definite quantity. When all remaining parameters are held equal,
the change in entropy must have the same sign as the change in volume (i.e., when the volume
containing a gas is increased while the temperature is held constant, the entropy must increase,
similarly for decreasing the volume, the entropy must decrease). Additionally, temperature is a non-
negative quantity, therefore the slope of an isothermal curve (Equation 33) is always less negative
than the slope of an adiabatic curve (Equation 32) - therefore an adiabat is always steeper than an

1Steeper will be taken to mean having a more negative slope.
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isotherm. This is a general result2, and must be true for a gas obeying the equations of state given
in the problem.

For the ideal gas satisfying the given equations of state, we see that on an adiabatic curve

E ∝ V −1/k ⇒ ∂E

∂V
∝ V −(K+1)/K ∝ p, (34)

as expected. Similarly, on an isothermal curve, from the equation of state we see

E

K
= pV = NT , (35)

which implies, since T is constant, that all equivalent expressions are also constant. Additionally,
for an isothermal process we have V ∝ p, so E ∝ const., yielding

∂E

∂V

∣∣∣∣
T

= 0 (36)

so we can see an adiabatic curve is always steeper than an isothermal one. The slope of an adiabat
is nonzero, and therefore is steeper (regardless of sign) than an isotherm.

2Garrod. Section 5.14, Point 4. Additionally, figure 5.11.
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4 Garrod #5.12: Stefan-Boltzmann Law.

In the nineteenth century, using Maxwell’s equations, it was possible to show that the pressure
exerted on the walls of an evacuated container by the electromagnetic radiation inside was related
to the energy density of the radiation by the formula p = 1

3E/V . The entropy function of that
“system” of electromagnetic radiation would be a function S(E, V ). Assuming that the energy
density is related to the temperature by an equation of the form E/V = AT λ, where A and λ are
constants, show that λ must be equal to 4. This result was first derived by Ludwig Boltzmann
after being guessed at, from an analysis of experimental data, by Josef Stefan.

Let us begin by defining the energy density, ε = E/V , so that the pressure of electromagnetic
radiation is given by

p =
ε

3
. (37)

Additionally, we can use the fundamental thermodynamic relation (Garrod equation 5.19) to write

dE = TdS − pdV ⇒ dE

dV
= T

dS

dV
− p , (38)

which if we take T to be a constant, becomes(
∂E

∂V

)
T

= T

(
∂S

∂V

)
T

− ε

3
, (39)

after substituting in Equation 37. We can continue using the energy density to write

ε

(
∂V

∂V

)
T

= T

(
∂S

∂V

)
T

− ε

3
, (40)

if we assume the energy density is only a function of temperature (assume ε = AT λ from problem
description). Furthermore, using the Maxwell Relation3(

∂S

∂V

)
T

=

(
∂p

∂T

)
V

, (41)

we see Equation 40 becomes

ε = T

(
∂p

∂T

)
V

− ε

3
=
T

3

(
∂ε

∂T

)
V

− ε

3
, (42)

after substituting in Equation 37 again. Solving for the partial derivative we see(
∂ε

∂T

)
V

=
4

T
ε ⇒ dε

ε
= 4

dT

T
. (43)

Upon integration we see log ε = log(T 4) +A′, and exponentiation reveals the desired result,

ε = AT 4 , (44)

which proves the Stefan-Boltzmann Law, λ = 4.

3Garrod Equation 6.59.
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5 Garrod #5.21: Osmotic Pressure.

Consider a container separated into two parts by means of a rigid partition that can pass water
molecules but not glucose molecules. On one side is pure water but on the other is a dilute solu-
tion of glucose. Using the Gibbs-Duhem equation and Garrod equation 5.78 for αg, show that, at
equilibrium, the pressure in the solution will exceed that in the pure water by an amount (called
the osmotic pressure) ∆p = ngkT . Notice that this is exactly what would be obtained by treating
the glucose molecules as an ideal gas, although a derivation of the result using that picture would
be very questionable.

The Gibbs-Duhem equation, Garrod equation 5.42, can be written

0 = Nd(−βµ) + Edβ + V d(βp) , (45)

using α = −βµ and γ = βp. Expanding the differentials and gathering terms, we get

(E −Nµ+ pV )dβ + V βdp−Nβdµ = 0 , (46)

but if we are considering a system in equilibrium, we assume the temperature is constant, dβ = 0,
so we have

dp =
Nβ

V β
dµ = nd

(
α

−β

)
= −n

β
dα , (47)

where n ≡ N/V is the particle density. Consider the two-region container described in the problem
only containing water on both sides. At equilibrium, the water pressure pw is equal on both sides
of the barrier. If we now add a small number of glucose molecules (to keep the system dilute) to
one region, the pressure will be

pw + ∆p , (48)

where ∆p is the pressure added by the glucose molecules. The added pressure is

∆p =

∫
dp =

∫
−n
β

dαg =

∫ ng

0
−n
β

(
−dn

n

)
, (49)

using the affinity for a dilute solution given by Garrod equation 5.78. After carrying out the
integration and writing β−1 = kT , where k is the Boltzmann constant, we obtain the result

∆p = ngkT , (50)

which is the osmotic pressure.
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