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1 Garrod #6.2: Equilibrium Constant Conversion.

Suppose the equilibrium constant for the reaction A ↔ 2B is 2e−4m−3 and that for the reaction
B ↔ C is 0.3. What is the equilibrium constant for the reaction A↔ 2C?

The equilibrium constant K for a general reaction can be written1 in terms of the chemical
concentrations, as

K =
nrRn

s
S . . .

naAn
b
B . . .

, (1)

where A,B, . . . are the reactants with stoichiometric coefficients a, b, . . . and R,S, . . . are the prod-
ucts with coefficients r, s, . . .. Therefore the equilibrium constant for A↔ 2B is

KAB =
n2
B

nA
⇒ 1

nA
=
KAB

n2
B

, (2)

for B ↔ C the constant is
KBC =

nC
nB

⇒ n2
C = n2

BK
2
BC . (3)

We are interested in the equilibrium constant for A↔ 2C, which is given by

KAC =
n2
C

nA
= n2

BK
2
BC

(
KAB

n2
B

)
= KABK

2
BC = (2e−4m−3)(0.3)2 = 1.8e−5m−3 = KAC . (4)

1Garrod, equation 6.9.
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2 Garrod #7.4: Two-Dimensional Adsorption Model.

If the adsorbed particles on a surface are free to move across the surface, then they may sometimes
be approximated as a two-dimensional ideal gas in which the energy of a particle of momentum
(px, py) is ε(p) = (p2

x + p2
y)/2m − ε0, where ε0 is the binding energy of the particle to the surface.

Using this approximation, calculate the surface density of adsorbed particles if the pressure in the
three-dimensional gas, in equilibrium with the adsorbed particles on its surface, is p.

The Boltzmann factor for an adsorbed particle is

e−βε(p) = eβε0e−(p2x+p2y) β
2m , (5)

so the canonical partition function for a single adsorbed particle is

za = eβε0
∫ ∞
−∞

dpx

∫ ∞
−∞

dpye
−(p2x+p2y) β

2m

∫∫
dzdy , (6)

which if we restrict the adsorption surface to have an area A, we see the partition function is

za = Aeβε0
∫ ∞
−∞

dpx

∫ ∞
−∞

dpye
−(p2x+p2y) β

2m = A
2πm

β
eβε0 , (7)

using the well known formula for Gaussian integrals2. Since the gas in question can be treated as
an ideal gas, Garrod equation 7.28 holds for the affinity of the gas yet to be adsorbed. If we equate
this with the affinity for the adsorbed particles, Garrod equation 7.22, we see

g(T ) = β−5/2 (2πm)3/2

~3
, (8)

because the pressure p of the gas particles and adsorbed particles in equilibrium. The occupation
fraction of the adsorption sites at pressure p is

fa =
p

p+ β−5/2 (2πm)3/2

~3

(
β

2πmAe
−βε0

) =
p

p+ 1
A~3

(
2πm
β3

)1/2
e−βε0

, (9)

so the surface density ρ (occupation fraction per unit area) is

ρ =
N

A

faK

A
=

pK

pA+ 1
~3

(
2πm
β3

)1/2
e−βε0

. (10)

2Gaussian integral:
∫∞
∞ e−ax

2

=
√
π/a.
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3 Garrod #7.5: Occupation Fraction of Diatomic Molecule.

Diatomic molecules are sometimes decomposed, upon adsorption, into their constituent atoms, at-
tached to the surface. Consider a gas of diatomic nitrogen (N2), and assume that the vibrational
excitations can be ignored, so that Garrod equation 4.65 is applicable. Assuming that the gas is in
equilibrium with K atomic adsorption sites, derive the equivalent of Garrod equation 7.24 for the
fraction of occupied sites.

Since the gas decomposes to its constituent atoms when it is adsorbed, the affinity of the adsorbed
gas is twice that of the molecular gas. Therefore, when we equate the affinity of the molecular gas
to the adsorbed atomic gas, we must have

2

[
log

(
1− fa
fa

)
+ log za

]
= − log p+ log g , (11)

where za is the partition function for a single occupied adsorption site. If we solve the above
equation to get the equivalent of Garrod equations 7.23 and 7.24, we get

log

√
g

p
= log

(
1− fa
fa

)
+ log za ⇒ fa =

√
p

√
p+

√
g(T )/za

, (12)

where g(T ) can be determined from form of the affinity for the diatomic molecules with no vibra-
tional excitations. We can find the affinity from the canonical potential of a diatomic gas (Garrod
equation 4.65) and the definition of the affinity:

α =
∂φ(N, β, V )

∂N
=

[
log

(
V

N

)
− 5

2
log(β) + log

(
2I
[m

2π

]3/2
~−5

)
+ 1

]
+N

(
− 1

N

)
(13)

= log

(
1

βp

)
− 5

2
log(β) + log

(
2I
[m

2π

]3/2
~−5

)
, (14)

using the ideal gas law so that V/N = 1/βp. It should be noted that Garrod introduced an extra
factor of log k5/2 when he collected terms of β between both lines of Garrod equation 4.65. If we
separate the first log, we see

α = − log(p)− 7

2
log(β) + log

(
2I
[m

2π

]3/2
~−5

)
= − log(p) + log

(
2Iβ−7/2

[m
2π

]3/2
~−5

)
, (15)

which by comparison with Garrod equation 7.22, we find

g(T ) =
2I

~5

√
m3

8π3β7
, (16)

so from Equation 12, the occupation fraction of adsorption sites (analog to Garrod equation 7.24)
is

fa =

√
p

√
p+ 1

za

√
2I
~5
(
m
2π

)3/4
(kT )7/4

, (17)

where za is given above. If we assume each atomic adsorption site has biding energy −ε0 (with
ε0 > 0) then this partition function is

za = eβε0 , (18)

for a single atomic adsorption site.
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4 Garrod #7.9: Hydrogen in Magnetic Field.

If a hydrogen atom is placed in a magnetic field, its nucleus (a proton) can have its spin, and
therefore its magnetic moment, oriented either parallel or antiparallel to the field. The energy
levels of the two orientations are ±µB, where µ = 2.79255µN . (µN = e~/2Mp = 5.05e27 J/T is
the Bohr nuclear magneton.)

4.1 Ratio of Spin Orientations.

In a field of 2 Tesla, at a temperature of 300 K, what is the ratio R(T ) = (N− −N+)/(N− +N+).
(N− and N+ are the numbers of parallel and antiparallel spins, respectively.)

If there are N total hydrogen atoms, then we clearly have N− +N+ = N , which is a fixed number
of particles, so we may ignore the affinity α of the hydrogen atom. The energy of a hydrogen atom’s
interaction with the magnetic field is E = −µ ·B, so the energies are negative for the aligned states
and positive for the anti-aligned states. If this is the case, we get the number of particles for each
spin alignment from the Fermi-Dirac distribution

N− =
N

e(−µB)β + 1
N+ =

N

e(µB)β + 1
. (19)

Consider the difference:

N− −N+ =
N

e−βµB + 1
− N

eβµB + 1
= N

(eβµB + 1)− (e−βµB + 1)

(eβµB + 1)(e−βµB + 1)
(20)

= N
2 sinh(βµB)

2 cosh(βµB) + 2
. (21)

If we use the double angle formulae3 for hyperbolic sine and cosine, we see the difference can be
written

N− −N+ = N
sinh(βµB)

cosh(βµB) + 1
= N

2 sinh(1
2βµB) cosh(1

2βµB)

(2 cosh2(1
2βµB)− 1) + 1

= N
sinh(1

2βµB)

cosh(1
2βµB)

(22)

= N tanh(1
2βµB) . (23)

Armed with this knowledge, the ratio of interest is trivial to compute (using N− +N+ = N):

R(T ) =
N− −N+

N− +N+
= tanh(1

2βµB) = tanh

(
µB

2kBT

)
, (24)

where kB is the Bolzmann constant. For the parameters given, this ratio is

R(300K) = 3.4e−6 , (25)

so the number of atoms with their spins aligned is comparable to the number of atoms with their
spins anti-aligned with the magnetic field, at room temperature.

3sinh(2z) = 2 sinh(z) cosh(z) and cosh(2z) = 2 cosh2(z)− 1
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4.2 Nuclear Magnetic Resonance Frequency.

If a substance containing hydrogen is placed in a magnetic field and subjected to electromagnetic
radiation at a frequency ν = 2µB/h, energy will be absorbed from the radiation field, causing
transitions between the two nuclear magnetic energy states. The absorption rate is proportional to
R(T). This is the phenomenon of nuclear magnetic resonance. For a field of 2 T, in what range is
the nuclear magnetic resonance frequency (infrared, microwave, etc.)?

The energy difference between the aligned and anti aligned states is ∆E = 2µB. Therefore the
frequency of EM radiation required for NMR is simply

ν =
∆E

h
=

2µB

h
= 8.5e7 Hz = 85 MHz , (26)

which is in the micro- and radio- wave regime of the EM spectrum. More specifically, this is between
the high-frequency (HF) to very high-frequency (VHF) regimes.

Page 6 of 19



Dylan J. Temples Garrod : Chapters 6, 7, 8

5 Garrod #7.15: Neutrino Gas.

Neutrinos are zero-mass spin-1
2 Fermi-Dirac particles. Although neutrinos have spin-1

2 , there is
only one neutrino state for each momentum, because of the fact that the spin angular momen-
tum of a neutrino is always antiparallel to its momentum vector. Treating the neutrino number
as a strictly conserved quantity, obtain expansions for p and E/N , up to order τ2, for a neutrino gas.

If we assume the neutrinos have no mass, they have an energy-momentum relationship given by
ε = |p|c, where c is the speed of light. Additionally, these particles obey Fermi-Dirac statistics, so
we may use the integral form of the grand potential given by Garrod equation 7.46. In this integral
form the factor of two is due to the two-spin states per momentum eigenstate, in our case there is
only one state per momentum eigenstate. Using this information, the grand potential of a neutrino
gas confined to a volume V is given by the integral

ψ =
V

h3

∫
log[1 + e−(α+βε(p))]d3p , (27)

where ε(p) is the energy-momentum relationship for neutrinos. We can reduce the momentum
vector to its magnitude and its polar and azimuthal angles, and write the volume element as
d3p = p2 sin θdpdθdφ. Since the energy only depends on the magnitude, we can immediately
integrate the solid angle to acquire a factor of 4π. Using the energy-momentum relationship, we
see dε = cdp, so we can write the integral in terms of the energy instead of the momentum:

ψ =
4π

c3h3
V

∫ ∞
0

log[1 + e−(α+βε)]ε2dε , (28)

and we define γν = 4π/c3h3. Quickly let us note the derivatives of the logarithm:

− ∂

∂α
log[1 + e−(α+βε)] =

1

1 + e−(α+βε)
(29)

− ∂

∂β
log[1 + e−(α+βε)] =

ε

1 + e−(α+βε)
. (30)

Using these derivatives, the definitions in Garrod equatios 7.42 and 7.43, and introducing the
chemical potential µ = −α/β, and the temperature τ = β−1 = kT , we can write the total energy
and total number of neutrinos as

N

V
= γν

∫ ∞
0

ε2dε

e(ε−µ)/τ) + 1
(31)

E

V
= γν

∫ ∞
0

ε3dε

e(ε−µ)/τ + 1
. (32)

In the low temperature limit, we see the denominator of the integrands is 1 for ε < µ and 0 for
ε > µ, so we can evaluate this integral at low temperatures:

N

γνV
=

∫ εF

0
ε2dε =

1

3
ε3F , (33)

note the upper limit of integration is the Fermi energy (equal to the chemical potential at zero
temperature), because past this the integrand is zero. We will now define the average particle
density n̄ = N/V and the energy density ε̄ = E/V . The integrals can be evaluated for finite
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temperature using the expansion for low temperature given by Garrod equation 7.55. For the N/V
integral g(ε) = ε2, and for the E/V integral, g(ε) = ε3, so we see, to second order in τ ,

n̄

γν
=

N

γνV
=

∫ µ

0
ε2dε+

π2τ2

6
(2µ) =

1

3
µ(µ2 + π2τ2) (34)

ε̄

γν
=

E

γνV
=

∫ µ

0
ε3dε+

π2τ2

6
(3µ2) =

1

4
µ2
(
µ2 + 2π2τ2

)
, (35)

so the average energy per particle is

E

N
=
ε̄

n̄
=

3

4
µ
µ2 + 2π2τ2

µ2 + π2τ2
, (36)

but we must find an expression for the chemical potential at finite temperature in terms of the
Fermi energy. To do this we can equate Equations 33 and 34 to see

1

3
ε3F =

1

3
µ(µ2 + π2τ2) ⇒ µ3 = ε3F − π2τ2µ (37)

µ

εF
=

(
1− π2τ2

ε2F

)1/3

. (38)

Since the term is of order τ2, we can replace µ by εF on the right-hand side of Equation 37, with
negligible errors (as in Garrod, page 174). If the temperature is small, as in the derivation of
Equation 33, we can Taylor expand the exponential to see

µ

εF
= 1− π2τ2

3ε2F
⇒ µ = εF −

π2τ2

3εF
. (39)

For a relativistic gas, the pressure is given by p = 1
3(E/V ), so inserting µ into the expression for

E/V and dividing by three yields

p =
1

3

E

V
=

1

3

γν
4
µ2
(
µ2 + 2π2τ2

)
=

1

3

γν
4

[
εF −

π2τ2

3εF

]2
[(

εF −
π2τ2

3εF

)2

+ 2π2τ2

]
(40)

which is the pressure of a neutrino gas, recall that γν = 4π/c3h3. If we expand this expression and
keep terms up to order τ2, we get the result

p ' 1

4

γν
3

[
ε2F −

2

3
π2τ2

] [
ε2F +

4

3
π2τ2

]
' 1

4

γν
3

[
ε4F +

2

3
π2τ2ε2F

]
=

1

4

1

3
γνε

3
F

[
εF +

2

3

π2τ2

εF

]
, (41)

using the definition of the neutrino density (Equation 33), we see

p =
n̄

4

[
εF +

2

3

π2

β2εF

]
≡ nνf(β) . (42)
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6 Garrod #7.16: Neutrino and Antineutrino Gas.

The antiparticle to the neutrino is the antineutrino, a particle with the same properties as the
neutrino, but with its spin angular momentum always parallel to its linear momentum. In fact, the
neutrino number Nν and the antineutrino number Nν̄ are not separately conserved, but only the
lepton number, L = Nν−Nν̄ , is conserved. Due to creation of neutrino-antineutrino pairs, the total
number of particles, N = Nν + Nν̄ , can change spontaneously. A neutrino-antineutrino gas may
be treated as two interpenetrating Fermi-Dirac ideal gases with a chemical reaction, Nν +Nν̄ ↔ 0.
Using the chemical equilibrium equation, calculate the pressure of such a system as an expansion
in τ , separately, for the two cases L = 0 and L > 0. (Note: This problem requires the solution of
Problem 7.15.)

Let us define the lepton number density ` = L/V = nν −nν , using the result from Garrod 7.15, we
see

f(β)` = pν − pν̄ , (43)

where f(β) is the expansion to order τ2 found in the previous problem, and the individual pressures
are pν/ν̄ = f(β)nν/ν̄ . Using the given reaction equation, we can write the equilibrium constant as

Keq =
(ñ)0

(nν)1(nν̄)1
, (44)

using Garrod equation 6.9, where ñ is the density of the products (there are none, hence the zero
power). Therefore nν̄ = 1/Keqnν . If we add twice the pressure of antineutrinos to both sides of
Equation 43, we see

pν + pν̄ = 2pν̄ + f(β)` = 2f(β)nν̄ + f(β)` , (45)

and if we assume Dalton’s law of partial pressures holds true for a quantum ideal gas, we see the
left-hand side is just the total pressure. This makes sense because the neutrino-antineutrino gas is
in equilibrium so the annihilation rate is equal to the creation rate, and so instantaneously the sum
of their pressures is constant for given particle densities at a specifictemperature. Substituting the
expression for nν̄ into this result, we get

p = f(β)

(
`+

2

Keqnν

)
= f(β)(nν + nν̄) , (46)

which is true up to order τ2. We see the pressure is proportional to the sum of the neutrino and
antineutrino densities. In the case L = 0, the pressure is proportional to twice the inverse density of
the neutrino density (which is equal to the antineutrino density if L = 0). For L > 0, the pressure
is proportional to the sum of the neutrino density and the inverse of the neutrino density.
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7 Garrod #7.18: The Baloneyon.

The baloneyon is an imaginary Fermi-Dirac particle with spin-1
2 and the following relationship

between energy and momentum:
E = B|p|4 , (47)

where B is the baloney constant. What is the Fermi energy of a system of baloneyons as a function
of the particle density?

To determine the Fermi energy of a system of these particles, we will follow the derivation in Garrod
section 7.5 (because this derivation is valid for spin-1

2 particles. We can begin by writing the grand
potential:

ψ = 2
V

h3

∫
log
[
1 + e−(α+βε(p))

]
d3p , (48)

where ε(p) = B|p|4, and the system is confined to a volume V . In spherical momentum space, this
integral is

ψ = 8π
V

h3

∫
log
[
1 + e−(α+βB|p|4)

]
p2dp , (49)

where the factor of 4π came from evaluating the angular integrals. We can transform this to be
over the energy variable ε. If we rearrange the energy-momentum relationship, we find

p =
( ε
B

)1/4
⇒ dp =

1

4B

( ε
B

)−3/4
dε , (50)

and as such, the volume element is p2dp = (4B(ε/B)1/4)−1. The grand potential is now given by
the integral

ψ = 2π
V B−3/4

h3

∫
log
[
1 + e−(α+βε)

]
ε−1/4dε . (51)

We can find the average number of baloneyons in this system by taking the negative derivative of
this with respect to the affinity:

N = −∂ψ
∂α

= −2π
V B−3/4

h3

∫
ε−1/4dε

∂

∂α
log
[
1 + e−(α+βε)

]
(52)

= 2π
V B−3/4

h3

∫
ε−1/4dε

1

eα+βε + 1
, (53)

after carrying out the derivative4. If we divide through by the volume and introduce the chemical
potential µ = −α/β, the particle density is

n =
N

V
= 2π

B3/4

h3

∫
ε−1/4dε

eβ(ε−µ) + 1
. (54)

The Fermi energy is equivalent to the chemical potential at zero temperature5 , so we can take the
limit as β →∞ of this expression, to find

n =
2π

(B1/4h)3

∫
ε−1/4 lim

β→∞

1

eβ(ε−µ) + 1
dε , (55)

4 ∂
∂α

log
[
1 + e−(α+βε)

]
= (−1)e−(α+βε)

1+e−(α+βε) = − 1
eα+βε+1

5Garrod, page 174.
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and using Garrod equation 7.53, the limit is unity for ε < µ (which in our case, is valid for energies
below the Fermi energy). We are left with a trivial integral to evaluate to find the particle density:

n =
2π

(B1/4h)3

∫ εF

0
ε−1/4dε =

2π

(B1/4h)3

(
4

3
ε
3/4
F

)
, (56)

note we are not integrating to infinite energy, because past ε = εF , the integrand is zero. If we
rearrange this result, we find

εF =

(
3(B1/4h)3

8π
n

)4/3

= ~4B

(
3

8π
n

)4/3

(57)

which is the Fermi energy, as a function of particle density.
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8 Garrod #7.19: Electron and α-Particle Interspersed Gas.

Consider a mixture of N α particles and 2N electrons within a volume V . When the average kinetic
energy of the electrons, due to the Pauli Exclusion Principle, is much larger than the binding energy
of an electron bound to an α particle, then the electrons will be stripped off the α particles and the
system can be approximated as an interpenetrating Fermi-Dirac electron gas and a classical gas of
α particles, rather than as a gas of helium atoms, which it would become at lower densities. This
situation exists in high-density stars.

8.1 Mass Density at 0K.

Determine the mass density of the system when the average kinetic energy of the electrons (at 0
K) is ten times the binding energy of a single electron to an α particle in free space.

The average kinetic energy of the electrons at zero temperature is, for this system

ε = 10εb , (58)

where εb is the binding energy of an electron to an α particle. This binding energy is εb = Z2ε0,
where Z is the atomic number (for an α particle, Z = 2), and ε0 is the Rydberg constant for
hydrogen (ε0 ' 13.6 eV) At absolute zero, using Garrod equation 7.61, we see the Fermi energy is
related to the average energy per particle by

εF =
5

3
ε =

50

3
εb =

200

3
ε0 . (59)

Using Garrod equation 7.50, we can find the electron density

Ne

V
= 2γ

∫
ε1/2

eβ(ε−µ) + 1
dε , (60)

where γ = 2π(2m/~2)3/2. Using the method in Garrod, this integral can be evaluated by noting
that for ε < µ, in the low-temperature limit, the denominator is one. This integral gives the result

Ne

V
=

4

3
γε

3/2
F =

4

3
γ

(
200

3
ε0

)3/2

=
2N

V
, (61)

which is the density of electrons. Given that Nα = 2Ne for the same volume, we may write the
mass density of the system of both gases as

m =
M

V
= me

Ne

V
+mα

Nα

V
=
N

V
(2me +mα) =

4

3
γ

(
200

3
ε0

)3/2

(2me +mα) , (62)

where me is the mass of the elctron and mα is the mass of the α particle, and N/V is the density
of α particles.

8.2 Stellar Mass Densities.

How does it compare with the estimated mass densities at the center of the sun (1e5 kg/m3) and
in a white dwarf (2e9 kg/m3)?
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We can evaluate the mass density:

m =
M

V
=

4

3
γ

(
200

3
ε0

)3/2

(2me +mα) = 8.2e5 kg m−3 , (63)

which is about eight times more dense than the center of the sun, and much less dense than a white
dwarf star.

8.3 Fermi Energy in White Dwarf.

The internal temperature of white dwarf stars is about 107 K. What is the ratio of τ to εF in a
white dwarf? (This ratio determines whether the zero-temperature approximation is accurate.)

The relationship between the temperature, energy per particle, and Fermi energy is given by Garrod
equation 7.61. In the zero-temperature approximation, we can drop the term that is quadratic in
temperature, yielding

εF =
5

3
ε , (64)

and if we assume the energy per particle in a white dwarf is equivalent to the binding energy of an
electron to an α particle, we see

εF =
200

3
ε0 ' 1.45e−16 J = 906.6 eV . (65)

The temperature of the white dwarf is

τ = kBT = 1.38e−16 J = 861.3 eV , (66)

so the ratio is
τ

εF
= 0.95 , (67)

which says the Fermi energy is of the same magnitude as the temperature of the star.

Alternatively, we can solve our expression for the mass density of the electron-α particle gas for
the Fermi energy, to obtain(

3m

2γ

1

2me +mα

)2/3

= εF = 4.2e−14 J = 262 keV , (68)

this result does not apply the zero-temperature approximation. In this case the ratio is

τ

εF
= 0.0033 . (69)
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9 Garrod #7.26: 2D Bose-Einstein Gas.

9.1 Number of Momentum Eigenstates in Energy Interval.

For a two-dimensional gas of spin-zero particles in a periodic box of area L2, calculate the number
of momentum eigenstates with energies within the interval ε to ε+ dε.

The average occupation of one momentum eigenstate is given by Garrod equation 2.69,

N =
1

eα+βε(p) − 1
, (70)

if we take a differential of this, we get the number of momentum eigenstates within the interval
p + dp. This differential is

dN = d2p
1

eα+βε(p) − 1

(
A

h2

)
, (71)

where the A
h2

term is the momentum density (the quantum of momentum in 2 dimensions). We
can reduce this to an integral over only the magnitude of the momentum by inserting dp = pdpdθ,
and immediately integrate the θ dependence out over the region 0 < θ < 2π, which yields

dN =
2πA

h2

pdp

eα+βε(p) − 1
. (72)

Using the relationship of energy and momentum, ε = p2/2m, we can write the differential energy
as

dε =
p

m
dp . (73)

Inserting this into the previous equation, we see the number of momentum eigenstates in the interval
ε+ dε is

dN =
Am

2π~2

dε

eα+βε − 1
, (74)

where now ε is independent of the momentum.

9.2 Areal Particle Density.

Use the result of 4.1 to obtain an integral formula for N/A as a function of α and τ for a 2D
Bose-Einstein gas.

The expression in Equation 74 can be integrated over dε to find the total number, dividing this by
the area yields ∫

dN

A
=

m

2π~2

∫
dε

eα+βε − 1
, (75)

noting that β = 1/τ . Introducing the chemical potential µ = −α
β , we see

N

A
=

m

2π~2

∫
dε

eτ(ε−µ) − 1
, (76)

which is an integral formula for the areal density of the particles.
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9.3 2D Bose-Einstein Condensate?

Show that the result obtained in 4.2 implies that no Bose-Einstein condensation occurs for the
two-dimensional ideal Bose-Einstein gas.

Bose-Einstein condensation occurs at densities greater than some critical density nc. This critical
density occurs at the maximum of the integrand, which is α = 0→ µ = 0. The critical density for
this system is given by

nc =
m

2π~2

∫ ∞
0

dε

eτε − 1
, (77)

which diverges on this interval (as ε → ∞). Since the critical density is infinite, no density above
the critical can exist, and as such no Bose-Einstein condensation may occur.
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10 Garrod #7.27: Relativistic Bosons.

10.1 Linear Energy-Momentum Relationship.

Consider a system of conserved bosons for which the relationship between energy and momentum
is not ε = p2/2m, but ε = cp, where p = |p|. For this system, calculate the Bose-Einstein conden-
sation temperature τC as a function of the particle density.

Similar to the derivation of the ideal Fermi gas, we can write the density of bosons in this system
as

N

V
=

1

h3

∫
1

eα+βε(p) − 1
d3p , (78)

found by differentiating the grand potential given by Garrod equation 7.46 with respect to the
negative affinity, first removing the factor of two do to spin degeneracy, and swapping the sign of
the one to obey Bose-Einstein statistics. If we write the volume element as d3p = p2dpdΩ, we see

n ≡ N

V
=

4π

h3

∫
p2dp

eα+βε(p) − 1
, (79)

after carrying out the integration over solid angle. Using the energy-momentum relationship, we
can transform this integral to one over energy as

n =
4π

c3h3

∫ ∞
0

ε2dε

eα+βε − 1
=

4π

c3h3
τ3

∫ ∞
0

x2dx

eα+x − 1
, (80)

after making another change of variables such that x = βε, with the temperature τ = 1/β. Rear-
raging this yields an expression for the inverse temperature in terms of the density:

τ−3 =
4π

c3h3
n

∫ ∞
0

x2dx

eα+x − 1
. (81)

The critical temperature occurs at the maximum value of this integral, which is when the affinity
is zero. This is

τ−3
C =

4π

c3h3
n

∫ ∞
0

x2dx

ex − 1
=

4π

c3h3
n(2ζ(3)) , (82)

using the identity given by Garrod equation 7.68, where ζ(x) is the Riemann zeta function (note
Γ(3) = 2). Solving for the critical temperature yields

τC = hc

[
n

8πζ(3)

]1/3

. (83)

10.2 Cubic Energy-Momentum Relationship.

For a system of particles in which ε = cp3, show that there is no Bose-Einstein condensation.

Starting from Equation 79, and inserting the energy momentum relation p = (ε/c)1/3, we can write
the density as

n =
4π

h3

∫ ∞
0

(ε/c)2/3
[

1
3

(
ε
c

)−2/3 dε
c

]
eα+βε − 1

=
4π

3c

∫ ∞
0

dε

eα+βε − 1
. (84)

The critical density is this expression integrated with α = 0. This results in a divergent integral,
so the critical density is infinite. Therefore no Bose-Einstein condensation can occur becuase the
density of bosons can never be greater than infinity.
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11 Garrod #8.4: Repulsive Potential of Arbitrary Power.

11.1 The Cluster Integral.

Determine the cluster integral, C2(T ), for particles with a repulsive interaction potential, v(r) =
a/rλ, where λ > 3. [Hint:

∫∞
0 exp(−x)xsdx = Γ(s− 1).]

Let us begin by noting another of Garrod’s errors, the hint should read6:∫ ∞
0

exp(−x)xsdx = Γ(s+ 1) . (85)

Using Garrod equation 8.15, the second cluster integral for this potential is given by

C2(T ) = 2π

∫ ∞
0

(
e−βar

−λ − 1
)
r2dr . (86)

We can integrate this by parts using

dv = r2dr ⇒ v =
1

3
r3 (87)

u = e−βar
−λ − 1 ⇒ du = e−βar

−λ
(λβar−λ−1)dr (88)

so the integral can be expressed

C2(T ) = 2π

{[
1

3
r3(e−βar

−λ − 1)

] ∣∣∣∣∞
r=0

−
∫ ∞

0

1

3
r3e−βar

−λ
(λβar−λ−1)dr

}
, (89)

and we can note the boundary term vanishes provided λ > 3, which is the case for this potential.
This can be seen by invesitgating the limiting behavior of

r3(e−1/rλ − 1) , (90)

with λ > 3. For the r → 0 limit, the cubic term is zero and the expoenential is finite, so this
limit is zero. In the large r limit, the r term diverges, while the exponential converges to one, so
the two-term factor converges to zero faster than the cubic diverges. The reaining integral can be
evaluated using a change of variables such that

x = βar−λ (91)

dx = −λβar−λ−1dr (92)

r =

(
x

βa

)−1/λ

, (93)

so

C2(T ) = 2π

∫ ∞
0

1

3
r3e−βar

−λ
(−λβar−λ−1)dr =

2

3
π

∫ 0

∞

(
x

βa

)−3/λ

e−xdx . (94)

Using the (corrected) hint from Garrod, we see this integral is

C2(T ) = −2

3
π (βa)3/λ Γ(1− 3

λ) . (95)

6Zwillinger, CRC Standard Mathematical Tables and Formulae, 31 ed. Equation 641.
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11.2 Parameters as Expansions in Particle Density.

Write expressions for βp and E/N as expansions in the particle density n up to second order.

Using Garrod equation 8.16, we can write the first expansion to second order in the activity ζ as

βp = ζ + C2(T )ζ2 +O(ζ3) , (96)

which if we assume the activity is related to the particle density as in an ideal gas7, then we see
this expansion is also to second order in the particle densityy n. This is given by

βp = n− 2

3
π (βa)3/λ Γ(1− 3

λ)n2 +O(n3) . (97)

We can now use Garrod equation 8.21 to write the energy density as

E

N
=

3

2

1

β
− 1

n

(
C ′2(β)n2 + C ′3(β)n3 +O(n4)

)
, (98)

where the prime denotes a derivative with repect to β. We can see we must calculate C3(T ) to go
to second order in n. Which we could do if we were interested using Garrod equation 8.12. If we
did this we would see

E

N
=

3

2

1

β
− ∂C2

∂β
n− ∂C ′3

∂β
n2 +O(n3) (99)

=
3

2

1

β
+

2π

λ
a3/λΓ(1− 3

λ)β
3
λ
−1n− ∂C ′3

∂β
n2 +O(n3) . (100)

7Not neccesarily a great assumption because Garrod equation 8.17 is an expansion for the particle density in term
of the activity. The cluster integrals of second or ghigher order are zerofor an ideal gas.

Page 18 of 19



Dylan J. Temples Garrod : Chapters 6, 7, 8

12 Garrod #8.5: Virial Coefficients for a Dieterici Gas.

Determine the virial coefficients, B2(T ) and B3(T ), for a gas that satisfies Dieterici’s equation of
state, p(v − b) = RT exp(−a/vT ), where a and b are constants and v is the molar volume.

We can rearrange Dieterici’s equation to write

p

T
=

1

v − b
Re−a/vT , (101)

and if we divide both sides by the Boltzmann constant k, the left-hand side will be in the correct
form to perform a virial expansion, and the right-hand side will have a term R/k. This term is
simply Avogadro’s constant NA, or one mole. Since v is the molar volume, we have NA/v = n,
where n is the particle density. We will take NA = 1, because v is the volume occupied by one
mole of the gas. Our virial expansion is then of the form

1

v − b
e−a/vT =

1

v
+B2

(
1

v

)2

+B3

(
1

v

)3

+ . . . . (102)

Taylor expanding the exponential yields

e−a/vT = 1− a

T

1

v
+

a2

2T 2

(
1

v

)2

− a3

6T 3

(
1

v

)3

+O(v−4) . (103)

When we multiply this by the factor (v − b)−1, we get the result

p

kT
=

1

v − b
− a

T

1

v(v − b)
+

a2

2T 2

1

v2(v − b)
+O(v−4) . (104)

We can note:
1

v − b
=

1

v
+ b

1

v(v − b)
(105)

1

v(v − b)
=

1

v2
+ b

1

v2(v − b)
(106)

1

v2(v − b)
=

1

v3
+ b

1

v3(v − b)
, (107)

which we may insert into the virial expansion:

p

kT
=

(
1

v
+ b

1

v(v − b)

)
− a

T

(
1

v2
+ b

1

v2(v − b)

)
+

a2

2T 2

(
1

v3

)
+O(v−4) (108)

=
1

v
− a

T

(
1

v

)2

+
a2

2T 2

(
1

v

)3

+

(
b

1

v(v − b)
− ab

T

1

v2(v − b)

)
+O(v−4) (109)

=
1

v
− a

T

(
1

v

)2

+
a2

2T 2

(
1

v

)3

+ b

(
1

v2
+ b

1

v2(v − b)
− a

T

1

v3

)
+O(v−4) (110)

=
1

v
+
(
b− a

T

)(1

v

)2

+

(
a2

2T 2
− ab

T

)(
1

v

)3

+ b

(
1

v2(v − b)

)
+O(v−4) (111)

=
1

v
+
(
b− a

T

)(1

v

)2

+

(
a2

2T 2
− ab

T
+ b2

)(
1

v

)3

+O(v−4) , (112)

so the first two coefficients in the virial expansion are

B2(T ) = b− a

T
and B3(T ) =

a2

2T 2
− ab

T
+ b2 . (113)
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