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1 Goldstein 1.13.

1.1 Determining Equation of Motion

To find the equation of motion of a rocket expelling exhaust gasses in a uniform gravitational
potential, we begin by determining the momentum of the rocket/fuel system before any fuel (mass)
is expelled and after all the fuel has been expelled. The momentum of this system, at time t, is
Pt = Procket + Pfuel. Let t = 0 be the time after which mass is expelled from the rocket, and
t = ∆t be the time at which all the fuel has been expended. At these times the system’s momentum
is given by

P0 = (m+ ∆m)v (1)

P∆t = m(v + ∆v) + ve∆m , (2)

where m is the mass of the empty rocket, ∆m is the mass lost after time ∆t (equivalent to the mass
of the fuel), and ∆v is the velocity gained by the rocket after expelling mass ∆m. The velocity of
the exhaust gasses in the frame of a stationary observer, ve, is related to the velocity of the rocket
by ve = v − u, where u is the velocity of the gasses relative to the rocket. Substituting this into
Equation 2, then subtracting Equation 1 from Equation 2 yields the change in momentum,

∆P = mv +m∆v + v∆m− u∆m−mv − v∆m = m∆v − u∆m . (3)

Dividing this by the time interval, ∆t, and reducing to infinitesimal quantities gives

dP

dt
= m

dv

dt
+ u

dm

dt
(4)

where the sign change comes from the fact that expelling a positive ∆m results in a decrease in
mass, −dm. The time derivative of momentum, Equation 4, is also equal to the sum of the external
forces, in this case, the force of gravity from the Earth, dP

dt = −mg. Using this, and rearranging
terms yields the equation of motion,

m
dv

dt
= −udm

dt
−mg . (5)

1.2 Determining Velocity as a Function of Mass

Dividing Equation 5 by m and integrating with respect to time gives∫ t

0

dv

dt
dt = −u

∫ t

0

dm

m

1

dt
dt− g

∫ t

0
dt . (6)

However, since the dt cancels in the first term on the right hand side of Equation 6, the integral is
over mass. At time t = 0 the mass is m0 = m+ ∆m, and after time t (∆t in Section 1.1) the mass
is just m. Let v(t = 0) = v0; integrating the two time integrals and moving v0 to the right hand
side gives an expression for v(t),

v(t) = v0 − u
∫ m

m0

dm

m
− gt . (7)

In order to get this expression as a function of m alone, we can eliminate t, by noting

dm

dt
=
m−m0

t
, (8)
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and solving for t. Evaluating the final integral, combining the logarithms, and substituting in t
using the above expression gives the velocity of the rocket as a function of mass,

v(m) = v0 − u ln

[
m

m0

]
− gm−m0

ṁ
. (9)

1.3 Determining Fuel to Rocket Mass Ratio

For a rocket initially at rest, with a mass loss per second of ṁ = −m0/60, and noting that
m0 = m+ ∆m, Equation 9 simplifies to

v(m) = −u ln

[
m

m+ ∆m

]
− g −∆m

−(m+ ∆m)/60
. (10)

A rocket reaching escape velocity, VE , just as it burned off all the fuel (so the final mass is just m),
has v(m) = VE . Using this and rearranging Equation 10 gives

ln

[
m

m+ ∆m

]
= −

(
60g

∆m

m+ ∆m
+ VT

)
/u , (11)

which by exponentiating and inverting simplifies to

m+ ∆m

m
= exp

[(
60g

∆m

m+ ∆m
+ VT

)
/u

]
. (12)

The ratio of fuel mass to rocket mass, ∆m
m , can be found using the above equation. Though as it

is written, Equation 12 is a transcendental equation, it can be solved if we make the assumption
∆m� m, which means m+ ∆m ' ∆m. In this case Equation 12 simplifies to

∆m

m
= exp[(60g + VT )/u] . (13)

On Earth, according to the all-knowing Wikipedia, the escape velocity is 11.2 km/s. Assuming the
exhaust velocity is 2.1 km/2, and g = 9.8 m/s2, this ratio is 274.056.
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2 Goldstein 1.14.

Both masses, m, are a distance l/2 from the center of mass of the two mass and massless rod
system. The center of mass of that system is constrained to move along a circle of radius a. Let θ̂
be the angle the center of mass makes with the vertical line through the center of the circle. Let
φ̂ be the angle each mass makes with the vertical line through the center of mass (see Figure 1a).
This gives position vectors for the center of mass as well as each mass, mi,

~RCM = aθ̂ (14)

~ri = (l/2)φ̂ . (15)

Velocities of both masses and center of mass can be found by by differentiating these with respect
to time,

vCM = aθ̇ (16)

vi = (l/2)φ̇ . (17)

Equation 1.31 of Goldstein tells us the kinetic energy of a system of particles is given by

T =
1

2
Mv2

CM +
1

2

∑
i

miv
2
i , (18)

where M is the total mass of the system, in this case 2m. Because both masses, their displacement
from the center of mass, and their velocities are equivalent, Equation 18 simplifies to

T = ma2θ̇2 +mv2
i . (19)

Plugging in the velocity of each mass given by Equation 17 yields our final result,

T = m[a2θ̇2 +
1

4
l2φ̇2] . (20)
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3 Problem #3: Path Minimization on a Cylinder.

Cylindrical coordinates, (r, z, θ), on a cylinder of fixed radius, R, reduces to a two dimensional
space, (z,Rθ). Assume there is a curve, S with endpoints (z1, φ1) and (z2, φ2) (see Figure 1b). Any
arc along this curve is given by

dS =
√
dz2 + (Rdφ)2. (21)

Using the chain rule,

dz =
∂z

∂φ
dφ = z′dφ , (22)

which gives
dS = dφ

√
[z′(φ)]2 +R2 . (23)

Integrating this to get the length between the two points: (z1, Rφ1) and (z2, Rφ2) gives

l =

∫ φ2

φ1

dφ
√

[z′(φ)]2 +R2 , (24)

where

A : z(φ1) = z1 (25)

B : z(φ2) = z2 (26)

are the constraints on the function z(φ) at points A and B. In these coordinates, the Euler equation
is

df

dz
− d

dφ

df

dz′
= 0 , (27)

where f is given by
f(z(φ), z′(φ);φ) =

√
z′(φ)2 +R2 . (28)

The derivatives of f with respect to z and z′ are

df

dz
= 0 (29)

df

dz′
=

1

2
(z′(φ)2 +R2)−1/2(2z′(φ)) . (30)

Plugging these values into the Euler equation gives

d

dφ

z′(φ)√
z′(φ)2 +R2

= 0 . (31)

This implies the argument for the derivative is equal to a constant, c. Solving this expression for
z′ in terms of c gives

z′(φ) =
cR√

1− c2
. (32)

Solving this differential equation gives the equation of a helix, z(φ) = kφ, where k is given by

k =
cR√

1− c2
. (33)

Page 5 of 8



Dylan J. Temples Goldstein : Solution Set One

(a) Coordinates for a rod with two
masses at each end, constrained to
move around a circle - (θ,φ).

(b) Coordinates for cylindrical coordinates with a fixed
radius - (z,Rφ).

Figure 1: Diagrams depicting coordinates for Problems #2 and #3.
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4 Problem #4: Motion with Drag.

4.1 Linear Drag

A linear drag coefficient, αv, gives an equation of motion,

dv

dt
= g − α

m
v . (34)

Through dimensional analysis the units of α can be determined to be [kg/s]. In order to find τ in
the units of time, the parameters m and α must be combined as

τ =
m

α
. (35)

This simplifies the equation of motion to

v̇ = g − 1

τ
v . (36)

However, when the particle subjected to these forces reaches terminal velocity, VT , the acceleration
is zero. In other words, v̇ = 0, giving

VT = τg . (37)

This again simplifies the equation of motion to

v̇ =
VT
τ
− v

τ
. (38)

In order to make these quantities dimensionless, we make the substitutions

u =
v

VT
⇒ dv = VTdu (39)

T =
t

τ
⇒ dt = τdT . (40)

Making these substitutions for the derivatives, Equation 38 becomes

du

dT

VT
τ

=
1

τ
[VT − v] , (41)

simplifying to
du

dT
= 1− u . (42)

4.2 Linear Drag

This method is repeated using a quadratic drag factor, βv2, giving an equation of motion,

dv

dt
= g − β

m
v2 . (43)

Combining the parameters β, m, and g to find τ in units of time gives

τ =

√
m

βg
. (44)
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Meanwhile the terminal velocity, VT , using the same methodology as in the linear drag case, is
given by

VT =

√
mg

β
= τg . (45)

Substituting these values into the equation of motion, Equation 43, becomes

dv

dt
=
VT
τ
− 1

VT τ
v2 , (46)

which, after making the substitutions given by Equations 39 and 40

du

dT
= 1− u2 . (47)

4.3 Numeric Integration

These dimensionless equations of motion can be integrated using computational software. The
Mathematica function NDSolve[] numerically solves differential equations, and was used to in-
tegrate Equations 42 and 47, as follows.

linear = NDSolve[{y’[x] == 1 - y[x] , y[0] == 0}, y, {x, 0, 5}];

quad = NDSolve[{y’[x] == 1 - y[x]^2 , y[0] == 0}, y, {x, 0, 5}];

Plot[{Evaluate[y[x] /. linear], Evaluate[y[x] /. quad]}, {x, 0, 5}, PlotRange -> All]

This script generates the plot shown in Figure 2, below.

Figure 2: Results of the numerical integration of the dimensionless equations of motion for linear
drag (blue) and quadratic drag (yellow).
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