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1 Problem #1: Speed Along an Orbit.

Given details about the shape of an elliptic orbit and an expression for energy in terms of eccen-
tricity, the relationship between velocity and orbital radius can be found. The energy of the orbit
as a function of eccentricity (ε) can be found by solving Goldstein Equation 3.57 for energy,

E = −κ
2µ

2l2
(1− ε2) . (1)

where µ is the reduced mass of the sun-planet system, κ is the attraction factor of the gravitational
potential, and l is the angular momentum of the planet. The equation for the semi-latus rectum is

rS = a(1− ε2) =
l2

κµ
. (2)

where a is the semi-major axis of the orbit. Note the factor of 1− ε2 is just rS/a, which using the
far right expression for rS and substituting in 1− ε2 = rS/a, gives the energy to be

E = −κ
2µ

2l2
l2

aκµ
= − κ

2a
, (3)

which is just the sum of kinetic and potential energies,

− κ

2a
=

1

2
mv2 +

(−κ)

r
, (4)

where m is the mass of the planet and r is the distance of the planet from the sun. This can be
solved for the velocity squared, giving

v2 =

(
2

m

)[κ
r
− κ

2a

]
=

κ

m

[
2

r
− 1

a

]
. (5)
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2 Goldstein 3.10.

A planet of mass M is in an orbit around the Sun with eccentricity ε = 1−α where α� 1. Assume
the motion of the Sun can be neglected, and that only gravitational forces act. When the planet is
at its greatest distance from the Sun, it is struck by a comet of mass m, where m�M , travelling
in a tangential direction. Assuming the collision is completely inelastic, find the minimum kinetic
energy the comet must have to change the new orbit to a parabola. A planet in an elliptic orbit has
energy Ep < 0, while a planet in a parabolic orbit has Ep = 0. In order for a comet with kinetic
energy Tc to change a planet’s orbit from elliptic to parabolic it must be that Tc is high enough to
impart enough energy through an inelastic collision (where kinetic energy is not conserved) that
will raise the planet’s (now of mass m+M) total energy to zero. Note that while kinetic energy is
not conserved in an inelastic collision, linear momentum is.

Before the collision the planet has energy Ep = T + U and is located at aphelion. Conservation of
linear momentum from just before the collision and just after gives

mvc +Mvp = (m+M)vf , (6)

where vc and vP are the velocities of the comet and planet, respectively, before the collision, and
vf is the final velocity of the new composite object. This makes the expression for the final velocity

vf =
m

m+M
vc +

M

m+M
vp , (7)

which if we approximate that m+M 'M for m�M , this becomes

vf =
m

M
vc + vp . (8)

This expression can be used to get an expression for the total energy of the comet-planet composite
object’s orbit around the sun just after the collision at aphelion, ra,

Ef = T +U =
1

2
(M +m)v2f −

κ

ra
=

1

2
(M +m)

(m
M
vc + vp

)2
− κ

ra
=

1

2
M
(m
M
vc + vp

)2
− κ

ra
, (9)

where in the last step, the same approximation was used as in Equation 8. However, the velocity of
the planet at aphelion is only due to its angular momentum and can be replaced by vp = l/(Mra).
This equation expands to

Ef =
1

2

m2v2c
M

+mvcvp +
1

2
Mv2p −

κ

ra
=

1

2

m2v2c
M

+mvcvp + Ep , (10)

where Ep is the total energy of the planet before the collision, still in its elliptical orbit. Just before
the collision, as well as just after, the planet is located at its aphelion distance, ra. The energy of
an elliptical orbit was found in Section 1 to be Ep = −κ

2a , where a is the semi-major axis. Making
this substitution makes the planet-comet final energy

Ef =
1

2

m2v2c
M

+mvcvp −
κ

2a
= mvcvp −

κ

2a
, (11)

where the m2/M term was neglected because m/M << 1 so it is effectively zero, regardless of the
constant it is multiplied by. For a parabolic orbit, the final energy must be zero, which is what is
desired for this question. Setting Ef to zero gives and solving the above for vc give

vc = − κ

2amvp
. (12)
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Using this expression and the expression for the planetary velocity squared, Equation 5, allows the
minimum necessary kinetic energy of the comet to be calculated,

Tc =
1

2
mv2c =

1

8

mκ2

a2m2v2p
=

1

8

κ2

a2m

(
M

κ

ara
2a− ra

)
=

1

8

κM

am

(
ra

2a− ra

)
. (13)

It can be shown geometrically that the aphelion distance ra = a(1 + ε). This makes the comet’s
kinetic energy

Tc =
1

8

κM

am

(
a(1 + ε)

2a− a(1 + ε)

)
=

1

8

κM

am

(
1 + (1− α)

2− (1 + (1− α))

)
=

1

8

κM

am

(
2− α
α

)
, (14)

giving the final expression for the minimum kinetic energy required for the comet to bump the
planet from an elliptical orbit to a parabolic one, to be

Tc =
1

8

κM

am

(
2

α
− 1

)
, (15)

which is correct dimensionally. This kinetic energy varies inversely with α, which would imply
that the closer the orbit is to hyperbolic (smaller values of α) means the comet would need infinite
energy to bump the elliptic orbit up to a hyperbolic one, which does not seem right. Since the
semi-major axis is also in the denominator this problem is fixed. As the orbit becomes more and
more elliptical on its way to being a hyperbola, the semi-major axis increases. So as α→ 0, a→∞,
which fixes the problem.
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3 Goldstein 3.13.

Consider a particle of mass m in the circular or-
bit shown, where the force is directed toward a
point on the edge of the circle as shown in Fig-
ure 1. As the particle orbits, the force varies
as the inverse power of distance from the origin.
In order to show, this the first step is to deter-
mine coordinates for the orbit, obviously polar
coordinates is the best choice, but the points on
the orbit are not described by the standard po-
lar coordinates. Start with the equation for a
circle with an arbitrary center and a radius of a
in Cartesian coordinates,

(x− x0)2 + (y − y0)2 = a2 , (16)

in this case the center is located at (x, y) = (a, 0),
making the circle equation

(x− a)2 + y2 = a2 . (17)

Figure 1: Depiction of the force and particle’s
orbit used in Problem #3.

Using the transformation for Cartesian coordinates from polar coordinates, x = r cos θ and y =
r sin θ, the equation for the orbit of the particle becomes

a2 = (r cos θ − a)2 + (r sin θ)2 = r2 cos2 θ + a2 − 2ar cos θ + r2 sin2 θ , (18)

which gives the particles distance from the origin as a function of θ,

r2 = 2ar cos θ ⇒ r = 2a cos θ , (19)

from this it can be seen that for each full cycle of θ = 0 → 2π, there are two full orbits of the
particle. When θ points to the left of the y-axis, it gives a negative r value, which points to the
correct spot on the orbit on the right of the y − axis.

3.1 Finding the Force.

Following the derivation of the shape equation in class, let u ≡ 1/r so,

u =
1

2a
cos−1 θ (20)

u′ =
1

2a
(− cos−2 θ)(− sin θ) =

1

2a

sin θ

cos2 θ
(21)

u′′ =
1

2a
(cos θ)(cos−2 θ) + (sin θ)(−2 cos−3 θ)(− sin θ) =

1

2a

[
1

cos θ
+

2 sin2 θ

cos3 θ

]
. (22)

Goldstein Equation 3.12 gives the equation of motion for a particle in orbital motion under an
arbitrary force in the radial direction, f(r), which is

mr̈ =
l2

mr3
+ f(r) , (23)
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where l is the angular momentum. To solve this for f requires knowing the second time derivative
of the r coordinate. Use the chain rule to redefine the time derivative operator,

d

dt
=

d

dθ

dθ

dt
= θ̇

d

dθ
=

l

mr2
d

dθ
, (24)

using the definition of angular momentum, Goldstein Equation 3.8. To find ṙ use the redefined
operator on r,

ṙ =
d

dt
[r] =

l

mr2
d

dθ
[r] =

lu2

m

d

dθ

[
1

u

]
=
lu2

m

[
−1

u2
du

dθ

]
= − l

m
u′ , (25)

to find the second time derivative repeat the above operation on ṙ,

r̈ =
d

dt
[ṙ] =

l

mr2
d

dθ
[ṙ] =

lu2

m

d

dθ

[
−u′ l

m

]
= − l

2u2

m2
u′′ . (26)

Using these derivatives, Equation 23 becomes

r̈ =
l2

m2r3
+

1

m
f(r)⇒ − l

2u2

m2
u′′ =

l2u3

m2
+

1

m
f(r) , (27)

which simplifies to

u′′ = −u+
m

l2u2
f(r) . (28)

To find f(r), the quantity u′′ + u must be calculated from Equations 20 and 22,

u′′ + u =
1

2a

1

cos θ
+

1

2a

[
1

cos θ
+

2 sin2 θ

cos3 θ

]
=

1

2a cos θ

[
1 + 1 +

2 sin2 θ

cos2 θ

]
=

1

a cos θ
[1 + tan θ] . (29)

Simplifying the above equation, plugging in to Equation 28, and solving for the force yields

1

a cos3 θ

l2u2

m
= f(r) , (30)

using the identity 1 + tan θ = cos−2 θ. The first term in the above equation looks like the third
power of u, times some constant coefficient:

1

a cos3 θ
= Au3 =

A

8a3
1

cos3 θ
, (31)

so the coefficient is 8a2. Substituting this expression for the first term in Equation 30 yields the
expression for f(u),

f(u) = (8a2u3)
l2u2

m
. (32)

Using the substitution that u = 1/r, the force as a function of distance from the origin is given by

f(r) =
8l2a2

m
r−5 ≡ κr−5 , (33)

which scales as the inverse fifth power of distance.
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3.2 Energy of the Particle

The total energy of the particle is given by

E = T + U = T +

∫
f(r)dr = T − κ1

4
r−4 . (34)

The kinetic energy of a particle moving in both r and θ is given by,

T =
1

2
m(ṙ2 + r2θ̇2) , (35)

which will simplify after plugging in the definition of r from Equation 19. Note that

ṙ = 2a(− sin θ)θ̇ = − 2al

mr2
sin θ ⇒ ṙ2 =

4a2l2

m2r4
sin2 θ , (36)

which plugging in to the equation for total energy yields

E =
1

2
m

(
4a2l2

m2r4
sin2 θ + 4a2 cos2 θ

l2

m2r4

)
− κ

4
r−4 =

2a2l2

mr4
− κ

4r4
=

2a2l2

mr4
− 8l2a2

m

1

4r4
= 0 . (37)

3.3 Period of the Orbit

To calculate the period of the orbit, we have to integrate the angular velocity over half a cycle of
θ. Note that in the beginning of the problem, it was explained that for full cycle in θ the particle
completes two orbits. This is due to the fact that when 0 ≤ θ ≤ π

2 the radial component traces out
the half of the orbit with positive y values. During the region π

2 < θ ≤ π the radial component is
negative so it traces out the bottom half of the circular orbit. For π ≤ θ < π

2 the radial component
is still negative so it points to the positive x and positive y quadrant, tracing out the top half of the
orbit again. Finally, on 3π

2 ≤ θ < 2π, the bottom half of the orbit is traced out again. Therefore a
full orbit takes place from 0 ≤ θ ≤ π.

The angular velocity’s relationship with angular momentum is given by

dθ

dt
= θ̇ =

l

mr2
=

l

4a2m cos2 θ
=

l

2a2m(1 + cos 2θ)
, (38)

which after rearranging and applying an integral becomes∫ τ

0
dt =

2a2m

l

∫ π

0
dθ(1 + cos 2θ) . (39)

Taking the integral yields an expression for the period,

τ =
2a2mπ

l
. (40)

3.4 Cartesian Velocities at Origin

The velocity of the particle and it’s Cartesian projections are given by

ẋ =
d

dt
[2a cos2 θ] = −4a cos(θ) sin(θ)θ̇ = −2aθ̇ sin(2θ) (41)

ẏ =
d

dt
[2a cos θ sin θ] =

d

dt
[a sin(2θ)] = 2aθ̇ cos(2θ) (42)

v =
√
ẋ2 + ẏ2 = 2aθ̇ . (43)
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These simplify to functions of r and θ by eliminating θ̇,

ẋ− 2al

mr2
sin(2θ) (44)

ẏ =
2al

mr2
cos(2θ) (45)

v =
2al

mr2
. (46)

The center of the force is located at r = 0 and θ = (nπ/2)+ for odd n. Taking the limits of these
as the coordinates approach their appropriate values gives

lim
r→0

lim
θ→π/2

ẋ = −2al

m
lim
r→0

lim
θ→π/2

sin(2θ)

r2

= −2al

m
lim
r→0

lim
θ→π/2

2 cos(2θ)

2r
= −2al

m
lim
r→0

2 cos(θ)

r
=∞

lim
r→0

lim
θ→π/2

ẏ =
2al

m
lim
r→0

lim
θ→π/2

cos(2θ)

r2
=

2al

m
lim
r→0

−1

r2
=∞

lim
r→0

v =
2al

m
lim
r→0

1

r2
=∞ .
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4 Problem #4: Force in Electromagnetism.

Electromagnetism is also an attractive central force with f(r) = −κ/r2 when the charges are
opposite, but when they are the same it is repulsive, f(r) = +κ/r2. In this case, all orbits are
hyperbolic, which can be seen by investigating the energy of the particle. According to the table on
Goldstein page 94, the energy of a hyperbolic orbit is always positive, so for any positive energy the
orbit is always hyperbolic. For an orbit in polar coordinates, the effective potential for a general
force in the center of mass frame is given by Goldstein Equation 3.22’,

Veff = V +
l2

2µr2
, (47)

where µ is the reduced mass of the two like-charged particles interacting. For repulsive electromag-
netism, this becomes

Veff =
κ

r
+

l2

2µr2
, (48)

making the total energy of a repulsive electromagnetic orbit,

E = T + Veff =
1

2
µv2 +

κ

r
+

l2

2µr2
, (49)

since κ, µ, and r are all defined to be positive, the energy can never be negative. This implies
every orbit is hyperbolic. This can be seen from deriving the shape equation for the repulsive force.
Beginning with the equation of motion (in u(r)) given in the class notes,

u′′ = −u− µ

l2u2
f(r) (50)

and putting in the repulsive E&M force gives

u′′ = −u− κµ

l2
, (51)

which can be solved by making the substitution x ≡ u+ κµ
l2

such that

x′′ = −x , (52)

note that x is a function of u, which is a function of r, which is a function of φ due to the redefinition
of the time derivative operator, just as in Equation 24. The above differential equation can be solved
by

x(φ) = A cos(φ+ δ) , (53)

where δ is an arbitrary phase. Using the definition of x and dropping the phase gives

u(φ) = −κµ
l2

+A cosφ =
κµ

l2
[ε cosφ− 1] , (54)

where ε is the eccentricity. By defining a length scale ra = l2

κµ , the eccentricity becomes ε = Ara.
Substituting these facts in and inverting gives the shape equation,

r(φ) =
ra

ε cosφ− 1
. (55)
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From the shape equation, the angle between asymptotes of the arms of the hyperbola can be found.
The hyperbola approaches its asymptotic values as r →∞. Solving the shape equation for φ gives
the angle from the central axis to one of the asymptotic arms,

ε cosφ =
ra
r

+ 1⇒ φ = arccos

[
1

ε

(ra
r

+ 1
)]

, (56)

and taking the limit,

lim
r→∞

φ = lim
r→∞

arccos

[
1

ε

(ra
r

+ 1
)]

= arccos

[
1

ε

]
. (57)

So the angle from the central axis is φ as r →∞, but the angle between the asymptotes, ψ is twice
this amount,

ψ = 2 arccos

[
1

ε

]
. (58)
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5 Problem #5: Particles on Cones.

Consider a particle of mass m moving along the
surface of a cone, as in Figure 2, under constant
downwards gravitational acceleration g. In cylin-
drical coordinates the kinetic energy of the par-
ticle is given by

T =
1

2
m[ṙ2 + r2θ̇2 + ż2] , (59)

but the z coordinate can be constrained using
α, half the opening angle. Consider the triangle
formed by the line connecting the mass to the
axis of the cone, the line connecting the mass to
the origin (along the cone surface), and the line
connecting the origin to the height of the mass
along the z axis. From this triangle it can be
seen that tanα = r/z, or z = r cotα, making
the kinetic energy,

T =
1

2
m(1 + cot2 α)ṙ2 +

1

2
mr2θ̇2

=
1

2
m(csc2 α)ṙ2 +

1

2
mr2θ̇2 ,

and the potential energy of the mass is

U = mgz = mgr cotα . (60)

Figure 2: Depiction of coordinates for particle
moving on the surface of a cone.

From this the following Euler-Lagrange equations can be found:

d

dt
[mr2θ̇] = 0 (61)

d

dt
[m(csc2 α)ṙ = mrθ̇2 −mg cotα . (62)

The first equation implies that mrθ̇2 = l, where l is a constant angular momentum. This leads to
an equation of motion for the particle on the surface of a cone,

r̈ =
l2

m2r3
sin2 α− g sinα cosα . (63)

The total energy of this particle is E = T + U , which is

E =
1

2
m(csc2 α)ṙ2 +

1

2
mr2θ̇2 +mgr cotα =

1

2
m(csc2 α)ṙ2 +

l2

2mr2
+mgr cotα , (64)

which leads directly to the effective potential, in this case the sum of the actual potential and the
centrifugal terms,

Veff =
l2

2mr2
+mgr cotα , (65)

which is plotted in Figure 3, as well as a line depicting a constant energy E0. Turning points are
the points in space at which a particle with a specific energy will turn around because it cannot
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cross the potential barrier, i.e. when E + Veff . For a constant energy E0 this occurs if

E0 =
l2

2mr2
+mgr cotα , (66)

which becomes a cubic polynomial by multiplying through by r2,

0 = mgr3 cotα− E0r
2 +

l2

2m
. (67)

This polynomial has three roots, but only two have a physical importance. The plot in Figure 3
shows that the constant energy line intersects with the effective potential twice, maximum (except
if the energy is the absolute minimum of the effective potential, and energy less than that is not
allowed). This must mean that there are two real roots and one imaginary root. The real roots
then correspond to the two turning points in the well of the potential. Note that for a cone,
0 < α < π/2, so cotα will always be a positive constant. Therefore, by looking at the constraint
on the z coordinate, a maximum z value occurs at a maximum r value, likewise for minimum
values. Figure 3 shows that, for a constant energy, a particle will be in a stable orbit between some
rmin and some rmax. Which by reducing the system to two dimensions using the symmetry about
the z axis implies that the particle orbits between the point (rmax, zmax) and a point (rmin, zmin)
along the line connecting them through the center of the triangle. Now, reintroducing the third
dimension requires the particle to travel between the points (rmax, zmax, θ1) and (rmin, zmin, θ2)
along the surface of the cone. Projecting this orbit onto the x− y plane would result in an ellipse.

Figure 3: Plot of an effective potential (yellow) and a particle with constant energy (blue). Note
the locations of the turning points rmin and rmax where the lines intersect.
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6 Problem #6: Numerical Treatments of Orbits.

Consider a particle with mass m and angular momentum l in a central force field of form

F = − κ

r5/2
, (68)

where κ is the coupling constant for the force, and r is the particle distance from the force center.
The total energy for a particle moving in this central force, in polar coordinates is

E = T + U =
1

2
m[ṙ2 + r2θ̇2] +

∫
(−F )dr =

1

2
m[ṙ2 + r2θ̇2]−

∫
Fdr . (69)

because −∇U = F . Therefore the total energy is

E = T + U =
1

2
mṙ2 +

1

2
mr2θ̇2 −

[
−−2

3

κ

r3/2

]
. (70)

From this the effective potential can be read off as the sum of the true potential and centrifugal
terms of the total energy,

Veff =
1

2
mr2θ̇2 − 2

3

κ

r3/2
=

l2

2mr2
− 2

3

κ

r3/2
, (71)

using the definition of angular momentum. From this point forward, the units will be changed such
that, m = l = κ = 1, which makes the expression for effective potential

Veff =
1

2r2
− 2

3

1

r3/2
, (72)

shown in Figure 4. At a distance r0 this effective potential takes a minimum, which can be found
by setting its derivative to zero,

dVeff
dr

= 0 = − 1

r30
+

1

r
5/2
0

⇒ 1 = r
1/2
0 . (73)

Therefore the distance r0 that Veff takes its minimum value is 1. It was shown in Section 5 that
turning points are located at E = Veff (rmin) = Veff (rmax). For this potential, the turning points
of a particle with E = −0.1 can be found by solving the equation,

−0.1 =
1

2r2m
− 2

3

1

r
3/2
m

, (74)

which can be done numerically using Mathematica. Issuing Mathematica the commands

U[r_] := 1/(2 r^2) - 2/(3 r^(3/2));

NSolve[U[rm] == -0.1, rm]

returns the two values of rm that satisfy Equation 74, the smaller of which is rmin = 0.667079 (note
that rmax = 2.22214). By working with angle φ in the orbital plane rather than time, the equation
of motion can be transformed into the form

u′′ = −u− µ

l2u2
F , (75)
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where u(φ) ≡ 1/r(φ) and the primes denote derivatives with respect to φ. Which for the force
given in Equation 68, and again setting constants to 1, becomes

u′′ = −u+
1

1u2
u5/2 = −u+ u1/2 . (76)

This can be solved numerically given the initial conditions. Assume that when φ = 0, r = rmin,
this gives u′ = d

dφ(1/r) = −(1/r2)r′. There is no radial velocity (with respect to time or angle)
when the particle is at r = rmin because at this point the effective potential is equal to its energy.
From this, the initial conditions are

u[0] = 1/rmin ; u′[0] = 0 . (77)

This can be done using the Mathematica command NDSolve[] as follows:

s = NDSolve[{u’’[\[Phi]] == -u[\[Phi]] + (u[\[Phi]]^(5/2)/u[\[Phi]]^2),

u[0] == 1/0.667079, u’[0] == 0}, u, {\[Phi], 0, 7 \[Pi]}];

r = 1/Evaluate[u[\[Phi]] /. s];

The solution to this is a numerical list of u values for a range of φ’s. The orbit can be plotted in
the x− y plane by noting that

x = r cosφ =
cosφ

u(φ)
; y = r sinφ =

sinφ

u(φ)
, (78)

as shown in Figure 5. This was plotted using the Mathematica command

ParametricPlot[Evaluate[ {Cos[\[Phi]] / u[\[Phi]], Sin[\[Phi]] / u [\[Phi]]} /.s] ,

{\[Phi], 0, 7 \[Pi]}]

and shown in Figure 5.

Figure 4: Effective potential for a particle mov-
ing under a force F = −κ r5/2.

Figure 5: Projection of the orbit into the x − y
plane.
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