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1 Goldstein 3.24.

1.1 Radial Speed of Elliptical Orbit

The total energy of a particle of mass m in a gravitational field with an elliptical orbit of eccentricity
ε and semi-major axis a is given by

E =
1

2
µ(ṙ2 + r2φ̇2)− κ

r
, (1)

where µ is the reduced mass of m and the mass creating the gravitational field M . But the energy
of an elliptical orbit, from solving Goldstein Equation 3.57 for energy, makes Equation 1

−κ
2µ

2l2
(1− ε2) =

1

2
µ(ṙ2 + r2

l2

µ2r4
)− κ

r
, (2)

where l is the particle’s angular momentum about the origin, and the definition of angular momen-
tum was used, φ̇ = l/(µr2). This can be solved for ṙ,

ṙ2 = −κ
2

l2
(1− ε2) +

2κ

µr
− l2

µ2r2
, (3)

the two last terms can be combined to be (2κµr − l2)/(µ2r2). At this point note that κ = GmM ,
which in terms of the reduced mass is

κ = G(m+M)µ ⇒ κ

µ
= G(m+M) . (4)

It is also necessary to note that the Harmonic Law can be written as,

τ2

a3
=

4π2

G(M +m)
⇒ G(M +m) =

4π2

τ2
a3 = ω2a3 , (5)

by noting that the frequency is 2π divided by the orbital period τ . With these facts, the ratio of
the coupling constant to the reduced mass can be written as

κ

µ
= ω2a3 , (6)

which makes Equation 3 into

ṙ2 = −κ
2

l2
(1− ε2) +

2µ2ω2a3r − l2

µ2r2
. (7)

By introducng the semilatus rectum rs = l2/(κµ) the above equation becomes

ṙ2 = − κ

rsµ
(1− ε2) +

2µ2ω2a3r − rsκµ
µ2r2

(8)

= −ω
2a3µ

rsµ
(1− ε2) +

2µ2ω2a3r − rsω2a3µ2

µ2r2
(9)

= −ω
2a3

rs
(1− ε2)− rsω

2a3 − 2ω2a3r

r2
(10)

= ω2a3
[
− 1

rs
(1− ε2)− rs − 2r

r2

]
. (11)
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The semilatus rectum can be removed from this equation by using its definition rs = a(1− ε2),

ṙ2 = ω2a3
[
−1

a
− a(1− ε2)− 2r

r2

]
(12)

= ω2a3
[
−r2 − a2 + a2ε2 + 2ar

ar2

]
(13)

=
ω2a2

r
[a2ε2 − (r − a)2] , (14)

which gives the equation for radial speed,

ṙ =
ωa

r

√
a2ε2 − (r − a)2 . (15)

By introducing the eccentric anomaly ψ in place of r, the differential equation immediately yields
the Kepler equation.

1.2 Eccentric Anomaly and the Kepler Equation

The eccentric anomaly’s relationship to the radial coordinate r is given by

r = a(1− ε cosψ) , (16)

where a is the semi major axis of the elliptical orbit and ε is the eccentricity of the ellipse. The time
derivative of the radial coordinate is ṙ = aεψ̇ sinψ. Performing this substitution on Equation 15
and squaring both sides yields

a2ε2ψ̇2 sin2 ψ =
ω2a2

a2(1− ε cosψ)2
[a2ε2 − (a(1− ε cosψ)− a)2]

=
ω2

1− 2ε cosψ + ε2 cos2 ψ
[a2ε2 − (aε cosψ)2]

=
ω2a2ε2

1− 2ε cosψ + ε2 cos2 ψ
[1− cos2 ψ] ,

which by noting 1− cos2 ψ = sin2 ψ becomes

ψ̇2 =
ω2

(1− ε cosψ)2
, (17)

which by taking the square root and making the substitution ψ̇ = dψ
dt , then rearragning gives the

equation
dψ(1− ε cosψ) = ωdt . (18)

This equation can be integrated directly,∫
dψ(1− ε cosψ) =

∫
ωdt (19)

ψ − ε sinψ = ωt , (20)

which is the Kepler equation, M = ψ − ε sinψ.
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2 Goldstein 3.21.

Consider the potential field

V (r) = −κ
r

+
h

r2
, (21)

where h is a constant. In this potential the motion of a particle of mass m is the same as that
of the motion under the Kepler potential alone, when expressed in terms of a coordinate system
rotating or precessing around the center of force.

2.1 Kepler Potential in Precessing Coordinate System

The Lagrangian for a particle in this potential is

L =
1

2
mṙ2 +

l2

2mr2
+
κ

r
− h

r2
=

1

2
mṙ2 +

l2 − 2mh

2mr2
+
κ

r
, (22)

using the definition of anglar momentum. Now consider a particle moving only in the Kepler
potential but in a rotating frame. In Cartesian coordinates, this transformation is just a rotation,[

x′

y′

]
=

[
cosφ − sinφ
sinφ cosφ

] [
x
y

]
, (23)

where the primed coordinates are the rotated coordinates. The rotated coordinates give a polar
radial coordinate

r′2 = x′2 + y′2 = (x cosφ− y sinφ)2 + (x sinφ+ y cosφ)2 = x2 + y2 = r , (24)

so the radial coordinate is unchanged, but the angular momentum is. The angular momentum in
this frame is the angular momentum of the particle plus the angular momentum imparted by the
rotating frame, alternatively, the angular momentum of the orbit’s precession. This gives the new
coordinates (using angular momentum as an analog for the angular coordinate) to be

r′ = r , l′ = l − lframe , (25)

the minus sign is due to the frame moving in the same direction as the particle, so in this coordinate
frame the particle would have less angular momentum. This gives the Lagrangian of a particle in
the Kepler potential in a rotating frame to be

L′ = 1

2
mṙ′2 +

l′2

2mr′2
+
κ

r′
=

1

2
mṙ2 +

l2 + l2f − 2llf

2mr2
+
κ

r
. (26)

This is the same form as Equation 22, and by comparison it is easy to see

h = − 1

2m
(l2f − 2llf ) ⇒ 0 = l2f − 2llf + 2hm . (27)

2.2 Angular Speed of Precession

If the angular speed of precession of the elliptical orbit is given by Ω̇, then the angular momentum
due to precession is lf = mr2Ω̇. Solving Equation 27 and equating it to the previous expression (in
terms of Ω̇) gives

mr2Ω̇ = l ±
√
l2 − 2hm = l

(
1±

√
1− (2hm/l2)

)
. (28)
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In the limit that the additional potential term is small compared to the Kepler potential term,
h→ 0, which allows the above equation to be expanded to first order in h,

mr2Ω̇ = l

[
1−

(
1− hm

l2

)]
⇒ Ω̇ =

1

mr2
hm

l
=

h

r2l
. (29)

By introducing another factor of l, the r2 factor can be removed from this expression. The definition
of angular momentum is l = mr2 ˙phi, so by multiplying the numerator and denominator both by l,
the angular speed of precession becomes

Ω̇ =
hl

r2l2
=
hmr2φ̇

r2l2
=
hmφ̇

l2
=

2πhm

τl2
, (30)

by noting the orbital period t is 2π divided by the orbital speed.

2.3 Precession of Mercury

The perihelion of Mercury is observed to precess (after correction for known planetary perturba-
tions) at a rate of about 40” per century. Show that this precession could be accounted for classically
if the dimensionless quantity η = h/(κa) ' 7× 10−8. The eccentricity of Mercury’s orbit is 0.206,
and its period is 0.24 years. Using the two definitions of the semilatus rectum, a(1− ε2) = l2/(κµ),
the speed of precession can be rewritten as

Ω̇ =
2π

τ
hm

1

aκµ(1− ε2)
, (31)

but because the mass of Mercury is negligible compared to the sun, µ ' m, making the above
equation

Ω̇ =
2π

τ
hm

1

aκm(1− ε2)
=

2π

τ

η

(1− ε2)
, (32)

which after plugging in the appropriate values yields Ω̇ = 1.9138110−6 radians per year which is
39.4572” per century.
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3 Problem #3: Yukawa Potentials.

A modified form of the Coulomb potential was explored in the 1930s by Japanese physicist and
Nobel Laureate, Hideki Yukawa. Consider a particle moving in a central force field where the
potential is of the Yukawa form

V (r) = −k exp[−r/a]

r
, (33)

where k and a are positive constants.

3.1 Equations of Motion

This potential gives a Lagrangian,

L =
1

2
m(ṙ2 + r2φ̇2) + k

exp[−r/a]

r
, (34)

which is cyclic in φ, yielding the standard form the relationship between angular momentum and
angular vevlocity, φ̇ = l

mr2
. The reduced, one dimensional equation of motion is

mr̈ = − l2

mr3
− k exp[−r/a]

r

[
1

r
+

1

a

]
. (35)

It is easy to see from the Lagrangian (the total energy would have a negative potential term), the
effective potential is

Veff =
l2

2mr2
− k exp[−r/a]

r
, (36)

therefore the turning points are at Veff = E and minima and maxima are determined by

dVeff
dr

= 0 = − l2

mr3
+
ke−

r
a

r2
+
ke−

r
a

ar
, (37)

which can be rewritten as
l2

mκ
= r exp[−r/a]

(
1 +

r

a

)
, (38)

which does not have an analytic solution. To visualize the solutions to this, the derivative with
respect to r is taken again,

0 =
exp[−r/a]

a2
(a2 + ar + r2) , (39)

so for Equation 38 to have a solution, it must be that a2+ar+r2 = 0, which occurs at rm/a = 1±
√
5

2 .

Since
√

5 > 1 and r > 0, the solution must be the positive one. The right hand side of Equation 38
takes a maximum value when r/a is this solution,

a
rm
a

exp[−rm/a]
(

1 +
rm
a

)
= 0.839962a , (40)

thanks to Mathematica. Therefore if l >
√

0.839962amκ there are no extrema and there are
no bound states or circular orbits. At the critical value l2c = 0.839962amκ there exists one point
where the derivative is zero, which would result in one unstable orbit. For l < lc there is both a
local minimum and maximum of the effective potential which gives rise to a stable and unstable
circular orbit, and bound orbits for energies between the local minimum and maximum of the
effective potential. The limits on the energy are such that bound orbits exist for the condition
previously mentioned, while for energies below the minimum and above the maximum, all motion
is unbounded.
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Figure 1: The three cases for l and its effect on Veff .

3.2 Small Oscillations of Circular Orbits

As previously stated, circular orbits are possible only when the orbiting particle has energy exactly
equal to the minimum of the potential (stable) or equal to the maximum of the potential (unstable).
The angular momentum must be below the critical value for two circular orbits to exist. When it
is at its critical value, only one unstable circular orbit exists. For values of l < lc there are two
locations that allow circular orbits, and the stable orbit will occur with radius ρ < a. For this orbit
Equation 38 will be satisfied, and can be rewritten as

l2

mκ
= ρ exp[−ρ/a]

(
1 +

ρ

a

)
, (41)

these orbits occur at E = Vmin. Orbits with energies slightly above this are still bound and their
radial coordinate is given by r = ρ + δr, where δr is a small perturbation to the orbit. As in the
derivation of the shape equation, the substitution u = 1/r is made, so that u = uρ + δu, so that
u′′ = δu′′. The orbit equation for the standard u coordinate is

u′′ + u = − m

l2u2
d

dr
V (r) = − m

l2u2
1

r2
d

du
V (r) = −m

l2
d

du
V (1/u) ≡ f(u) , (42)

and making the substitution for u becomes

δu′′ + uρδu = f(uρ + δu) = f(uρ) + δuf(uρ) , (43)

where f(u) was expanded around u = uρ. The above equation, to zeroth order in u says uρ = f(uρ).
Which makes the first order expansion

δu′′ + δu = f ′(uρ)δu ⇒ δu′′ + (1− f ′(uρ))δu = 0 , (44)

if (1−f ′(uρ)) ≡ ω2
osc, this takes the form of an oscillator with frequency ωosc. This has the solution

δu = A cos(ωoscθ). The frequency of small oscillations of the orbit can be found by finding f ′(uρ),
but first, the function f must be determined,

f(u) = −m
l2

d

du
V (u) = −m

l2
d

du
[−ku exp(−1/au)] =

mk

l2
exp(−1/au)

[
1 +

1

au

]
, (45)
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but from the first order approximation,

uρ = f(uρ) =
mk

l2
exp(−1/auρ)

[
1 +

1

auρ

]
⇒ exp(−1/auρ) =

l2

mk
uρ

1

1 + (1/auρ)
. (46)

Next, the first derivative of f must be determined (using Mathematica),

f ′(u) =
mk

l2
exp[−1/au]

1

a2u3
, (47)

which evaluated at uρ says

f ′(uρ) =
mk

l2a2u3ρ
exp[−1/au] =

mk

l2a2u3ρ

l2

mk
uρ

1

1 + (1/auρ)
=

(
1

auρ

)2 1

1 + (1/auρ)
. (48)

From all of the above steps, the frequency of small oscillations is determined to be

ωosc =

[
1−

(
1

auρ

)2 1

1 + (1/auρ)

]1/2
=

[
1−

(
1

auρ

)
1

auρ + 1

]1/2
, (49)

which is an exact solution. In order to get a more intelligible form, some approximations must be
made, and will differ for the small, stable orbit, and the larger, unstable orbit.

3.2.1 Stable Orbit

For the small orbit, at or near the minimum of the effective potential, auρ � 1, so the last term in
Equation 49 is approximately 1/(auρ). Using the binomial expansion, this becomes

ωosc =

[
1−

(
1

a2u2ρ

)]1/2
= 1−

(
1

2a2u2ρ

)
. (50)

For a complete revolution, ∆(θωosc) = 2π, the particle passes its original location by an angle `, so
that

∆θ = 2π + ` . (51)

Note that because ωosc is a constant, ∆(θωosc) = ωosc∆θ, yielding

2π

ωosc
' 2π

[
1 +

(
1

2a2u2ρ

)]
= 2π +

πρ2

a2
= 2π + ` , (52)

which says the major axis advances by an angle ` = πρ2

a2
each period of the particle’s orbit.

3.2.2 Unstable Orbit

For the large orbit, at or near the maximum of the effective potential, auρ � 1, so the last term in
Equation 49 is approximately 1. Using the binomial expansion, this becomes

ωosc =

[
1−

(
1

auρ

)]1/2
= 1−

(
1

2auρ

)
, (53)

and using the same logic as for the stable orbit, the major axis advances by an angle ` = πρ
a each

period of the particle’s orbit.
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4 Goldstein 3.33.

A particle of mass m is constrained to move under gravity without friction on the inside of a vertical
paraboloid of revolution.

4.1 Equation of Motion

The equation of a symmetric paraboloid in cylindrical coordinates is z = ar2, where a is a constant
to make the units match. It must have units of inverse length. The generalized coordinates for this
system are r and phi because z is constrained. Therefore the Lagrangian is

L =
1

2
m(ṙ2 + r2φ̇2 + (2arṙ)2)−mgar2 , (54)

which is cyclic in φ, so φ̇ is a constant, which allows the angular speed to be defined in terms of
angular momentum, φ̇ = l/(mr2). The Lagrangian is then reduced to one dimension,

L =
1

2
mṙ2 +

l2

2mr2
+ 2a2mr2ṙ2 −mgar2 , (55)

so the radial equation can be found using the Euler-Lagrange equations,

mr̈ +
d

dt

[
2a2mr2ṙ2

]
= − l2

mr3
+ 4a2mrṙ2 − 2amgr (56)

mr̈ + 4a2mrṙ3 + 4a2mr2ṙr̈ = − l2

mr3
+ 4a2mrṙ2 − 2amgr (57)

mr̈ =
2am2r4

(
2a (ṙ − 1) ṙ2 + g

)
+ l

m2r3 (4a2r2ṙ + 1)
. (58)

Note the effective potential is

Veff =
l2

2mr2
+ 2a2mr2ṙ2 + amgr2 . (59)

4.2 Initial Velocity Conditions

In order to find circular orbits around the inside of the paraboloid, there must be some condition
the initial velocity of the mass must satisfy. Obviously there can be no radial motion, which implies
no motion in the z direction. Because this is a stable orbit, and the angular speed is constant, the
time average of the kinetic energy is just the kinetic evergy, likewise for the potential, so the virial
theorem holds. The potential energy scales as r2, so n = 1, making the virial theorem,

〈T 〉 =
n+ 1

2
〈U〉 ⇒ T = U . (60)

Using the standard form for angular kinetic energy, this becomes

1

2
mφ̇2r2 = amgr2 , (61)

which says the initial angular velocity must be φ̇ =
√

2ag, which has the correct units. In order to
get the initial tangetal velocity for the mass to maintain a circular orbit, it must have an equilibrium
value of r, which can be found by minimizing the effective potential. Note that at the equilibrium
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radius, the radial velocity is zero because it is at a circular orbit so any ṙ terms drop out of the
effective potential,

0 =
dVeff
dr

∣∣∣∣
req

= − l2

mr3eq
+ 2amgreq , (62)

which has a solution req = (l2/2am2g)1/4. So the initial tangental velocity is

vi = reqφ̇ =

(
2l2ag

m2

)1/4

. (63)

4.3 Small Oscillations of Circular Motion

For small oscillations in the circular orbit, δr, the generalized coordinates become ρ+ δr, where ρ
is the equilibrium point in the original radial coordinate. The effective potential can be expanded
in a Taylor series about the stable circular orbit’s radius ρ,

V (δr)|ρ = V (ρ) + V ′(ρ)[(ρ+ δr)− ρ] +
1

2
V ′′(ρ)[(ρ+ δr)− ρ]2 +O(δr3) , (64)

but the first derivative term is zero because the circular oribit is stable. Note that since the orbit
is close to circular any ṙ terms drop out of the effective potential. Terms of order δr3 and higher
are neglected, which makes the above potential into

V (δr)|ρ =

[
l2

2mρ2
+ amgρ2

]
+

1

2
(δr)2

[
3l2

mρ4
+ 2amg

]
=

[
l2

2mρ2
+ amgρ2

]
+

1

2
m(δr)2

[
3l2

m2ρ4
+ 2ag

]
.

(65)
This potential takes the form of a harmonic oscillator potential with an offset, V (r) = A+ 1

2mω
2r2.

Therefore the frequency of oscillation for small perturbations is the square root of the coefficient
(δr)2. The period then is 2π over this value

τ = 2π

[
3l2

m2ρ4
+ 2ag

](−1/2)
. (66)

Figure 2: Diagram for Rutherford scattering from an attractive Coloumb potential for Problem #
5.

Page 10 of 13



Dylan J. Temples Goldstein : Solution Set Four

5 Goldstein 3.30.

Rutherford scattering from an attractive Coloumb potential should behave exactly the same quan-
titatively as a repulsive Coloumb potential because the physics behind both scenarios is the same
expect for a sign change. The particle will still react to the source with the same magnitude, it
will just be deflected towards the source instead of away, see Figure 2. To derive the scattering
cross section for the attractive case, the method used by Goldstein for the repulsive case will be
followed. Starting with Goldstein Equation 3.100, but using k = +ZZ ′e2 gives

1

r
= −mk

l2
(ε cos θ − 1) =

mk

l2
(1− ε cos θ) . (67)

The direction of the incoming asymptote, ψ, is determined by taking the limit as r →∞,

cosψ =
1

ε
, (68)

which only allows ε > 1, so all orbits are hyperbolic. Using the fact that Θ = π− 2ψ, this equation
becomes

1

ε
= cos

[
1

2
(π −Θ)

]
= sin

Θ

2
, (69)

which can be inverted and squared,

csc2
Θ

2
= ε2 , (70)

now subtracting 1 from both sides and noting that csc2 α− 1 = cot2 α, this becomes

cot2
Θ

2
= ε2 − 1 . (71)

Using the relationship for eccentricity and energy E, Goldstein Equation 3.99, this becomes

cot2
Θ

2
=

[
2Eb

k

]2
⇒ cot

Θ

2
=

2Eb

k
, (72)

which can be solved fro impact parameter b,

b =
k cot(Θ/2)

2E
, (73)

which is needed, along with it’s angular derivative, to find the differntial cross section,

σ(Θ) =
b

sin Θ

∣∣∣∣ dbdΘ

∣∣∣∣ =
b

2 sin(Θ/2) cos(Θ/2)

∣∣∣∣ dbdΘ

∣∣∣∣ , (74)

using the double angle formula. The derivative of b is given by

db

dΘ
=

k

2E

[
−1

2
csc2

Θ

2

]
, (75)

which makes the differential cross section,

σ(Θ) =
k2

16E2

cot(Θ/2)

sin(Θ/2) cos(Θ/2)

1

sin2(Θ/2)
=

k2

16E2

cos(Θ/2)

sin2(Θ/2) cos(Θ/2)

1

sin2(Θ/2)
, (76)

which simplifies completely to

σ(Θ) =
1

4

(
k

2E

)2

csc4
Θ

2
. (77)
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6 Goldstein 3.35 - Incomplete.

One version of the truncated Coulomb potential has the form

V =
k

r
− k

a
, (78)

for r < a, and is zero for all r > a. Define the origin to be the center of the potential, so that
an incoming particle of mass m feels no potential for r > a. The particle’s energy far away is
completely determined by its kinetic energy. For r > a the particle must travel in straight lines
because it feels no potential. If the particle enters the potential moving only in the x̂ direction,
it will leave the potential at an angle Θ from its original trajectory, this is the scattering angle.
Finding this angle as a function of the impact parameter b allows the differential cross section to be
calculated. The impact parameter in this case is just the value of the y coordinate the particle has
while it moves parallel to the x-axis during its approach to the potential. If the scattering angle is
known it can be used to find the differential cross section as follows

σ(θ) =
b

sin Θ

∣∣∣∣ dbdΘ

∣∣∣∣ , (79)

where θ is the polar coordinate. The zero value of this coordinate is set to be when the particle
is at its closest approach to the center of the potential. In order for the asymptotic behavior to
connect, the particle must move in a hyperbola while inside the potential. This hyperbola would
be given by the shape equation:

r(θ) =
l2

mk

1

ε cos θ − 1
, (80)

where l is the particle’s angular momentum about the center of the potential. The definition of
θ = 0 says

rmin =
l2

mk

1

ε− 1
(81)

is the closest approach the particle will make to the center of the potential.

Assume the particle starts at x = −∞ and y = b, and it moves with velocity v0 in the positive
x direction. This determines the particle’s angular momentum about the origin to be l = mv0b.
Because the energy of the particle far away is completely determined by it’s kinetic energy, the
angular momentum can be written as

l2 = m2v20b
2 = m(2E)b2 . (82)

When it interacts with the potential (at r = a), the angle φ from the origin to the point the particle
hit the potential is defined by

sinφ = b/a . (83)

Define another angle Φ which is the angle from the θ = 0 direction to the point the particle
leaves the potential. Then, the particle enters the potential at (r, θ) = (a,−Φ) and leaves it at
(r, θ) = (a,Φ). This gives the identity

π = 2φ+ 2Φ + Θ , (84)

which says the symmetry angle ψ = φ+ Φ. Additionally, the shape equation evaluated at θ = ±Φ
is a,

a =
l2

mk

1

ε cos Φ− 1
=

2Eb2

k

1

ε cos Φ− 1
, (85)
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which can be rearranged to

ε cos Φ =
2Eb2

ak
+ 1 . (86)

With these constraints there is presumably some way of finding an expression for Θ, and thusly
b(Θ), which would allow the differential cross section to be known. See the following figure for an
explanation of the geometry discussed.
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