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1 Problem #1: Coupled Mass Oscillator System.

Consider a linear arrangement of three beads,
connected by 4 springs a shown in Figure 1.
They are constrained to move back and forth
in 1 dimension. Let x1, x2, and x3 be the dis-
placement of the leftmost, middle, and rightmost
masses, respectively, from their equilibrium po-
sitions. Let positive xi be to the right.

Figure 1: Depiction of the mass-spring system
examined in problem #1.

1.1 Normal Modes

The kinetic energy of the system is determined by the three masses, and the potential is determined
by the compression of the four springs. The potential energy of the springs joining the masses of
mass m to the walls only depend on the position of the respective mass, while the energy of the
other two springs depends on the relative displacement between neighboring masses. Therefore the
energies can be written as

T =
1

2
mẋ21 +

1

2
(2m)ẋ22 +

1

2
mẋ23 (1)

U =
1

2
kx21 +

1

2
(2k)(x1 − x2)2 +

1

2
(2k)(x3 − x2)2 +

1

2
kx23 . (2)

From this, the kinetic energy matrix and the potential energy matrix, denoted by T̂ and V̂ , respec-
tively, can be determined. The components of each are defined as

Tij =
∂T

∂xi∂xj
and Vij =

∂U

∂xi∂xj
, (3)

where , j span 1 to 3, because there are three generalized coordinates. This also implies there will
be three normal modes of oscillation, each with its own frequency. From the form of T it is easy to
tell T̂ it will be diagonal, similarly from the form of U , V̂ will be symmetric. Therefore whether i, j
is columns, rows or rows, columns will not matter. The components of each matrix can be found
easily, which yields

T̂ =

m 0 0
0 2m 0
0 0 m

 and V̂ =

 3k −2k 0
−2k 4k −2k

0 −2k 3k

 . (4)

To find the frequencies of oscillation for this system it is simply a matter of solving the following
equation for ω, the frequency,

det[v̂ − ω2T̂ ] = 0 , (5)

which will result in a cubic equation for ω2 whose three roots will be the normal mode frequencies,
or eigenfrequencies. Plugging in yields∣∣∣∣∣∣

3k − ω2(m) −2k 0
−2k 4k − ω2(2m) −2k

0 −2k 3k − ω2(m)

∣∣∣∣∣∣ = 0 = 2
(
3k −mω2

) (
2k2 − 5kmω2 +m2ω4

)
, (6)
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and solving for ω2 gives three values. To find the frequencies, not the square of the frequencies, the
positive root is chosen for physical reasons (frequencies must be positive), they are

ω(1) =

√
3k

m
, ω(2) =

√
k

2m
(5−

√
17) , ω(3) =

√
k

2m
(5 +

√
17) . (7)

Next, the vectors describing normal mode motion must be found. These vectors describe relative
motions of the masses, and are similar in concept to eigenvectors. To find these normal mode
vectors a(l), which corresponds to the normal mode frequency ω(l), the equations of motion must
be solved, in summation notation this is

(Vij − ω2
(l)Tij)aj(l) = 0 , (8)

which for each eigenfrequency, ω(l) is a system of three equations, that will result in the components
of the un-normalized ”eigenvectors” for the motion, which will be the normal mode vectors up to
a factor of a constant. To normalize these vectors, a condition is imposed that they satisfy the
congruency transformation, which in summation notation is

ai(l)Tijaj(h) = δ(l)(h) , (9)

where δ(l)(h) is the Kronecker delta function. So that for one specific three component a vector,
this is

1 = T11(a1(l))
2 + T22(a2(l))

2 + T33(a3(l))
2 . (10)

Most of this calculation can be carried out generally (for any eigenfrequency). First, Equation 8 is
written out in matrix form,3k − ω2

(l)(m) −2k 0

−2k 4k − ω2
(l)(2m) −2k

0 −2k 3k − ω2
(l)(m)


a1(l)a2(l)
a3(l)

 = 0 , (11)

which after doing out the matrix multiplication yields the system of equations

[3k − ω2
(l)(m)]a1(l) + [−2k]a2(l) = 0 (12)

[−2k]a1(l) + [4k − ω2
(l)(2m)]a2(l) + [−2k]a3(l) = 0 (13)

[−2k]a2(l) + [3k − ω2
(l)(m)]a3(l) = 0 , (14)

these equations will be solved for each ω(l) independently.

1.1.1 First Eigenfrequency, l = 1.

For the first eigenfrequency, Equations 12 through 14 become[
3k − 3k

m
(m)

]
a1(1) + [−2k]a2(1) = 0 ⇒ a2(1) = 0 (15)

[−2k]a1(1) +

[
4k − 3k

m
(2m)

]
a2(1) + [−2k]a3(1) = 0 ⇒ −a1(1) + a2(1) − a3(1) = 0 (16)

[−2k]a2(1) +

[
3k − 3k

m
(m)

]
a3(1) = 0 ⇒ a2(1) = 0 , (17)
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therefore ~a(1) = A1(1, 0,−1), where A1 is a constant to be determined by normalization. Applying
the congruency transformation, from Equation 10, gives

1 = m(A1)
2 +m(−A1)

2 ⇒ A1 =
1√
2m

, (18)

The first normal mode of oscillation is ~a(1) = (1/
√

2m, 0,−1/
√

2m), with frequency ω(1) =
√

3k/m.
This motion is the two outer masses moving completely out of phase while the inner mass remains
completely still.

1.1.2 Second Eigenfrequency, l = 2.

For the second eigenfrequency, letting α− = 5−
√

17, Equations 12 through 14 become[
3k − α−k

2m
(m)

]
a1(2) + [−2k]a2(2) = 0 ⇒ a2(2) =

6− α−
4

a1(2) (19)

[−2k]a1(2) +

[
4k − α−k

2m
(2m)

]
a2(2) + [−2k]a3(2) = 0 ⇒ a3(2) =

[
2− α−

2

]
a2(2) − a1(2) (20)

[−2k]a2(2) +

[
3k − α−k

2m
(m)

]
a3(2) = 0 ⇒ a2(2) =

6− α−
4

a3(2) , (21)

Solving these in Mathematica yields ~a(2) = A2(1,
1
4(1 +

√
17), 1), where A2 is a constant to be

determined by normalization. Applying the congruency transformation, from Equation 10, gives

1 = m(A2)
2 + 2m

(
A2

[
−1

4

(
−
√

17− 1
)])2

+m(A2)
2 ⇒ A2 =

2√
17m+

√
17m

, (22)

The second normal mode of oscillation is

~a(2) =

(
2√

17m+
√

17m
,

1 +
√

17

2
√

17m+
√

17m
,

2√
17m+

√
17m

)
, (23)

with frequency ω(2) =
√

k
2m(5−

√
17), the slowest oscillation. This motion is all masses moving in

the same direction, with the middle mass moving the fastest.

1.1.3 Third Eigenfrequency, l = 3.

For the third eigenfrequency, letting α+ = 5 +
√

17, Equations 12 through 14 become[
3k − α+k

2m
(m)

]
a1(3) + [−2k]a2(3) = 0 ⇒ a2(3) =

6− α+

4
a1(3) (24)

[−2k]a1(3) +

[
4k − α+k

2m
(2m)

]
a2(3) + [−2k]a3(3) = 0 ⇒ a3(3) =

[
2− α+

2

]
a2(3) − a1(3) (25)

[−2k]a2(3) +

[
3k − α+k

2m
(m)

]
a3(3) = 0 ⇒ a2(3) =

6− α+

4
a3(3) , (26)

Solving these in Mathematica yields ~a(3) = A3(1,
1
4(1 −

√
17), 1), where A3 is a constant to be

determined by normalization. Applying the congruency transformation, from Equation 10, gives

1 = m(A3)
2 + 2m

(
A3

[
1

4

(
1−
√

17
)])2

+m(A3)
2 ⇒ A3 =

2√
17m−

√
17m

, (27)

Page 4 of 15



Dylan J. Temples Goldstein : Solution Set Five

The second normal mode of oscillation is

~a(3) =

(
2√

17m−
√

17m
,

1−
√

17

2
√

17m−
√

17m
,

2√
17m−

√
17m

)
, (28)

with frequency ω(3) =
√

k
2m(5 +

√
17), the fastest oscillation. This motion is the outer masses

moving in the same direction, with the middle mass moving the fastest in the opposite direction.
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1.1.4 Normal Mode Coordinates.

Let ξi be the ith normal mode coordinate. The generalized coordinates can be expressed as linear
combinations of these coordinates. The coefficients of which are determined by the ith component
of each ”eigenvector”,

x1 = a1(1)ξ1 + a1(2)ξ2 + a1(3)ξ3 (29)

x2 = a2(1)ξ1 + a2(2)ξ2 + a2(3)ξ3 (30)

x3 = a3(1)ξ1 + a3(2)ξ2 + a3(3)ξ3 , (31)

where again, the subscript inside the parenthesis denotes which eigenvector/value to use and the
other subscript is the specific component of the eigenvector. Solving this system of equations for
ξi in Mathematica yields

ξ1 =

√
m

2
[x1 − x3] (32)

ξ2 = −

√
m(17 +

√
17)

136

[(√
17− 17

)
x1 − 8

√
17x2 +

(√
17− 17

)
x3

]
(33)

ξ3 =

√
m(17−

√
17)

136

[(√
17 + 17

)
x1 − 8

√
17x2 +

(√
17 + 17

)
x3

]
, (34)

which may make it easier to visualize the motion. The velocities of these normal coordinates are
the same as above, but all coordinates are replaced with their first time derivative. The normal
modes occur when ξi = 0, which is at

ξ1 = 0 : x1 = x3 (35)

ξ2 = 0 : x2 =

√
17− 17

8
√

17
(x1 + x3) =

1−
√

17

8
(x1 + x3) (36)

ξ3 = 0 : x2 =

√
17 + 17

8
√

17
(x1 + x3) =

1 +
√

17

8
(x1 + x3) (37)

1.2 Motion Due to Initial Conditions.

Suppose at t = 0 all three particles are in their equilibrium positions with the two particles on the
ends at rest and the one in the middle moving with velocity v. (This can happen as a result of an
impulse acting on the middle particle). These initial conditions are

x1 = 0

x2 = 0

x3 = 0

⇒


ξ1 = 0

ξ2 = 0

ξ3 = 0

and


ẋ1 = 0

ẋ2 = v

ẋ3 = 0

⇒


ξ̇1 = 0

ξ̇2 = +v
√
m
√

1 + 1√
17

ξ̇3 = −v
√
m
√

1− 1√
17

. (38)

The Euler-Lagrange equations for the normal coordinates are given by Goldstein Equation 6.46:
ξ̈k +ω2

kξk = 0, so the solutions can be represented as a sum of sine and cosine, depending on initial
conditions.
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1.2.1 Normal Mode 1, ξ1.

Imposing initial conditions on ξ1(t) gives

ξ1(t) = A1 sin(ω1t) +B1 cos(ω1t) (39)

ξ1(0) = 0 = A1 sin(0) +B1 cos(0) ⇒ B1 = 0 (40)

ξ̇1(t) = A1ω1 cos(ω1t) (41)

ξ̇1(0) = 0 = A1ω1 ⇒ A1 =
−v
√
m

ω1

√
2
, (42)

so the final equation of motion is for ξ1 is

ξ1(t) = 0 ω1 =

√
3k

m
, (43)

1.2.2 Normal Mode 2, ξ2.

Imposing initial conditions on ξ2(t) gives

ξ2(t) = A2 sin(ω2t) +B2 cos(ω2t) (44)

ξ2(0) = 0 = A2 sin(0) +B2 cos(0) ⇒ B2 = 0 (45)

ξ̇2(t) = A2ω2 cos(ω2t) (46)

ξ̇2(0) = +v
√
m

√
1 +

1√
17

= A2ω2 ⇒ A2 =
v
√
m

ω2

√
1 +

1√
17

, (47)

so the final equation of motion is for ξ2 is

ξ2(t) =
v
√
m

ω2

√
1 +

1√
17

sin(ω2t) ω2 =

√
k

2m
(5−

√
17) , (48)

1.2.3 Normal Mode 3, ξ3.

Imposing initial conditions on ξ3(t) gives

ξ3(t) = A3 sin(ω3t) +B3 cos(ω3t) (49)

ξ3(0) = 0 = A3 sin(0) +B3 cos(0) ⇒ B3 = 0 (50)

ξ̇3(t) = A3ω3 cos(ω3t) (51)

ξ̇3(0) = −v
√
m

√
1− 1√

17
= A3ω3 ⇒ A3 =

−v
√
m

ω3

√
1− 1√

17
, (52)

so the final equation of motion is for ξ3 is

ξ3(t) = −v
√
m

ω3

√
1− 1√

17
sin(ω3t) ω3 =

√
k

2m
(5 +

√
17) , (53)
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2 Problem #2: The Pendulum of Doom.

A mass m is attached to pendulum of length `.
The pivot point of the pendulum is attached to
the rim of a wheel of radius a, and the wheel is ro-
tating with constant angular velocity ω. Let the
generalized coordinate θ be the angle the pendu-
lum makes with the vertical, as shown in Figure
2. The system is subject to a downwards uniform
gravitational acceleration g.

2.1 Equation of Motion.

In Cartesian coordinates, the mass is located at

x(θ, t) = a cos[ωt] + ` sin[θ(t)] (54)

y(θ, t) = a sin[ωt]− ` cos[θ(t)] , (55)

with velocities given by the respective time
derivatives

ẋ = −aω sin[ωt] + `θ̇ cos[θ(t)] (56)

ẏ = aω cos[ωt] + `θ̇ sin[θ(t)] , (57)

Figure 2: Depiction of the mass-spring system
examined in problem #2.

The kinetic and potential energies of this system, in Cartesian coordinates are given by

T =
1

2
m(ẋ2 + ẏ2) and U = mgy , (58)

note that the sum of squared velocities is

ẋ2 + ẏ2 = [−aω sin(ωt)]2 + [`θ̇ cos(θ)]2 + [aω cos(ωt)]2 + [`θ̇ sin(θ)]2

− 2aω sin(ωt)`θ̇ cos(θ) + 2aω cos(ωt)`θ̇ sin(θ)

= (aω)2 + (`θ̇)2 − 2aω`θ̇[cos(ωt) sin(θ)− sin(ωt) cos(θ)]

= (aω)2 + (`θ̇)2 + 2aω`θ̇ sin(θ − ωt) ,

using trigonometric product and sum identities in the final step (read: Mathematica). This gives
the Lagrangian to be

L =
ma2ω2

2
+
m`2θ̇2

2
+maω`θ̇ sin(θ − ωt)−mga sin(ωt) +mg` cos(θ) , (59)

note that the terms constant in θ, θ̇ will drop out of the Euler Lagrange equations. Additionally,
this Lagrangian is not cyclic in any coordinate, and it explicitly depends on time, so in this case,
there are no conserved quantities. The Euler Lagrange equation for this system is

d

dt

[
m`2θ̇ +maω` sin(θ − ωt)

]
= maω`θ̇ cos(θ − ωt)−mg` sin(θ) (60)

m`2θ̈ +maω`(θ̇ − ω) cos(θ − ωt) = maω`θ̇ cos(θ − ωt)−mg` sin(θ) , (61)
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which after noting the two θ̇ terms cancel and isolating the θ̈ term becomes

m`2θ̈ = maω2` cos(θ − ωt)−mg` sin(θ) (62)

θ̈ =
aω2

`
cos(θ − ωt)− g

`
sin(θ) (63)

2.2 Simple Pendulum Limit.

In the ω → 0 limit, the equation of motion becomes

θ̈ = −g
`

sin θ , (64)

which is the equation for the simple pendulum equation. For small oscillations sin θ ' θ, so the
linearized equation gives a frequency of oscillation of ω0 =

√
g/`, which is the frequency of small

oscillations for a simple pendulum.

2.3 Visualization.

Equation 63 can be integrated numerically using Mathematica, by selecting initial angular dis-
placement A, and initial angular velocity B. After setting the values of constants and initial condi-
tions, the following commands plot the motion in the x− y plane:

sol=NDSolve[{\[Phi]’’[t]==(a w/l)Cos[\[Phi][t]- w t]-(g/l)Sin[\[Phi][t]],

\[Phi][0]==A,\[Phi]’[0]==B},\[Phi],{t,0,10}];

x[t_] := a Cos[w t] + l Sin[\[Phi][t]]

y[t_] := a Sin[w t] - l Cos[\[Phi][t]]

x0 = a Cos[w 0] + l Sin[A];

y0 = a Sin[w 0] - l Cos[A];

p1 = ParametricPlot[

Evaluate[{a Cos[w t] + l Sin[\[Phi][t]], a Sin[w t] - l Cos[\[Phi][t]]} /. sol],

{t, 0, 10}, AxesLabel -> {"x(t)", "y(t)"}];

p2 = ParametricPlot[{Cos[t], Sin[t]}, {t, 0, 10}, PlotStyle -> Red];

p3 = ParametricPlot[{(x0 - t Sin[A]), y0 + t Cos[A]}, {t, 0, l}, PlotStyle -> Green];

p4 = Show[p1, p2, p3, PlotRange -> All]

The plots in Figure 3 show the motion of this system with various values of ω, φ(0), and φ̇(0),
noted in the figure caption. For these plots the radius of the ring a, was set to 1 meter, the length
of the pendulum `, set to one meter, and the gravitational acceleration g set to 10 m/s2. The ring
the pendulum pivot moves around is noted in red, and the initial position of the pendulum is noted
in green. All integrations took place over ten seconds.
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(a) Motion for ω = π/4, φ(0) = 0, and φ̇(0) = π. (b) Motion for ω = π/4, φ(0) = 3π/4, and φ̇(0) = 0.

(c) Motion for ω = π/10, φ(0) = π/2, and φ̇(0) = 0. (d) Motion for ω = 10, φ(0) = π, and φ̇(0) = −5.

(e) Motion for ω = 0, φ(0) = π/2, and φ̇(0) = 0.
(f) Motion for ω = 1000, φ(0) = 0, and φ̇(0) = 0, note
integration only for 1 second.

Figure 3: Motion of the mass in the x− y plane for various values of ω, φ(0), and φ̇(0).
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3 Problem #3: Everything is an SHO!

Consider the following potential energy function:

U(r) = U0

(
r

R
+ λ2

R

r

)
, (65)

where {U0, R, λ} are all constants, and the vari-
able r can range 0 < r < ∞. This potential is
graphed in Figure 4.

3.1 Equilibrium Positions.

Equilibrium positions occur when the first
derivative of the potential is zero. For this po-
tential, these positions are at r0, which can be
found by solving the following equation for r0,

Figure 4: Sketch of the potential given by Equa-
tion 65.

dU

dr

∣∣∣∣
r0

= 0 = U0

(
1

R
+ λ2R

−1

r20

)
⇒ 1

R
= λ2

R

r20
, (66)

so r0 = λR. The potential at this location is

U(r0) = U0

(
λR

R
+ λ2

R

λR

)
= 2λU0 . (67)

3.2 Harmonic Oscillator Approximation.

Consider the variable x = r− r0. For small x values, the potential can be Taylor expanded around
its equilibrium position r0,

U(r) ' U(r0) + (r − r0)
dU

dr

∣∣∣∣
r0

+
1

2
(r − r0)2

d2U

dr2

∣∣∣∣
r0

+O(r3) , (68)

but because x is small, it is close to the equilibrium position so the first derivative is zero. The
Taylor series then becomes

U(x) ' 2λU0 +
1

2
x2
(
U0λ

2R
2

r30

)
= 2λU0 +

1

2

(
2U0

λR2

)
x2 , (69)

which takes the form of the harmonic oscillator, cst+ 1
2kx

2.

3.3 Frequency of Small Oscillations.

A harmonic oscillator potential has the form cst + 1
2mω

2x2, where m is the mass of a particle
moving in the potential. The frequency of oscillation is ω, and its relation to k can be found,

k = mω2 ⇒ ω =

√
k

m
, (70)

therefore, for this potential, the frequency of small oscillations is

ω =

√
2U0

mλR2
. (71)
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4 Problem #4: Physics as an Artform.

The two dimensional anisotropic oscillator makes interesting and pretty patterns from the trajectory
the oscillator makes in space. Consider an oscillator whose trajectory is given by:

x(t) = α cos(ωxt) y(t) = β cos(ωyt− δ) . (72)

4.1 Rational Frequency Ratio.

For rational frequencies, the motion repeats itself after a period and results in a closed path. Define
the ratio of the frequencies to be the ratio of two integers, ensuring the ratio is a rational number,

ωx

ωy
=
m

n
⇒ m

ωx
=

n

ωy
(73)

and using the relationship of frequency and period, a single frequency can be defined,

τ =
2πm

ωx
=

2πn

ωy
. (74)

After this period, the x and y positions of the particle are given by

x(t+ τ) = α cos[ωx(t+ τ)] = α cos[ωxt+ 2πm)] (75)

y(t+ τ) = β cos[ωy(t+ τ)− δ] = β cos[ωyt− δ + 2πn] , (76)

which, by noting that cos(a) = cos(a + 2πk) for any integer k, implies the particle can be found
at its starting location after one period, and the path is closed. The period of motion is given in
Equation 74.

4.2 Irrational Frequency Ratio.

Consider the ratio ωx/ωy = ξ, where ξ is irrational, so it cannot be represented as the ratio of two
integers, as in Section 4.1. Similarly to the previous section, if periodic motion were to occur, the
period would be given by

τ =
2π

ωx
=

2π

ξωy
. (77)

By the definition of periodicity,

x(t+ τ) = α cos[ωx(t+ τ)] = α cos[ωxt+ 2π)] = x(t) (78)

y(t+ τ) = β cos[ωy(t+ τ)− δ] = β cos

[
ωyt− δ +

2π

ξ

]
6= y(t) , (79)

for irrational ξ. Therefore, the motion may be periodic in one coordinate, but overall, the particle
will never return to it’s initial position and velocity in both coordinates. No periodic motion exists
for irrational ξ, and the trajectory is not closed. It will cross every point in the region −α < x < α
and −β < y < β.
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5 Problem #5: Parametric Plots.

Mathematica can be used to parametrically plot various two and three dimensional trajectories.

5.1 Two Dimensional Trajectory.

A particular kind of two-dimensional trajectory can be parameterized by the equations

x(t) = a cos t y(t) = b sin t , (80)

which is initialized using the Mathematica commands

x[a_] := a Cos[t];

y[b_] := b Sin[t];

z[\[Alpha]_] := \[Alpha] t;

This trajectory is plotted in Figure 5 for two cases for the time range 0 < t < 2π. The red line
shows the trajectory for the case where a = 1 and b = 2, while the blue line shows the trajectory
for a = b = 3. From this figure it is easy to see that when the amplitudes are equal, the trajectory
forms a circle with radius equal to the amplitude. But when they are not equal, the trajectory
traces an ellipse. This ellipse width in each coordinate direction is twice the respective amplitude.
The following Mathematica commands create this plot:

pa1 = ParametricPlot[{x[1], y[2]}, {t, 0, 2 \[Pi]}, PlotStyle -> Red];

pa2 = ParametricPlot[{x[3], y[3]}, {t, 0, 2 \[Pi]}];

Show[pa1, pa2, PlotRange -> All]

Figure 5: Motion of a two dimensional trajectory
for (a, b) = (1, 2), in red, and (a, b) = (3, 3), in
blue.

Figure 6: Anharmonic oscillator with parame-
ters (β, ω, δ) = (1, 45/11, π), over the time range
0 < t < 6π.
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5.2 Three Dimensional Trajectory

By adding a third parameterized equation to
Equation 80 given by

z(t) = αt (81)

the trajectory becomes three dimensional. The
motion of this trajectory is shown in Figure 7, for
(a, b, α) = (1, 2, 2), for the time range 0 < t <
6π. This trajectory is a corkscrew due to the
z coordinate of the particle increasing linearly
with time while the particle traces an ellipse in
the x − y plane. The following code creates the
plot:

ParametricPlot3D[{x[1], y[2], z[2]},

{t, 0, 6 \[Pi]},

AxesLabel -> {"x(t)", "y(t)", "z(t)"}]

5.3 Anharmonic oscillator.

The anharmonic oscillator is parameterized by

x(t) = sin(t) y(t) = β sin(ωt+ δ) , (82)

The frequencies have been normalized to the fre-
quency for the x motion: ω′x = ωx/ωx = 1 and
ω′y = ω = ωy/ωx. This is a matter of conve-
nience, which allows the consequences of the fre-
quency ratio having specific behaviors to be ex-
plored. For rational frequency ratios, the paths

are periodic and closed, commonly called Lis-
sajous figures. For irrational frequency ratios the
paths are not closed.

Figure 7: Motion of a three dimensional trajec-
tory for (a, b, α) = (1, 2, 2).

The code for all subsequent plots is:

xAO = Sin[t];

yAO[\[Beta]_, \[Omega]_, \[Delta]_] := \[Beta] Sin[\[Omega] t - \[Delta]];

pc1 = ParametricPlot[{xAO, yAO[1, 1/2, 0]}, {t, 0, 2 \[Pi]}, PlotStyle -> Red];

pc2 = ParametricPlot[{xAO, yAO[1, 1/2, 0]}, {t, 2 \[Pi], 4 \[Pi]}, PlotStyle -> Yellow];

pc3 = ParametricPlot[{xAO, yAO[1, 1/2, 0]}, {t, 0, 4 \[Pi]}];

Show[pc1, pc2, PlotRange -> All];

pc4 = ParametricPlot[{xAO, yAO[1, 3/5, 0]}, {t, 0, 20 \[Pi]}, PlotStyle -> Red]

pc5 = ParametricPlot[{xAO, yAO[1, Sqrt[2], 0]}, {t, 0, 6 \[Pi]}, PlotStyle -> Red];

pc6 = ParametricPlot[{xAO, yAO[1, Sqrt[2], 0]}, {t, 0, 60 \[Pi]}, PlotStyle -> Yellow];

pc7 = ParametricPlot[{xAO, yAO[1, Sqrt[2], 0]}, {t, 0, 600 \[Pi]}];

Show[pc7, pc6, pc5]
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The anharmonic oscillator is shown in Figure 8 for the parameters (β, ω, δ) = (1, 1/2, 0). In Fig-
ure 8a there are two time ranges plotted: red for 0 < t < 2π and yellow for 2π < t < 4π. Figure 8b
shows the motion for the same parameters over the time range 0 < t < 4π. From this, it is easy to
see the period of this motion is 4π.

(a) Anharmonic oscillator motion for time
ranges 0 < t < 2π and 2π < t < 4π.

(b) Anharmonic oscillator motion for the
time range 0 < t < 4π, which is one full
period.

Figure 8: Anharmonic oscillator motion with parameters (β, ω, δ) = (1, 1/2, 0) .

For the parameters (β, ω, δ) = (1, 3/5, 0), over the time range 0 < t < 20π, the anharmonic
oscillator motion is shown in Figure 9. This motion is also a closed, periodic path, with period
20π. If this motion is plotted only until t = 10π, the same path is traced out, but only half if it
is plotted until t = 5π. So the particle completes this motion at t = 10π, but for it to get back to
its initial position, it must trace this path again, so the period is 20π. Now the parameters were
set to (β, ω, δ) = (1,

√
2, 0) and three plots were overlaid in Figure 10. One over the time range

0 < t < 6π (red), one over 0 < t < 60π (yellow), and one over 0 < t < 600π (blue). As the time is
increased, the particle traces out more and more of the 1× 1 square where motion is possible. This
is not a closed path, and the motion will never repeat. Figure 6 shows motion for the parameters
(β, ω, δ) = (1, 45/11, π) for the time range 0 < t < 6π.

Figure 9: Anharmonic oscillator with parame-
ters (β, ω, δ) = (1, 3/5, 0), over the time range
0 < t < 20π.

Figure 10: Anharmonic oscillator with parame-
ters (β, ω, δ) = (1,

√
2, 0), over three time ranges

varying by 1 order of magnitude each.
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