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1 Goldstein 5.18.

A dumbbell is formed by connecting two small
spherical masses of mass m with a massless rod
of length 2b. The rod is attached to an axle in
such a way that it makes a constant angle φ with
the axle. The dumbbell rotates about the axle at
a rate ω, as shown in Figure 1. The angular mo-
mentum about this axis was determined in the
last homework as

L = mωb2

− sin 2φ cosωt
− sin 2φ sinωt

2 sin2 φ

 . (1)

The right handed coordinate system is set up
so that ω points along ẑ, with the origin at the
point the barbell crosses ω.

Figure 1: Depiction of the oblique dumbbell sys-
tem examined in problem #1.

1.1 Components of Torque Along Principal Axes.

The principal axes of a body are the set of orthonormal eigenvectors found from diagonalizing
the inertia tensor Î. The components of this tensor are listed in the previous homework; using
Mathematica, the principal moments (eigenvalues) are

I1 = 2mb2 I2 = 2mb2 I3 = 0 , (2)

and the corresponding eigenvectors are

w1 =

− cotφ secωt
0
1

 w2 =

tanωt
−1
0

 w3 =

tanφ cosωt
tanφ sinωt

1

 , (3)

which are not yet orthonormalized. Note that because w3 corresponds to a nondegenerate eigen-
value, it can be chosen as a principal axis, and the other two can be made orthogonal to it. The
remaining two eigenvectors, since they are degenerate, are both orthogonal to w3 , but not to each
other. Therefore another vector can be chosen as a principal axis, for simplicity w2 is chosen,
so that the only eigenvector that must be orthonormalized is w1. Before doing so, the other two
vectors must be normalized. The norm of a vector wi is

√
wi ·wi (note that assuming 0 < φ < π/2

means that all trig functions are positive definite), so the first two principal axes are

ê2 =
1

secωt
w2 = w2 cosωt =

 sinωt
− cosωt

0

 ê3 =
1

secφ
w3 = w3 cosφ =

sinφ cosωt
sinφ sinωt

cosφ

 . (4)

To find the orthonormal vector w2, the Gram-Schmidt procedure is used,

ê2 = w2 − projê1(w2)− projê3(w2) , (5)

with the projection operator defined as

proja(b) =
a · b
a · a

a . (6)
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Note that w1 is already orthogonal to w3, so projê3(w1) = 0. Therefore the last orthogonal vector
is

e1 =

− cotφ cosωt
− cotφ sinωt

1

 ⇒ ê1 =
1√

csc2 φ

− cotφ cosωt
− cotφ sinωt

1

 =

− cosφ cosωt
− cosφ sinωt

sinφ

 . (7)

Now that the three principal axes have been determined, the torque projections along each of
these axes can be found by knowing the angular velocity projected onto the appropriate axis. The
components of ω in the coordinate basis are (0, 0, ω), so the transformed angular velocity in the
principal axis basis is

ω′ = projê1(ω) + projê2(ω) + projê3(ω) =

(ω · ê1)
(ω · ê2)
(ω · ê3)

 = ω

sinφ
0

cosφ

 . (8)

With these components, the torque can be found using Euler’s equations, given by Goldstein
Equation 5.39. Since none of the components of ω′ are explicity time dependent, the first term in
each torque vanishes. Additionally, two of the components depend on the value of ω′2, which in
this case is zero, so the only projection that is nonzero is along ê2. Therefore the torque along the
principal axes is

τ ′ =

 0
−ω3ω1(I3 − I1)

0

 = ω2 sinφ cosφ(2mb2)

0
1
0

 = mω2b2 sin(2φ)ê2 . (9)

The torque along the coordinate axis, from this, is just this multiplied through by ê2, which has
components in the coordinate basis:

τ = τ ′1ê1 + τ ′2ê2 + τ ′3ê3 = mω2b2 sin 2φ

 sinωt
− cosωt

0

 . (10)

1.2 Components of Torque Along Cartesian Axes.

The components of the torque in the coordinate basis can be computed directly, without knowing
the principal moments. If the angular momentum is known (it was calculated in the last homework),
the net torque can be found by Goldstein Equation 5.37,

τ = ω × L =

 b2mω2 sin 2φ sinωt
−b2mω2 sin 2φ cosωt

0

 = mω2b2 sin 2φ

 sinωt
− cosωt

0

 , (11)

which agrees with the result from the previous section.
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2 Problem #2: Rotating Plate.

Consider a rectangular plate of sides a and b rotating about a diagonal axis (orner to corner) with
angular velocity around that axis of ω. Align a Cartesian coordinate system so the rectangle lies
in the x− z plane, with the origin such that the rectangle extends to z = ±a/2 and x = ±b/2, as
shown in Figure 2. The components inertia tensor for this plate are given by

Iij = ρ(r)

∫
V

[(x2 + y2 + z2)δij − rirj ] d3r = σ

∫ a

0

∫ b

0
[(x2 + z2)δij − rirj ] dx dz , (12)

with rk ∈ {x, y, z}, because a point in the body always has a zero y component of its position. This
also means all cross terms with a y component vanish. The diagonal elements are

Ixx = σ

∫ a/2

−a/2

∫ b/2

−b/2
[(x2 + z2)− x2] dx dz =

a2M

12
(13)

Iyy = σ

∫ a/2

−a/2

∫ b/2

−b/2
[(x2 + z2)] dx dz =

1

12
M
(
a2 + b2

)
(14)

Izz = σ

∫ a/2

−a/2

∫ b/2

−b/2
[(x2 + z2)− z2] dx dz =

b2M

12
, (15)

and the only potentially non-zero off-diagonal terms are

Ixz = Izx = σ

∫ a/2

−a/2

∫ b/2

−b/2
[−xz] dx dz = 0 . (16)

Note that because the inertia tensor along these axes is diagonal, they must be a set of principal
axes. The torque required to maintain the rotation is given by

τ =
dL

dt
= L× ω . (17)

The angular velocity vector points in a direction in the x− z plane proportional to the ratio of side
lengths of the rectangle. The corners are a distance

√
a2 + b2 from each other and the components

are b in the x direction and a in the z direction. This gives the unit vector pointing along ω,

ω̂ =
1√

a2 + b2
(b̂i + ak̂) , (18)

given the vector has a magnitude ω, the complete vector is ω = ωω̂.

The angular momentum of this rotation is given by

L = Î · ω =
M

12

ω√
a2 + b2

a2 0 0
0 a2 + b2 0
0 0 b2

b0
a

 =
M

12

ω√
a2 + b2

a2b0
ab2

 , (19)

where Î is the inertia tensor. The torque can be now be found directly from Goldstein Equation
5.37

τ =
dL

dt
+ ω × L =

M

12

ω√
a2 + b2

ω√
a2 + b2

∣∣∣∣∣∣
î ĵ k̂
b 0 a
a2b 0 ab2

∣∣∣∣∣∣ , (20)

working out the determinant and noting that the only surviving term is in the y direction, the
torque is

τ =
M

12

ω2

a2 + b2
(a3b− ab3)̂j =

Mω2ab

12

b2 − a2

a2 + b2
ĵ . (21)
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3 Goldstein 5.16.

Three equal mass points (massm) are located at (a, 0, 0), (0, a, 2a), and (0, 2a, a) for the coordinates
(x, y, z). The components of the inertia tensor Î about the origin are given by

Ijk =

3∑
i=1

m(i)[r
2
(i)δjk − rj(i)rk(i)] , (22)

where i is an index that corresponds to the ith mass, while j, k ∈ {x, y, x}. The Cartesian distance
for each mass is {a2, 5a2, 5a2}. The first component is

I11 = m
3∑
i=1

[r2(i)δjk − x(i)x(i)] (23)

= m[(a2 − a · a) + (5a2 − 0) + (5a2 − 0)] , (24)

and the other components follow. Therefore the inertia tensor is given by

I = ma2

10 0 0
0 6 −4
0 −4 6

 , (25)

the principal moments are the eigenvalues of this matrix, and the principal axes are the normalized
eigenvectors, assuming they are all orthogonal. Using Mathematica the principal moments are

I1 = 10ma2 I2 = 10ma2 I3 = 2ma2 , (26)

and the principal axes are

ê1 =
1√
2

 0
−1
1

 ê2 =

1
0
0

 ê3 =
1√
2

0
1
1

 , (27)

which are in fact orthogonal.

Figure 2: Depiction of the coordinate system and
rectangle orientation for problem #2.

Figure 3: Depiction of the coordinate system for
the Foucault pendulum in Problem #4.
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4 Goldstein 4.23.

The Foucault pendulum experiment consists in setting a long pendulum in motion at a point on
the surface of the rotating Earth with its momentum originally in the vertical plane containing the
pendulum bob and the point of suspension. Consider a massless pendulum of length ` suspending
a mass m in a uniform downwards gravitational acceleration. Pick a right handed reference frame
on the surface of the earth such that the origin is set to the equilibrium position of the pendulum.
From here the z axis points vertically (normal to the surface of the earth). In the small oscillation
limit, the motion of the mass is confined to the horizontal (x − y) plane. In this approximation,
z and ż can be set to zero. Using Newton’s second law the vector equation of motion for the
pendulum mass is

mr̈ = mg + T− 2mω × ṙ , (28)

as given by Thornton and Marion Equation 10.42. In this expression r is the distance vector, and T
is the tension vector which always points towards the pivot. The final term is the force due to the
Coriolis effect, with ω as the frequency of the Earth’s rotation. The projections of T in the x− y
plane must always be negative because the mass will always be attracted to the equilibrium position
at (x, y) = (0, 0). The projections in this plane are small (in the small angle approximation) so the
projection in the z axis is approximately |T|. For this small angle approximation (to first order),
the projections into x and y can be expressed as the ratio of the coordinate to the length of the
pendulum, because sin θ ' θ. Therefore the equation of motion for each projection becomesẍÿ

0

 =

 0
0
−g

+
T

m

−x
`
−y
`

1

− 2

ωxωy
ωz

×
ẋẏ

0

 , (29)

so all that remains is the components of angular velocity. As shown in Figure 3, ω does not have
any component in the y direction (out of the page). Given the co-latitude θ, the angular velocity
vector is ω = (−ω cos θ, 0, ω sin θ). So the cross product in Equation 28 becomes

ω × ṙ =

∣∣∣∣∣∣
î ĵ k̂

−ω cos θ 0 ω sin θ
ẋ ẏ 0

∣∣∣∣∣∣ =

 0− ωẏ sin θ
−(0− ωẋ sin θ)
−ωẏ cos θ − 0

 . (30)

The three equations of motion then become

ẍ = − T
m

x

`
− 2(−ωẏ sin θ) (31)

ÿ = − T
m

y

`
− 2(ωẋ sin θ) (32)

z̈ = 0 = −g +
T

m
− 2(−ωẏ cos θ) , (33)

which in the limit that the Earth’s rotational frequency is negligible compared to the frequency of
the pendulum, the term with ω can be dropped in the last equation. Therefore the last equation
can be solved with T ' mg. This substitution yields a pair of coupled second order equations

ẍ = −g
`
x+ 2ωẏ sin θ (34)

ÿ = −g
`
y − 2ωẋ sin θ . (35)
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If a coordinate ξ is defined to be x+ iy, then

ξ̈ = −g
`
ξ − 2iωξ̇ sin θ ⇒ ẍ+ iÿ = −g

`
(x+ iy)− 2iω(ẋ+ iẏ) sin θ (36)

= −g
`
x− 2iωẋ sin θ − g

`
iy − 2ω(i2ẏ) sin θ =

[
−g
`
x+ 2ωẏ sin θ

]
+ i
[
−g
`
y − 2ωẋ sin θ

]
(37)

and the coupled equations can be merged to one, such that Re[ξ(t)] = x(t) and Im[ξ(t)] = y(t).
The solutions to the differential equation in ξ (given by Mathematica ) are

ξ(t) = e−iω sin θt

[
c1 exp

(
t

√
−g

2

l2
− ω2 sin2 θ

)
+ c2 exp

(
−t
√
−g

2

l2
− ω2 sin2 θ

)]
, (38)

note that for ω = 0 (no Earth rotation) the equation of motion reduces to the simple pendulum
result, with frequency ω0 =

√
g/`. It has been previously stated that the rotational frequency of

the Earth is negligible compared to the frequency of the pendulum, the solution can be rewritten
using Euler trig identities

ξ(t) = e−iω sin θt [A cos(ω0t+ δ1) + iB sin(ω0t+ δ2)] . (39)

Assume the pendulum’s momentum is originally in the vertical plane of the pendulum mass and
pivot point, so ẋ0 = v and ẏ0 = 0, and it is in the equilibrium position at t = 0. Consider the first
derivative,

ẋ(0) + iẏ(0) = [(−iω sin θ) {A cos(δ1) + iB sin(δ2)}+ ω0 {−A sin(δ1) + iB cos(δ2)}] , (40)

which implies B = 0. This is because the left side is real ξ̇(0) = v, which is entirely in x, and
equating real and imaginary parts means that either B = 0 or the two imaginary parts exactly
cancel. This can not be the case because the assumption ω � ω0 has been made. The constraints
given by this and the initial conditions give

0 = A cos(δ1) (41)

v = (−iω sin θ) {A cos(δ1)}+ ω0 {−A sin(δ1)} . (42)

The first constraint is that δ1 is an odd integer multiple of π/2, so that A = −v/ω0. Therefore the
solution is

ξ(t) = −e−iω sin θt v

ω0
cos
(
ω0t+

π

2

)
(43)

= − v

ω0
cos
(
ω0t+

π

2

)
[cos (ω sin θt)− i sin (ω sin θt)] , (44)

so the equations of motion in the original coordinates are

x(t) = − v

ω0
cos
(
ω0t+

π

2

)
cos (ω sin θt) (45)

y(t) =
v

ω0
cos
(
ω0t+

π

2

)
sin (ω sin θt) . (46)

This gives the angle of precession of the pendulum plane to be Θ = Ωt = ω sin θt, thus the
precessional frequency is Ω = ω sin θ, and the rotational frequency of Earth is 2π radians per
day. Knowing the relationship between latitude (θ) and colatitude (θc) is θ + θc = (π/2), and
sin([π/2]− α) = cos(α), the precessional frequency is Ω = 2π cos θc per day. Therefore in one day
the plane of oscillation rotates 2π cos θc radians, the direction of rotation is based on the sign of the
cosine. In the northern hemisphere 0 ≤ θc < π/2, so cosine is positive and the plane of oscillation
rotates counterclockwise. Contrarily, in the southern hemisphere π/2 < θc ≤ π, so the cosine is
negative and the pendulum precesses clockwise.
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5 Problem #5: Beads on Rods.

A bead of mass m is free to slide on a frictionless straight rod, which lies in a horizontal plane.
The rod is spun with a constant angular velocity ω about a vertical axis through the midpoint of
the rod.

5.1 The Hamiltonian.

Consider the polar coordinates r and θ = ωt, with the origin set in the horizontal plane of the rod,
at the axis of rotation. The location of the bead is then (r, ωt), with speed (ṙ, ω). The kinetic
energy of this system is given by

T =
1

2
m(ṙ2 + r2θ̇2) =

1

2
m(ṙ2 + r2ω2) = L , (47)

which is also the Lagrangian and total energy of the system because there is no potential. So the
conjugate momentum for r is

p =
∂L
∂q̇

=
∂

∂ṙ

1

2
m(ṙ2 + r2ω2) = mṙ . (48)

The Hamiltonian is then

H = q̇p− L = ṙp− 1

2
mṙ2 − 1

2
mr2ω2 =

p

m
p− 1

2
m
( p
m

)2
− 1

2
mr2ω2 (49)

=
1

2m
p2 − 1

2
mω2r2 =

1

2
mṙ2 − 1

2
mω2r2 6= T , (50)

so the Hamiltonian is not equal to the total energy of the system.

5.2 Hamiltonian Equations.

For this system, Hamilton’s equations are

q̇ =
∂H
∂p
⇒ ṙ =

p

m
and ṗ = −∂H

∂q
⇒ ṗ = −∂H

∂r
= −

(
−mω2r

)
, (51)

differentiating the first equation with respect to time and equating to the second yields

mr̈ = mω2r , (52)

which is the equation of motion for r.

Figure 4: Depiction of the coordinate system for the Atwood in machine in Problem #6.
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6 Problem #6: Massful Pulley.

Consider an Atwood machine with masses m1 and m2 suspended over a pulley of mass M and
radius R in a uniform downwards gravitational acceleration g. This is a one dimensional problem
because the motion of both masses and the pulley can be entirely represented by one coordinate
x. Define the origin of the coordinate system to be the level of the center of mass of the pulley,
with positive x the distance downwards, as shown in Figure 4. Therefore if one mass moves in a
distance +x, the other moves a distance −x. Let the length of the string be `+ πR2, so that when
the masses are at their farthest possible distance one is at x = 0 and one is at x = `. The potential
energy of a mass µ at this position is −µg`, with g > 0. It is useful to note the moment of inertia
for a uniform disk about an axis through its center, normal to the circular face, is I = 1

2MR2. This
information allows the Lagrangian to be written down immediately,

L =
1

2
m1ẋ

2 +
1

2
m1(−ẋ)2 +

1

2
Iω2 − [−m1gx+m2g(`− x)] , (53)

where ω is the rotational frequency of the pulley, in this case just ẋ/R. Simplification and substi-
tution yields

L =
1

2
(m1 +m2)ẋ

2 +
1

2

[
1

2
MR2

](
ẋ

R

)2

+m2g`+ g(m1 −m2)x (54)

L =
1

2

(
m1 +m2 +

1

2
M

)
ẋ2 +m2g`+ g(m1 −m2)x . (55)

Therefore the conjugate momentum for x is

p =
∂L
∂ẋ

=

(
m1 +m2 +

1

2
M

)
ẋ . (56)

Additionally, the Hamiltonian is given by

H = ẋp− L =
p(

m1 +m2 + 1
2M
)p− 1

2

(
m1 +m2 − 1

2M
)(

m1 +m2 + 1
2M
)2 p2 −m2g`− g(m1 −m2)x (57)

=
1
2p

2(
m1 +m2 + 1

2M
) −m2g`− g(m1 −m2)x , (58)

after substituting in Equation 56, note this is the total energy. Hamilton’s equations of motion are

q̇ = ẋ =
∂H
∂p

=
p

m1 +m2 + 1
2M

ṗ = −∂H
∂q

= −[−g(m1 −m2)] , (59)

which can be reduced for a second order differential equation in x. By differentiating q̇ with respect
to time and substituting in ṗ, this becomes

ẍ =
g(m1 −m2)

m1 +m2 + 1
2M

. (60)

This answer makes sense because it is either monotonically decreasing or increasing, or zero de-
pending on m1/m2, with constant acceleration. This is due to the heavier mass moving the system
due to gravity, but fought by the other mass moving upward as well as the inertia of the pulley. The
sign of the answer makes sense, for if m2 > m1, m1 will accelerate upwards, which is the negative
direction.
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