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1 Goldstein 8.3.

Consider a function G(p, ṗ; t) which is defined as a double Legendre transformation of the La-
grangian, L(q, q̇; t), with p and ṗ as independent variables.

1.1 Form of G.

The Hamiltonian is constructed by performing a Legendre transformation on the variable q̇i to the
variable pi. From a generic Lagrangian, L(q, q̇; t), the Euler-Lagrange equations are

∂L
∂qi

=
d

dt

∂L
∂q̇i

. (1)

Now consider the total differential of the Lagrangian,

dL(q, q̇; t) =
∂L
∂qi

dqi +
∂L
∂q̇i

dq̇i +
∂L
∂t
dt . (2)

In order to properly transform q̇ → p, and get the Hamiltonian, H(q, p; t), there must be no dq̇i
dependence in the total differential. Therefore the variable being transformed from is multiplied
by the variable being transformed to, and the function that is being transformed is subtracted,

H = q̇ipi − L . (3)

Now consider the total differential of the Hamiltonian,

dH(q, p; t) =
∂H
∂qi

dqi +
∂H
∂pi

dpi +
∂H
∂t

dt = pidq̇i + q̇idpi −
∂L
∂qi

dqi −
∂L
∂q̇i

dq̇i −
∂L
∂t
dt , (4)

after plugging in the Lagrangian. As stated before, the terms with dq̇i dependence must cancel, so
the following relationship for the transformation is obtained by equating the coefficients of these
terms,

pi =
∂L
∂q̇i

. (5)

Hamilton’s equations can be found by equating the coefficients of similar total differential terms:

q̇i =
∂H
∂pi

∂H
∂qi

= −∂L
∂qi
≡ −S ∂H

∂t
= −∂L

∂t
. (6)

Note that taking the time derivative of Equation 5 yields

d

dt
pi = ṗi =

d

dt

∂L
∂q̇i

=
∂L
∂qi

= S, (7)

so S = ṗi and the correct Hamilton equation is obtained (as expected). Now consider a second Leg-
endre transformation, qi → S = ṗi. Following the procedure above, the terms with dqi dependence
must cancel in the total differential of the new double-transformed function,

G = qiṗi ±H ⇒ dG = qidṗi + ṗidqi ±
[
q̇idpi −

∂L
∂qi

dqi −
∂L
∂t
dt

]
, (8)

so the plus form must be correct (to get the terms to cancel), so the new function is

G = qiṗi +H ⇒ dG = qidṗi + q̇idpi −
∂L
∂t
dt = qidṗi + q̇idpi +

∂H
∂t

dt . (9)
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To get the equivalent of Hamilton’s equations for this double-Legendre transformed function, con-
sider the definition of the total differential of G,

dG(pi, ṗi; t) =
∂G
∂pi

dpi +
∂G
∂ṗi

dṗi +
∂G
∂t
dt , (10)

and equate the coefficients of like terms from the previous expression for the total differential of G.
The resulting equations are

q̇i =
∂G
∂pi

qi =
∂G
∂ṗi

∂G
∂t

=
∂H
∂t

= −∂L
∂t

. (11)

1.2 Test Case: Simple Harmonic Oscillator.

Consider the simple case of a one dimensional horizontal harmonic oscillator consisting of a mass
m attached to a spring of constant k. This can be solved with the function G as defined above. The
Lagrangian for the simple one dimensional oscillator is trivial to write down, but using Equations 7
and 5, it can be shown that

p = mq̇ ṗ = −mω2q , (12)

where ω =
√
k/m is the frequency of oscillation. Therefore,

G = − ṗ2

mω2
+

p2

2m
+
mω2

2

(
− ṗ

mω2

)2

=
p2

2m
− ṗ2

2mω2
. (13)

So the Hamilton-esque equations are

q̇ = p/m q = − ṗ

mω2
, (14)

so by differentiating the left most equation, solving the right most equation for ṗ, and plugging
that into the expression for q̈, the equation

q̈ = −ω2q , (15)

is obtained, which is easily recognizable as the equation for a simple harmonic oscillator in one
dimension. Note that the potential term in G does not explicitly depend on velocity, so the Hamil-
tonian is the total energy. Additionally because the partial derivative with respect to time of L,H,
and G are all zero, the Hamiltonian is conserved, and therefore total energy is a constant of the
motion.
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2 Problem #2: A 3D Central Potential.

Consider a full three dimensional central potential UE(r), using standard spherical polar coordi-
nates {r, θ, φ} as the generalized coordinates. In terms of the spherical coordinates, the Cartesian
coordinates are

x = r sin θ cosφ → ẋ = ṙ sin θ cosφ+ rθ̇ cos θ cosφ− rφ̇ sin θ sinφ (16)

y = r sin θ sinφ → ẏ = ṙ sin θ sinφ+ rθ̇ cos θ sinφ+ rφ̇ sin θ cosφ (17)

z = r cos θ → ż = ṙ cos θ − θ̇r sin θ . (18)

Note that v2 is given by ẋ2 + ẏ2 + ż2, so

v2 = ṙ2 + r2θ̇2 + r2 sin2 θφ̇2 . (19)

2.1 The Hamiltonian.

Given v2 and the general potential, the Lagrangian is

L =
1

2
mṙ2 +

1

2
mr2θ̇2 +

1

2
mr2 sin2 θφ̇2 − UE(r) . (20)

The conjugate momenta are given by Pq = ∂L/∂q̇, so

Pr =
∂L
∂ṙ

= mṙ ⇒ ṙ = Pr/m (21)

Pθ =
∂L
∂θ̇

= mr2θ̇ ⇒ θ̇ = Pθ/mr
2 (22)

Pφ =
∂L
∂φ̇

= mr2 sin2 θφ̇ ⇒ φ̇ = Pφ/mr
2 sin2 θ . (23)

Therefore the Hamiltonian is given by

H = ṙPr + θ̇Pθ + φ̇Pφ − L (24)

=
P 2
r

m
+

P 2
θ

mr2
+

P 2
φ

mr2 sin2 θ
− P 2

r

2m
−

P 2
θ

2mr2
−

P 2
φ

2mr2 sin2 θ
+ UE (25)

=
P 2
r

2m
+

P 2
θ

2mr2
+

P 2
φ

2mr2 sin2 θ
+ UE = Etot , (26)

and is equal to the total energy of the system.

2.2 Constants of Motion.

From this Hamiltonian, it is easy to determine some constants of motion. Noting that the Hamil-
tonian is not explicitly dependent on time means it is conserved, and therefore the total energy is
as well. The conjugate momentum to φ is also conserved because from Hamilton’s equations,

Ṗφ = −∂H
∂φ

= 0 ⇒ Pφ = cst. (27)
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2.3 Hamilton’s Equations.

The remaining Hamilton equations are

Ṗr = −∂H
∂r

=
P 2
θ

mr3
+

P 2
φ

mr3 sin2 θ
− ∂UE

∂r
(28)

Ṗθ = −∂H
∂θ

=
P 2
φ cos θ

mr2 sin3 θ
(29)

ṙ =
∂H
∂Pr

= Pr/m ⇒ mr̈ = Ṗr (30)

θ̇ =
∂H
∂Pθ

=
Pθ
mr2

⇒ d

dt
[mr2θ̇] = Ṗθ (31)

φ̇ =
∂H
∂Pφ

=
Pφ

mr2 sin2 θ
⇒ d

dt
[mr2 sin2 θφ̇] = Ṗφ , (32)

after differentiating the second set of equations with respect to time. Now the first three equations
can be equated to the second three using the expressions on the right hand side of the equations
above. Taking the indicated time derivatives and setting them equal to the corresponding momen-
tum time derivative yields

mr̈ =
P 2
θ

mr3
+

P 2
φ

mr3 sin2 θ
− ∂UE

∂r
(33)

2mrṙθ̇ +mr2θ̈ =
P 2
φ cos θ

mr2 sin3 θ
(34)

2mrṙ sin2 θφ̇+ 2mr2θ̇ sin θ cos θφ̇+mr2 sin2 θφ̈ = 0 . (35)

From here the definitions of the conjugate momenta (Equations 72 - 23) can be substituted in, and
the expressions solved for the second time derivative terms,

mr̈ = mrθ̇2 +mr sin2 θφ̇2 − ∂UE
∂r

(36)

mr2θ̈ = mr2 sin θ cos θφ̇2 − 2mrṙθ̇ (37)

mr2 sin2 θφ̈ = −2mrṙ sin2 θφ̇− 2mr2 sin θ cos θθ̇φ̇ , (38)

which are the coupled equations of motion for r, θ, and φ.

2.4 Comparison to Euler-Lagrange Equations.

These equations of motion can now be compared to the equations of motion found by using the
Lagrangian method. The Euler-Lagrange equations are

d

dt

∂L
∂q̇

=
∂L
∂q

. (39)
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Applying this to the Lagrangian given in Equation 20 gives the three Lagrangian equations of
motion,

d

dt
[mṙ] = mrθ̇2 +mr sin2 θφ̇2 − ∂Ue

∂r
⇒ mr̈ = mrθ̇2 +mr sin2 θφ̇2 − ∂Ue

∂r
(40)

d

dt
[mr2θ̇] = mr2 sin θ cos θφ̇2 ⇒ mr2θ̈ = mr2 sin θ cos θφ̇2 − 2mrṙθ̇ (41)

d

dt
[mr2 sin2 θφ̇] = 0 ⇒ mr2 sin2 θφ̈ = −2mrṙ sin2 θφ̇− 2mr2 sin θ cos θθ̇φ̇

(42)

which are exactly the same equations of motion found through the Hamiltonian approach.
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3 Problem #3: Constrained Motion with Hamiltonians.

Consider a particle of mass m subject to a central force F = −kr, where r is a vector from the origin
to the particle. The particle is constrained to move on a cylinder centered on the z-axis, defined
by x2 + y2 = R2. The transformation from cylindrical coordinates on this surface to Cartesian
coordinates is given by

x = R cos θ ⇒ ẋ = −Rθ̇ sin θ (43)

y = R sin θ ⇒ ẏ = Rθ̇ cos θ (44)

z = z ⇒ ż = ż , (45)

so the velocity squared is
v2 = ẋ2 + ẏ2 + ż2 = θ̇2R2 + ż2 , (46)

from which the kinetic energy can be found directly, T = 1
2mv

2. In order to find the Lagrangian,
the potential energy must still be determined. A conservative force can be written as F = −∇U ,
where U is the potential energy. The force described above is

F = −kx̂i− kyĵ− kzk̂ = −∂U
∂x

î− ∂U

∂y
ĵ− ∂U

∂z
k̂ , (47)

which implies the potential is U = 1
2k(x2 + y2 + z2) = 1

2k(R2 + z2). Hence, the Lagrangian is

L =
1

2
mR2θ̇2 +

1

2
mż2 − 1

2
kR2 − 1

2
kz2 , (48)

and the conjugate momenta are

Pθ =
∂L
∂θ̇

= mR2θ̇ ⇒ θ̇ = Pθ/mR
2 (49)

Pz =
∂L
∂ż

= mθ̇ ⇒ ż = Pz/m. (50)

The Hamilton, then, is

H = żPz + θ̇Pθ − L =
P 2
z

m
+

P 2
θ

mR2
− 1

2
mR2

(
Pθ
mR2

)2

− 1

2
m

(
Pz
m

)2

+
1

2
kR2 +

1

2
kz2 (51)

=
1

2

P 2
θ

mR2
+

1

2

P 2
z

m
+

1

2
kR2 +

1

2
kz2 . (52)

Using Hamilton’s equations,

Ṗθ = −∂H
∂θ

= 0 Ṗz = −∂H
∂z

= −kz (53)

θ̇ = − ∂H
∂Pθ

=
Pθ
mR2

ż = − ∂H
∂Pz

=
Pz
m

. (54)

From this, it is easy to see Pθ is a constant of the motion. By differentiating the expression for ż
with respect to time and substituting in the expression for Pz, the Hamiltonian equations of motion
are

z̈ = − k
m
z (55)

` = mR2θ̇ , (56)

where ` is the angular momentum. So the motion is a harmonic oscillator in the z direction
(about the origin) while the particle moves around the z-axis in a circle, with conserved angular
momentum.
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4 Goldstein 8.26.

A particle of mass m can move in one dimension
under the influence of two springs connected to
fixed points a distance a apart, as shown in Fig-
ure 1. The springs obey Hooke’s Law and have
zero unstretched lengths, and force constants k1
and k2. Let the coordinate q be the distance the
mass is from the left wall, with the positive di-
rection to the right. This means the equilibrium
position of the mass is at q = a/2.

Figure 1: Depiction of the mass and spring sys-
tem examined in problem #4.

4.1 Lagrangian and Hamiltonian.

When the mass is a distance x from the left wall, the left spring is compressed/extended to a length
x while the right spring is compressed/expanded to a length a− x, therefore the potential energy
of the system, using the generalized coordinate q, is

U =
1

2
k1q

2 +
1

2
k2(a− q)2 =

1

2
(k1 + k2)q

2 − k2aq +
1

2
k2a

2 . (57)

Note the last term is a constant, so the zero point of potential enery can be set so this term is zero
(which will be done). The kinetic energy is the usual T = 1

2mq̇
2. Therefore the Lagrangian and,

using the conjugate momentum to q: p = mq̇, the Hamiltonian are given by

L =
1

2
mq̇2 − 1

2
(k1 + k2)q

2 + k2aq (58)

H =
p2

2m
+

1

2
(k1 + k2)q

2 − k2aq . (59)

Note that there is no explicit time dependence in the Hamiltonian or Lagrangian, so the Hamiltonian
is conserved. Additionally, the Hamilontian is easily recognizable as the total energy of the system,
which is also conserved.

4.2 Change of Coordinates.

Consider the coordinate

Q = q − b sinωt with b =
k2a

k1 + k2
. (60)

For the Lagrangian to be written in this coordinate, it can be manipulated starting with Equa-
tion 58,

L =
1

2
mq̇2 − 1

2
(k1 + k2)

(
q2 +

k2a
1
2(k1 + k2)

q

)
=

1

2
mq̇2 − 1

2
(k1 + k2)

(
q2 + 2bq

)
, (61)

noting that the last term in parenthesis can be written as (q − b)2 − b2 by completing the square.
Again, the zero point of potential energy will be set so the constant term does not contribute.
Therefore the Lagrangian, using the definition of Q can be written

L =
1

2
m(Q̇+ ωb cosωt)2 − 1

2
(k1 + k2)(Q+ b sinωt− b)2 (62)

=
1

2
m
(
b2ω2 cos2 ωt+ 2bQ̇ω cosωt+ Q̇2

)
− 1

2
(k1 + k2)(Q+ b sinωt− b)2 . (63)
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The conjugate momentum to Q is

P =
∂L
∂Q̇

= mQ̇+mbω cosωt ⇒ Q̇ =
P

m
− ωb cosωt , (64)

and therefore the Hamiltonian is

H = Q̇P − L =
P 2

m
− Pωb cosωt− 1

2
m

(
P

m

)2

+
1

2
(k1 + k2)(Q+ b sinωt− b)2 (65)

=
P 2

2m
− Pbω cosωt+

k1 + k2
2

(Q+ b sinωt− b)2 . (66)

Notice now the Hamiltonian has explicit time dependence so it is not conserved. In these coordi-
nates, the total energy is given by

E = T+U =
1

2
m(Q̇+ωb cosωt)2+

1

2
(k1+k2)(Q+b sinωt−b)2 =

P 2

2m
+

1

2
(k1+k2)(Q+b sinωt−b)2 ,

(67)
which also has explicit time dependence, so the energy is not conserved either.

Figure 2: Depiction of the pendulum system and coordinates used in problem #5.
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5 Goldstein 8.19.

The point of suspension of a simple pendulum of length ` and mass m is constrained to move
on a parabola defined by z = ax2 in the vertical plane, in a uniform downwards gravitational
acceleration g. The position of the pivot point in the x − z plane is given by (x, ax2). Now, let
a coordinate θ be the angle the pendulum makes with the vertical. The position of the mass is
then (x+ ` sin θ, ax2 − ` cos θ). So the generalized coordinates for this system are x and θ, and the
kinetic energy is

T =
1

2
m(ẋ2 + ż2) =

m

2

[(
ẋ+ `θ̇ cos θ

)2
+
(

2axẋ+ `θ̇ sin θ
)2]

(68)

=
m

2

[
(1 + 4a2x2)ẋ2 + 2`(cos θ + 2ax sin θ)ẋθ̇ + `2θ̇2

]
. (69)

Let the zero potential be defined such that when x = θ = 0, U = 0. Therefore the zero potential
surface is the plane defined by z = −`, so the potential energy is

U = mg(`+ ax2 − ` cos θ) . (70)

With this information, the Lagrangian is

L =
1

2
mẋ2 + 2ma2x2ẋ2 +m` cos θẋθ̇+ 2m`a sin θxẋθ̇+

1

2
m`2θ̇2−mg`−mgax2 +mg` cos θ , (71)

so the conjugate momenta are

px = mẋ+ 4ma2x2ẋ+m` cos θθ̇ + 2m`a sin θxθ̇ (72)

pθ = m` cos θẋ+ 2m`a sin θxẋ+m`2θ̇ . (73)

With these the Hamiltonian can be written as

H = ẋpx + θ̇pθ − L , (74)

so Equations 72 and 73 must be solved simultaneously for ẋ and θ̇. Using Mathematica the
solutions are

ẋ = −2apθx sin θ − `px sin2 θ − `px cos2 θ + pθ cos θ

`m(sin θ − 2ax cos θ)2
=
`px − pθ(2ax sin θ + cos θ)

`m(sin θ − 2ax cos θ)2
(75)

θ̇ = −−4a2pθx
2 + 2a`pxx sin θ + `px cos θ − pθ
`2m(sin θ − 2ax cos θ)2

=
pθ(1 + 4a2x2)− `px(2ax sin θ − cos θ)

`2m(sin θ − 2ax cos θ)2
, (76)

and the Hamiltonian is given by

H = pθ

[
pθ(1 + 4a2x2)− `px(2ax sin θ − cos θ)

`2m(sin θ − 2ax cos θ)2

]
+ px

[
`px − pθ(2ax sin θ + cos θ)

`m(sin θ − 2ax cos θ)2

]
− L (77)

=
p2θ
(
4a2x2 + 1

)
+ 2gl2m2

(
−ax2 + l cos θ + l

)
(sin θ − 2ax cos θ)2 − 2lpθpx(2ax sin θ + cos θ) + l2p2x

2l2m(sin θ − 2ax cos θ)2
.

(78)

From this the final two of Hamilton’s equations (the ẋ and θ̇ Hamilton’s equations are shown above)
can be found,

ṗθ = −∂H
∂θ

ṗx =
∂H
∂x

. (79)
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Using Mathematica to take the derivatives of the Hamiltonian, these are

ṗθ =
1

`2m(sin θ − 2ax cos θ)3

{
p2θ
(
4a2x2 + 1

)
(2ax sin θ + cos θ) + g`3m2 sin θ(sin θ − 2ax cos θ)3

+ `2p2x(2ax sin θ + cos θ) +
1

2
`pθpx(4ax(ax(cos(2θ)− 3)− sin(2θ))− cos(2θ)− 3)

}
, (80)

after simplifying,

ṗθ =
[p2θ
(
4a2x2 + 1

)
+ `2p2x](2ax sin θ + cos θ)

`2m(sin θ − 2ax cos θ)3
+ g`m

+
`pθpx(4ax(ax[cos(2θ)− 3]− sin(2θ))− cos(2θ)− 3)

`2m(sin θ − 2ax cos θ)3
(81)

and

ṗx =
−2a

`2m(sin θ − 2ax cos θ)3

{
g`2m2x(2ax cos θ − sin θ)3 − 1

2
`pθpx(2ax sin(2θ) + cos(2θ) + 3)

+ p2θ(2ax sin θ + cos θ) + `2p2x cos θ

}
, (82)

after simplifying,

ṗx = 2agmx+
2a

`2m(sin θ − 2ax cos θ)3

{
1

2
`pθpx[2ax sin(2θ) + cos(2θ) + 3]

− p2θ(2ax sin θ + cos θ) + `2p2x cos θ

}
, (83)

The equations of motion can then be found by differentiating Equations 75 and 76 and plugging in
the above results, then substituting in the expressions for pθ and px.
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