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1 Moller Scattering.
Compute the differential cross section for e"e™ — e7e™.
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Figure 1: The tree-level Feynman diagrams describing the process ete™ — ete™. (Left) t-channel.
(Right) u-channel.

The tree-level diagrams for the process e"e~ — e~e~ are shown in figure 1, the left diagram
representing the t-channel and the right diagram representing the u-channel.

1.1 t-channel.
From the diagram, we can write down the matrix element:

, 2
_ g _ e” _ _
M, = (€U3’Y“U1)7qu (etigy, u2) = P[“:&WMHUM“W] , (1)

where the propagator momentum g = p; — p3 = v/t. The modulus squared is

4
et _ _ _
IM|? = tﬁ[u37uul][Uﬂ“uﬂ[u3%u1]T[U4”y"uQ]T (2)
4
et ~ ~ ~
= tj[”ﬂy“l”“ﬂ“ w1y us)[tey” udl (3)
4
e
= tfg[ﬁswulﬂl’yuus][ﬂﬂ”wﬂw” ug) , (4)

where we’ve used the identity:

[y 0]" = [uly 29" 0]" = Ty 1w = o (49)297 100 = 5(799" 1 0)u = 577w, (5)
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which holds for u and v spinors. Since the quantities in the square brackets are C-numbers, we can
take their traces with no repercussions:

4 4
— e _ _ _ _ e _ _ _ _
My |* = 2 Trlugy,uitinyyus] Tr[tey" ustiay ug] = 2 Trlurtg voustigyu] Trlugtioy uatiay”] . (6)

Now we must average over the initial spins and sum over the final spins:

Zusaav”zuz’az’w] , ”)
r r!

Tr

4
~ 2 _ € S8 s’ s
|My|* = 172 Tr [E Uu1 Y E Uz Uz Yp
S s/
we use the completeness relations for Dirac spinors:

G = ST (5, = mopy = mo] T [(p, = mor - mo] . (®)

here we will note that any term which is linear in the electron mass will contain an odd number of
Dirac matrices inside a trace, which evaluates to zero. Therefore:

4

- e
|IMy|? = T {Tr [plfy,,pgfy“] +m?2Tr [’y,/yu]} {Tr [3#27"p4'y“] + m?2 Tr [7"7“]} (9)
4
=1 {p‘f‘pg Tv (Yo Y5 ) + mi Tr hﬂu]} {P2ap46 Tr [’V“’y”vﬁ 'y“} +m; Tr [v”v“}} - (10)

Using the trace identities of Dirac matrices (Peskin Appendix 3) this is

4
{p(f‘pg Tr Yo v V8] + 4g;wm§} {pzapw Tr [’f“v”vﬁ v“} + 49“”m3} , (1)

YL
Ml = 12

the remaining traces are

PEDE T Yo vs7u] = 405895 (9w 98 — GG + Gopdus) (12)

=4 (p1wp3y — (P1 - P3) G + P1uP3v) (13)

P2apap Tr [vo‘v”vﬁ v“] = poapap Tr [’y‘”‘v”vﬁ ﬂ = 4paapag (go‘”gﬁ“ — gP gt 4 gorg¥P ) (14)
= 4 (p5ply — (p2 - pa)g”™ + phpk) . (15)

Now we must do the multiplication in the matrix element. The first term is the contraction of the
above two traces, so using notation (1+2+3)(A+B+C), the terms are

1A @ (p2-p1)(pa-p3) (16)
IB : —(p1-p3)(p2-pa) (17)
1C = (pa-p1)(p2 - p3) (18)
4A : —(p2-pa)(p1 - p3) (19)
4B 4(p2 - pa)(p1 - p3) (20)
4C = —(p2-pa)(p1-ps3) (21)
3A + (p2-p3)(psa-p1) (22)
3B : —(p1-p3)(p2-pa) (23)
3C :© (p2-p1)(pa-ps), (24)
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which we must sum (including an overall factor of 42), note the factor of 4 in 2B comes from
9" g = 4. Let us note the relations:

1A =3C 1C=3A 2B+1B+2A+2C+3B=0, (25)
so their sum is
4% [2(p2 - p1)(pa - p3) + 2(pa - 1) (P2 - p3)] - (26)
The second term (in the matrix element) is the contraction of the two mass terms:
42g,,9"'ms = 4% [4m?] . (27)

The remaining two terms are the “cross-terms”:

4 (p1upsy — (p1 - P3)Gup + P1upsy) 49" mE = 42 [mZ (p1 - p3 — 4p1 - ps + p1 - p3)] (28)
= 42 [—Qmipl -pg] , (29)
and
4(pspl — (p2 - pa)g™" + Phpi) dgumi = 4% [mZ (p2 - ps — 4(p2 - pa) + p2 - pa)] (30)
=47 [-2m?Zps - p4] . (31)

Gathering these terms, the matrix element is

_ 4
M| = 4% {2(p2 - p1)(pa - p3) + 2(pa - p1)(p2 - p3) + 4mi — 2mZ(p1 - p3) — 2m2(p2 - pa)} . (32)

Again we will use our Mandelstam invariants, noting (in the massive case)

2p1 - p2 = 8 — 2m2 = 2p3 - p4 (33)
—2p1 -p3=1t—2m2 = —2py - py (34)
—2p1 -pa=1u—2m? = —2ps-p3 . (35)

With these, the matrix element squared is

4
- e
IMy]* = 22 {2(p1 - p2)2(pa - p3) + (=2)(pa - p1)(—2)(p2 - p3) + 8 — 4mZ(p1 - p3) — 4mZ(p2 - pa) }
4
=25 {(s = m2)? + (u—m2)? + 8m{ 4+ 2m2(t — 2m?) + 2m2(t — 2m?) }
4
= 2% {(s = mR + (= m2)? + 8t + Am3(t — 2m2)}

4
e
= 2t—2 {52 +md — 2sm? 4+ u® + ml — 2um? + 8m? 4 4m?t — Smﬁ}
4
= e
],/\/lt]2 = 2t—2 {32 + u? + 2mz(2t —s—u)+ 2m3} .
We recover, in the ultra-relativistic limit (i.e., massless electron):
4 s% + u?
+2

|IMy|? = 2e (36)
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1.2 w-channel.

From the diagram, we can write down the matrix element:

62

1
My = (eﬂﬂuul)%(eﬁﬂuuz) = ?[ﬂﬂuuﬂ[ﬁs’wuﬂ ; (37)

the analysis that follows will be abbreviated because the process is nearly identical as the t-channel.
The modulus squared of the matrix element is

62 2
M = (%) o emy oy u) (39)
4
et _ _ _
= @[Uﬂuuﬂ[uwzxw] [U2y" us][uzy usg] (39)
4
e
=2 Tr[ug U1y, uatiay,] Triugtioy”ugtzy"] (40)

now we sum and average over final and initial spins, and use the completeness relations for the
Dirac spinors:

4

M2 = ooy T, + )i, -+ m)] T, + m) (, + m)y) (41)
oA
=13 {Tr [}’)1%7547’#} + m?2 Tr [’yl/yu]} {Tr [p{y”pg’y“} + m2 Tr [’y”'y“]} (42)

4
&
=17 {p‘i‘pf Tt (Yoo ¥870) + 4gwm§} {pZaPS/ﬁ Tr [v“v”vﬁ v“] + 49“’”m§} (43)

the remaining traces are

P04 Trlvao sl = 49504 (Gav 981 — 9aBGun + Gopudus) (44)
=4 (p1ypay — (P1 - P4)Gvp + P1pPav) (45)
P2ap3s TV 7P4"] = dpaapss (g‘“’gﬂ w— gl gt 4 gorg P ) (46)
=4 (p5ps — (p2 - p3)g™" + Phvs) (47)
which contract to give
4% [2(p2 - p1)(p3 - pa) + 2(ps - p1)(p2 - pa)] (48)
The product of the mass terms is
4% [am?] | (49)
and the cross-terms are
4 (p1ypay — (p1 - Pa)Gup + P1upav) 4mZgH = 42 [—2m?Z(p1 - pa)] (50)
4 (p5pk — (p2 - p3)g™ + phps) 4mZgu, = 4% [-2mZ(p2 - ps)] | (51)

so the matrix element squared is

4
IM,|* = 4% {2(p2 - p1)(p3 - pa) +2(p3 - 1) (2 - pa) + 4mg — 2m2(p1 - pa) — 2mZ(p2 - p3)} . (52)
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Writing this in terms of Mandelstam invariants, we have

4
- e
(Mul* =25 {2(p2 - p1)2(ps - ) + (=2)(p3 - P1)(=2) (2 pa) + 8 — 4mZ(p1 - pa) — 4m(p2 - p3) }
4
=255 {(s = m2)? + (t = m2)? + 8mi + 2m2(u = m?) + 2m2(u — m?)}
4
IMy|? = 2% {82 +t2 4 2m2(2u — s — t) + 4m§} .

We recover, in the ultra-relativistic limit (i.e., massless electron):

52 + 12
u

M, = 2¢ (53)
It is interesting to note we could have found this result if we had made the substitutions ps — py
and py — p3 (note we do not need to consider a change of sign, because we are not dealing with
any antiparticles), so the Mandelstam invariants become

s=(p1+p2)° = (p1+p2)° =5 (54)
t=(ps—p1)* = (pa—p1)° =u (55)
u=(p1—p1)’ = (ps—m)>=t. (56)
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1.3 Cross Terms.

The first cross-term is

VN VL 1 62 62
MMy, =7 [t[aﬂuulﬂﬂﬂuuﬂ} [ug[ﬂ4’YVU1]T[537”u2}T (57)
spins
ol
= 1u 2 @l ualliey s [y us] (58)
spins
ol
= 2ta 2 Tl iy sty utiny” usiis] (59)
spins
64 Y
m Tr[’Yu(lﬁl + m)')/u(p4 + m)fy“(z% +m)y (31)3 +m)] (60)
4
= apy Jpadvs TT[WQ(Pl + m)ﬂyﬂ(p4 + 771)7“(p2 + m)y”(pg +m)] (61)
4
¢ v (0%
= Lo nagvs TP P P P (62)

For the sake of calculations, let’s cast this in a different form, using p; — p, p2 — k, p3 — p/, and
ps — k', we can then write the cross term as

o o
MM, = = Gpalup Te[py K vk py°] = > tguaguﬂ Tr[p' v pr K " k] (63)
now relabel our indeces (swapping § and pu):
oA
MM, = = Gasguw Telpy pr Ky k"] (64)

Note the following relations which can be found in Appendix A.4 of Schwartz Quantum Field Theory
and the Standard Model:

Yy =4 (65)
Yy = —29" (66)
Y = 49" (67)
YA Yoy = =297 (68)

and note the fourth holds for any odd number of gamma matrices between two contracted gamma
matrices. Therefore:

W Wi 64 o 4 «
MM, = Tga,é’ Telp' Py Ky K = =5 os ey Pk A H] (69)
4
(6% € g
= T o4 TY[P/’Y kaa%] = _QEQP ppko Tl"[?/k/] (70)
- —2f< DK = 5% (p- k)(p' - 1) )
BT ¥l = tu P P ’

Now in terms of the originally defined momenta:

- 64
MM, = —8£(P1 -p2)(p3 - p4) (72)
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in terms of the Mandelstam invariants this is

- - et s\ /s 182
r=—8—(=)(=z)=—-2"—.
MM, = =87 <2) (2) “tu
Instead of calculating the other cross-term, I will claim
2R{M M} = MM + MiM,, = 2R{M; M.},

SO
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1.4 Differential cross-section.
For a two-body final state, the differential cross-section is given by (Peskin eq. 5.12)

do 1 k|

P [ S 112
aQ ~ 2E2 16772Ecm|M I”- (76)

In the massless limit, center of mass frame, the differential cross-section simplifies to

2 1 1 —12

do 1 Een/2
dQ  2E2 1672E.,

Using the matrix elements from the massless limit sections, we have

do 1 1 264{ 2 2} 2\? 1 2 +u2  o?s?+ul (78)
—_— = ——,— S u _= —_— _— = ——

dQ|, 4E2, (4m)? 2 4t ) 2s 2 2s  t?

do 1 1 264 { 2—|—t2} 2\* 18242 a?s®+ 12 (79)
- E —— E— = —_ — = —

dQ|, 4E?, (4m)? u? A ) 2s  wu? 25  u?

do 1 1 (—4) et , e2\? 12 a? s? (80)
—_— = — — 8 = — —_— _—_— = =,
dQ|,, 4F?, (4m)? tu A ] stu s tu

Now we need to calculate the sum of the differential cross-sections, but we need first determine
their sign. Since there are identical fermions in the final state, we have that

M=M; M, = |M?= M+ |M* = MM — MM, (81)
since under particle interchange, fermionic systems are odd. Then

do _do
dQ  dQ

do
dQ

do

@ (82)

)
t ut

putting in our results:

do  o? [s2+u?  s2+¢2 s a | fu\2? £\ 11 2
do_ o7 2= |(5) + (o) P (g )| (88
dQ  2s 7T ( )tu} 2 [\7) T (u> T <u2 et tu) (83)

which can be written

do  o? | ju\2 £\ ? o1 1 2
(= hd R 84
dQ  2s [(t) +<u) T <t+u) (84)
If we integrate over the azimuth, we acquire a factor of 27, yielding
do ma? | fu\2 t\? o1 1 2
Teosh s [(J + <u> s <t * u> (85)

Let’s investigate the angular dependence of the differential cross section. In the center of mass
frame, we have

p1 = (Een/2,P) p3 = (Eem/2,k) (86)
D2 = (Ecm/Qa *p) P4 = (Ecm/2a *k) , (87)
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where |p| = |k| = E¢,/2. Using this, the Mandelstam invariants can be written
s=2p1-py=E}, (88)
t=—2p-ps = —2(p{p§ — (p - k)) (89)
E2
= —2%(1 — cosf) (90)
u=—2p1-ps = —2(pp] — (p- —k)) (91)
E2
= —2%(1 + cosf) . (92)

Inserting these into the differential-cross section yields

2 2
do  7a? [ (—QE%"(:[—FCOSH)) N (—QEji’"(l —cosH))

dcos s —2%(1—0089) —QEfim(1+COSH)

2
1 1
+ B, + ] , (93)
(—QEfim (1 —cosf) —2E§m(1+COSQ)>

simplification yields

do a2 [ (14 cosf\? 1—cosf\? 1 1 2
= — 4 4
dcosd 5 [(1—cos€> +<1+cos@> * (1—C089+1+C089> ] ’ (94)
letting our old pal MATHEMATICA handle the algebra, we obtain

do Ta? {2 (;U2 + 3)2} (95)

de EZ, | (a2 -1)°
where x = cos . We can integrate the angular dependence out, to see the dependence on center of
mass energy:
2 (2 (22 +3)? 2 8
o= 7(24 ( )2 dx:27rg{:x— 2ac }, (96)
Ecm (ZL‘2 - 1) Ecm 4 —1

which diverges at +1. If we restrict measurement for particles with a scattering angle greater than
10°, we (MAATHEMATICA) can evaluate the integral numerically:

B Cos(lolirﬁ) ma? |2 (x2 + 3)2 Tl
&= / e o pde = 1049.0575— (97)
cos(1701gg) Hem ($ 1) cm

note the units are GeV~2, so we pick up a factor:

ma? (0.3894 mb 0.06837
o = 1049.05 = b . 98
7 7 (T ) = Eofaer ™ %)
We now need to include a factor of 1/2 due to the identical particles in the final state!, so
0.0342
6=-——-———=mb. 99
7 (Bom/GeV)2 (99)

For example, in colliding electron beams, each with momentum 4000 GeV (so a center-of-mass
energy of 8000 GeV), the total cross section (for scattering larger than 10°) is o = 5.342 x 1010
millibarn, or 0.534 pb.

1 In short, a detector can’t tell the difference between which electron it detects, so to avoid double counting we
need to include a factor of 1/2 in the phase space factor. See Peskin pages 107-108, in general we include a factor of
1/n! for a final state with n identical particles.
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2 CalcHep Comparison.

We now move to the computational tool CALCHEP to verify our result for the process ee—ee in
the Standard Model option, excluding diagrams propagated with a Z-boson. In our model we want
to set the electron charge to e = v/4ra ~ \/47r/137 = 0.302862. After starting n_calchep, the IN
state was set to give each particle a momentum of 4000 GeV. In order to get convergent results, we
apply a cut on A(e) with Min bound = 10 and Max bound = 170. The Monte Carlo simulation
resulted in a value of 0 = 0.534 pb, which is in excellent agreement with our calculated result.

A second simulation was run, this time with a cut on the cosine of the scattering angle: —0.95 <
x < 0.95. The total cross-section calculated using equation 99 is 0.1607 pb. Again, in excellent
agreement with the simulation: ¢ = 0.1607 pb. This time the angular distribution (equation 95) of
the electron is plotted with respect to x = cos @, shown in figure 2 on linear and logarithmic scales.
We see excellent agreement between the formula and simulation for the angular distribution (the
agreement becomes worse at large angles). For the angular distribution, wee did not need to include
the factor of 2 for identical particles, because the 1/n! factor only enters when one integrates over
the full phase-space. Thus it has no effect on the differential cross-section.
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35 Differential cross-section angular dependence
B T T T
i — Formula
¢ ¢ CalcHep
e
[a%
=
e
k<1
0.0
cos 0

10! Differential cross-section angular dependence
— Formula
¢ ¢ CalcHep
10°H 1
o)
o,
=
W
Sl
=
107} 1
10? L ‘
-1.0 —0.5 0.0 0.5 10
cos f

Figure 2: Angular distribution of one of the final state electrons, comparison on CALCHEP simula-

tion and analytic calculation. Shown on both linear and logarithmic scales.
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