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Dylan J. Temples Quantum Field Theory I : Solution Set One

1 Dimensional Transmutation.

Explain what is the phenomenon of “dimensional transmutation?”

The “dimension” of dimensional transmutation refers to the fact that in a natural unit system,
every dimensionful parameter is measured in the same units, and it’s dimension is the exponent
of that unit. Dimensional transmutation is the emergence of a dimensional scale in a theory
of only a dimensionless (scale-invariant) theory, e.g., in quantum field theory, a mass scale is
spontaneously generated through the renormalization procedure. A scale-invariant theory is a
system (Hamiltonian/Lagrangian) with no dimensional dynamical parameter. In a scale-invariant
theory, a dimensionally transmuted scale may appear spontanteously by means of a dimensionful
parameter being introduced to characterize this scale.

Page 2 of 9



Dylan J. Temples Quantum Field Theory I : Solution Set One

2 Dimensional Analysis in Natural Units.

Here are a few exercises on dimensional analysis and the Natural Unit system c = ~ = 1.

A) The proton mass in the SI unit is mp = 1.672× 10−27 kg. Convert mp into the Natural Unit.
The Large Hadron Collider (LHC) at CERN in Geneva is a proton-proton collider designed
to have a center-of-mass energy of 14 TeV. What is the speed of the proton, expressed in
terms of the speed of light c, when the LHC is operating at the designed CM energy?

In SI units, the rest energy of the proton is

E0 = mpc
2 = (1.6726219× 10−27) kg c2 = 1.50536× 10−10 J . (1)

Using the definition of the electron volt: 1 J = 6.242 × 1018 eV, the rest energy is E0 =
9.39646× 108 eV ' 940MeV . So the mass of the proton can be expressed as

mp =
940 MeV

c2
, (2)

but in the Natural Unit, c = 1, so

mp = 940 MeV . (3)

The energy of a relativistic particle is simply the product of its rest energy and the Lorentz
factor:

E = γE0 = γmp with γ =

(
1−

[v
c

]2)−1/2
. (4)

These expressions can be massaged to give

v

c
=

√
1−

[mp

E

]2
=

√
1−

[
940

14
10−6

]2
≈ 1 . (5)

The result is less than one, by construction: 1 − δ < 1 for δ > 0, so that
√

1− δ < 1, but
no computational tool at my disposal has the precision required to resolve the solution from
1.0. The proton is effectively moving at the speed of light. The precision in Matlab rounds
0.99999 to 1.0, so v > 0.9999c.

B) In SI unit Maxwell’s equations contain three dimensionful coupling constants: the electric
charge of the electron e = 1.602× 10−19 C, the permittivity of free space ε0 = 8.853× 10−12

F/m, and the permeability of free space µ0 = 1/(ε0c
2) which can be traded in for the speed

of light c. Can you generate a quantity out of e, ε0, c, and ~ that is dimensionless? Is there
more than one dimensionless quantity that can be generated?

Let us note the SI units of the four constants e, ε0, c, and ~:

[[e]] = C [[ε0]] =
F

m
=

s2 · C2

m3 · kg
⇒

[[
e2

ε0

]]
=

m3 · kg

s2
(6)

[[~]] =
m2 · kg

s2
[[c]] =

m

s
⇒ [[~c]] =

m3 · kg

s2
. (7)
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The combinations ~c and e2/ε0 both have the same dimensions, and therefore the quantities:

e2

ε0~c
and

ε0~c
e2

, (8)

are both dimensionless. Furthermore, since these expressions are dimensionless, taking either
to an arbitrary power is still dimensionless.

C) Divide your answer(s) in (b) by 4π and call it α. What is the numerical value of α? Approx-
imate α by a fraction α ≈ 1/N where N is an integer. What is N? Can you recognize that
α is a well-known fundamental constant?

The dimensionless quantity is

α =
e2

4πε0~c
= 0.00729735 , (9)

which we can approximate as α ' 1/N . Let Ñ be the exact value defined by

α = 1/Ñ ⇒ Ñ =
1

α
= 137.036 , (10)

so N = 137.

D) The Newton’s constant GN = 6.674× 10−11 m3kg−1s−2. In the Natural Unit it has the mass
dimension of -2, which is used to define a Planck mass Mp = 1.22 × 1019 GeV. Convert Mp

into the SI unit by expressing it in terms of GN , ~, and c.

Using the dimensions of ~c from earlier,[[
GN
~c

]]
= kg−2 , (11)

so the combination
√
~c/GN has dimensions of mass. In the SI unit system, this has a value

of Mp = 2.1777× 10−8 kg. If we convert this to the Natural Unit system, we see

Mp = 2.1777× 10−8kg c2 = 1.95991× 109 J = 1.22338× 1028 eV = 1.22× 1019 GeV , (12)

as expected.

E) With a CM energy of 14 TeV, typical energy scales at the LHC will be at around TeV. For a
typical quantum mechanical amplitude at the LHC, how large is the correction to the ampli-
tude due to effects of gravity?

The correction due to gravity becomes appreciable when energies reach that of the Planck
mass. At the TeV scale, the correction has magnitude

1012

1019+6
= 10−13 . (13)
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3 Spinless Relativistic Particle and Causality Violation.

In this problem we will show that the quantum mechanical amplitude for a spinless relativistic
particle propagating outside of the lightcone is non-vanishing, thereby violating causality.

A) The Hamiltonian for a free spinless particle in relativity is

H =
√
|p|2 +m2 . (14)

Let’s start with a particle localized at the origin, represented by the state |x = 0〉. In Quantum
Mechanics the time evolution of a state vector is given by e−iHt |x = 0〉. The amplitude for
finding the particle at position x at a later time t is then given by 〈x|e−iHt|x = 0〉. Show

〈x|e−iHt|x = 0〉 =

∫
d3k

(2π)3
e−ik·x . (15)

(Notice I am using the relativistic notation, where k · x = kµx
µ.)

The identity can be expressed as an integral over all momentum states in 3-space:

1 =

∫
d3k |k〉 〈k| . (16)

We can insert the identity into the matrix element 〈x|e−iHt|x = 0〉 before the time evolution
operator:

〈x|e−iHt|x = 0〉 =

∫
d3k 〈x|k〉 〈k|e−iHt|x = 0〉 . (17)

The projection of a state vector in the position basis into the momentum basis is a plane
wave:

〈x|k〉 =
eik·x

(2π)3/2
, (18)

where the three-halves factors of 2π come from the normalization of the plane wave to a
three-dimensional delta function. We can now act the time evolution operator to the left on
the momentum state vector:

〈k| e−iHt =
[
eiHt |k〉

]†
. (19)

The operator in the above expression can be expanded:

eiHt = 1 + (iHt) +O(H2) , (20)

which acts on a state vector:

eiHt |k〉 = |k〉+ (iHt) |k〉+O(H2) |k〉 = |k〉+ (iEkt) |k〉+O(E2
k) |k〉 = eiEkt |k〉 , (21)

where Ek =
√
|k|2 +m2, so that Ek is a C-number, and the exponential can therefore be

pulled out of the matrix element. Taking the conjugate transpose of this, as indicated by
Equation 19, and inserting it back into the matrix element yields

〈x|e−iHt|x = 0〉 =

∫
d3k

eik·x

(2π)3/2
e−iEkt 〈k|x = 0〉 . (22)
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As shown in Equation 18, the inner product 〈k|x = 0〉 = (2π)−3/2eik·0 = (2π)−3/2, and we
are left with

〈x|e−iHt|x = 0〉 =

∫
d3k

(2π)3
e−i(Ekt−k·x) . (23)

The four-momentum is kµ = (Ek, k1, k2, k3) and the four-position is xµ(t, x1, x2, x3), so that

kµx
µ = gµνk

νxµ = Ekt− k1x1 − k2x2 − k3x3 = Ekt− k · x . (24)

Using this, we obtain the result

〈x|e−iHt|x = 0〉 =

∫
d3k

(2π)3
e−ikµx

µ
=

∫
d3k

(2π)3
e−ik·x . (25)

B) Perform the angular integration to arrive at

−i
(2π)2|x|

∫ ∞
−∞
|k|d|k|e−iωktei|k||x| , (26)

where ωk =
√
|k|2 +m2.

Using Equation 24, we can express Equation 25 as

〈x|e−iHt|x = 0〉 =

∫
d3k

(2π)3
e−iωkteik·x , (27)

where ωk = Ek =
√
|k|2 +m2. This can be expressed in spherical coordinates so that

d3k = |k|2 sin θd|k|dθdφ. We can immediately perform the azimuthal (φ) integral, acquiring
a factor of 2π, so that

〈x|e−iHt|x = 0〉 =
1

(2π)2

∫ ∞
0
|k|2d|k|e−iωkt

∫ π

0
sin θdθei|k||x| cos θ . (28)

If we define w = cos θ, the angular integral can be expressed as∫ 1

−1
dwei|k||x|w =

−i
|k||x|

(
ei|k||x| − e−i|k||x|

)
, (29)

and the matrix element can be written

〈x|e−iHt|x = 0〉 =
−i

(2π)2|x|

∫ ∞
0
|k|d|k|e−iωkt

(
ei|k||x| − e−i|k||x|

)
. (30)

Consider only the integral:

I =

∫ ∞
0
|k|d|k|e−iωkt

(
ei|k||x| − e−i|k||x|

)
=

∫ ∞
0
|k|d|k|e−iωktei|k||x|−

∫ ∞
0
|k|d|k|e−iωkte−i|k||x| ,

in the second integral, we can make the change of variable |k| → −|q| (note this does not
change ωk because it depends on the square of |k|:

I =

∫ ∞
0
|k|d|k|e−iωktei|k||x| −

∫ −∞
0

(−|q|)(−d|q|)e−iωktei|q||x|

=

∫ ∞
0
|k|d|k|e−iωktei|k||x| +

∫ 0

−∞
|q|d|q|e−iωktei|q||x| .
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If we rename |q| as k, then we are left with

I =

∫ ∞
−∞
|k|d|k|e−iωktei|k||x| , (31)

and we obtain the result

〈x|e−iHt|x = 0〉 =
−i

(2π)2|x|

∫ ∞
−∞
|k|d|k|e−iωktei|k||x| . (32)

C) The above integral can be performed using Cauchy’s theorem. The only complication is the
square-root in the exponent requires a branch cut. As a warm-up exercise, consider a complex
function f(z) =

√
z where z is a complex variable. If we choose the branch cut to be along

the positive real axis, show that f(z) is discontinuous across the branch cut:

f(x+ iε) = −f(x− iε) (33)

for a real number x > 0 and ε→ 0. (Hint: go to the the polar coordinate! )

If we express the complex variable in the polar coordinate, we have z = reiϕ, as such

f(z) =
√
z =
√
reiϕ/2 , (34)

which for a complex number z = a+ ib,

r =
√
a2 + b2 and θ = arctan

(
b

a

)
. (35)

For the points above and below the real axis, at a point x we have

f(x+ iε) = (x2 + ε2)1/4ei arctan(ε/x)/2 (36)

f(x− iε) = (x2 + ε2)1/4ei arctan(−ε/x)/2 = (x2 + ε2)1/4e−i arctan(ε/x)/2 , (37)

and in the limit ε → 0, the arctangent approaches zero (or any integral multiple of 2π).
Therefore, due to the branch cut, when z = x− iε, we have ϕ = 2π, and when z = x+ iε, we
have ϕ = 0, so:

f(x+ iε) = (x2 + ε2)1/4(+1) (38)

f(x− iε) = (x2 + ε2)1/4e−i(2π)/2 = (x2 + ε2)1/4(−1) , (39)

yielding the result f(x+ iε) = −f(x− iε).

D) There are actually two branch cuts in Eq. 26. Choose them to be on the imaginary axis start-
ing from ±im. Show that the integrand approaches zero at infinity in the upper half-plane
when |x| > t, i.e., when the final position x lies outside of the lightcone of the origin.

We are interested in the behavior of

e−i
√

(|k|2+m2)tei|k||x| = e
−i

[√
(|k|2+m2)t−|k||x|

]
, (40)
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in the upper half-plane as our complex variable |k| approaches infinity. In the limit of large
|k|, the exponential becomes

e−i|k|(t−|x|) , (41)

and in the case |x| > t, the quantity in the parenthesis in the exponential is negative, this
factor scales like ei|k|β, where β > 0. Since |k| is approaching imaginary infinity in the upper
half plane, this factor becomes e−|k|β, which is exponentially decaying for |k| → ∞. Therefore
the intgrand vanishes at infinity in the upper half plane.

E) Now evaluate the integral by choosing a contour that runs along the real axis, the infinity in
the upper half-plane, and around the branch cut. In particular, on the left-side (right-side)
of the branch cut choose =

√
|k|2 +m2 < 0 (> 0). Then show the amplitude outside of the

lightcone is

〈x|eiHt|x = 0〉 =
i

2π2
e−m|x|

|x|

∫ ∞
m

dαe−(α−m)|x| sinh
(√

α2 −m2
)
, (42)

where we have a changed the variable |k| = iα.

The branch cut relative to this integration extends from +im to psotive imaginary infinity.
The contour C is along the real axis (the integral of interest I ), extends from real positiive
infinity to imaginary positive infinity in a arc (A1), then down the imaginary axis on the right
of the branch cut (I1), across the branch cut (this integral is zero because it is of infinitesimal
extent), then up the imaginary axis to the left of the branch cut (I2), and then a arc from
positive imaginary infinity to negative real infiniy (A2). By Cauchy’s Theorem, since there
are no poles contained in the contour C, the integral along the controur is∮

C
f(z)dz = I +A1 + I1 +A2 + I2 = 0 . (43)

In the previous section, it was shown that the integrand vanishes at infinity in the upper half
plane, so A1 = A2 = 0, and we see that the integral of interest is equvalent to

I = −(I1 + I2) . (44)

Let the integrand be written

f(|k|) = |k|e−iωktei|k||x| = |k|e−i
√

(|k|2+m2)tei|k||x| , (45)

which if we define |k| = iα, the integrals I1 and I2 are:

I1 =

∫ m

∞
(iα)e−i

√
(−α2+m2)te−α|x|d(iα) = −

∫ m

∞
αe
√

(α2−m2)te−α|x|dα (46)

I2 =

∫ ∞
m

(iα)ei
√

(−α2+m2)te−α|x|d(iα) = −
∫ ∞
m

αe−
√

(α2−m2)te−α|x|dα , (47)

making note of the choice that on the left-side (right-side) of the branch cut: =
√
|k|2 +m2 <

0 (> 0). If we use the negative sign to flip the lmits of integration on the first integral
(right-side of the branch cut), we see

I1 + I2 =

∫ ∞
m

αe−α|x|
[
e
√

(α2−m2)t − e−
√

(α2−m2)t
]

dα . (48)
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The exponential with |x| vanishes at the infinite endpoint and is e−m|x| at the other endpoint,
so we may pull the endpoints out of the integral. Additionally, we can replace the difference
of the exponentials with a hyperbolic sine and a factor of two:

I1 + I2 = 2e−m|x|
∫ ∞
m

αe−(α−m)|x| sinh
(√

(α2 −m2)t
)

dα . (49)

The negative of this result is equivalent to the integral of interest I , so we can insert it into
Equation 32 to find

〈x|e−iHt|x = 0〉 =
i

2π2|x|
e−m|x|

∫ ∞
m

αe−(α−m)|x| sinh
(√

(α2 −m2)t
)

dα . (50)

F) Without actually performing the above integral, argue it is non-vanishing. Therefore, the
quantum mechanical amplitude is non-zero for a particle traveling outside of the lightcone.

Consider the fist exponential in the integrand: exp[−(α −m)|x|], as α → +∞, for fixed m,
the exponential is finite. However:

lim
α→+∞

sinh
(√

α2 −m2
)

= lim
α→+∞

cosh
(√

α2 −m2
)

=∞ . (51)

The product of this with the decaying exponential in α changes the concavity of the curve, so
that as α→ +∞, the integrand diverges very slowly to infinity. Additionally, it is clear that
if α = m, the integral will not have the same value as α→∞. For these reasons, the integral
is nonvanishing. More simply, since the argument of the hyperbolic sine is positive definite,
so is the hyperbolic sine itself. Additionally, the exponential is positive definite, and due to
the limits of integration, so is α. Therefore the entire integrand is positive definite, and will
not have the same value at the endpoint, and therefore the integral is non-vanishing.
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