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Dylan J. Temples Quantum Field Theory I : Solution Set Three

1 Lorentz transformation properties.

A) A Lorentz transformation Λµν leaves the metric tensor gµν invariant: ΛµαΛνβgµν = gαβ. Use

this equation to prove that Λ 0
0 ≥ 1 or Λ 0

0 ≤ −1.

Using the invariance property, we see

g00 = Λµ0Λν0gµν , (1)

or

1 = Λµ0 (Λ0
0gµ0 + Λ1

0gµ1 + Λ2
0gµ2 + Λ3

0gµ3) (2)

= (Λ0
0)

2g00 + (Λ1
0)

2g11 + (Λ2
0)

2g22 + (Λ3
0)

2g33) (3)

= (Λ0
0)

2 −
{

(Λ1
0)

2 + (Λ2
0)

2 + (Λ3
0)

2
}
. (4)

If we enforce that Λνµ ∈ R, then

(Λ1
0)

2 + (Λ2
0)

2 + (Λ3
0)

2 ≥ 0 , (5)

we can define a number α ≥ 0 by

α ≡ (Λ1
0)

2 + (Λ2
0)

2 + (Λ3
0)

2 . (6)

Rearranging Equation 4, we have
Λ0
0 = ±

√
1 + α , (7)

and since α ≥ 0, then |
√

1 + α| ≥ 1, yielding the results

Λ0
0 ≥ +1 or Λ0

0 ≤ −1 . (8)

B) Show that if two Lorentz transformations Λ1 and Λ2 both have (Λ1)
0
0 ≥ 1 and (Λ2)

0
0 ≥ 1,

then Λ3 = Λ1Λ2 also has (Λ3)
0
0 ≥ 1. In other words, this sign is preserved under Lorentz

group action and can be used to classify Lorentz transformations.

Let us begin be defining Φα
β = ΛαµΩµ

β, where Φ,Λ,Ω are Lorentz transformations, for nota-
tional simplicity. Consider the component:

Φ0
0 = Λ0

µΩµ
0 = Λ0

0Ω
0
0 + Λ0

1Ω
1
0 + Λ0

2Ω
2
0 + Λ0

3Ω
3
0 , (9)

where we note that in this case Λ0
0Ω

0
0 ≥ 1, so

Φ0
0 ≥ 1 +

{
Λ0

1Ω
1
0 + Λ0

2Ω
2
0 + Λ0

3Ω
3
0

}
. (10)

C) Show that if two Lorentz transformations Λ1 and Λ2 both have det(Λ1) > 0 and det(Λ2) > 0,
then Λ3 = Λ1Λ2 also has det(Λ3) > 0. In other words, this sign is preserved under Lorentz
group action and can be used to classify Lorentz transformations.

Consider the determinant of Λ3:

Det[Λ3] = Det[Λ1Λ2] = Det[Λ1]Det[Λ2] , (11)

so clearly if Det(Λ1) > 0 and Det(Λ2) > 0, then Det(Λ3) > 0.
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D) Show all Lorentz transformations with det(Λ) > 0 and Λ0
0 ≥ 1 form a subgroup of the Lorentz

group.

The first requirement for a subgroup is that it contains the identity. Consider the Lorentz
transform that has no action:

Λµν = 14×4 , (12)

which has det(Λ) > 0 and Λ0
0 ≥ 1 - and is the identity. Additionally, from part (B), we know

that all members of the Lorentz group with Λ0
0 ≥ 1 multiplied to another will remain with

Λ0
0 ≥ 1. Similarly, from part (C), multiplication of members with det(Λ) > 0 with other

members with the same property, map to Lorentz group members with det(Λ) > 0. From
this we see that all actions on members with det(Λ) > 0 and Λ0

0 ≥ 1 by members with this
property, have the same property - thus satisfying closure. We can then define the subgroup
of the Lorentz group SO(1, 3), with det(Λ) > 0 and Λ0

0 ≥ 1 because it contains the identity,
and no actions between members of the subgroup map to an object outside this subgroup -
therefore meeting the necessary criteria for a subgroup.

Page 3 of 15



Dylan J. Temples Quantum Field Theory I : Solution Set Three

2 Schwartz 10.2.

In this problem you will construct the finite-dimensional irreducible representations of SU(2). By
definition, such a representation is a set of three n×n matrices τ1, τ2, and τ3 satisfying the algebra
of the Pauli matrices [τi, τj ] = iεijkτk. It is also helpful to define linear combinations τ± = τ1± iτ2.

A) In any such representation we can diagonalize τ3. Its eigenvectors are n complex vectors
Vj with τ3Vj = λjVj . Show that τ+Vj and τ−Vj either vanish or are eigenstates of τ3 with
eigenvalues λj + 1 and λj − 1, respectively.

We begin by investigating the action of τ± on the given eigenvalue equation:

λjτ
±Vj = τ τ3 Vj = (τ1 ± iτ2)τ3Vj = τ1τ3Vj ± iτ2τ3Vj (13)

= τ3τ1Vj + [τ1, τ3]Vj ± {iτ3τ2Vj + [τ2, τ3]Vj} (14)

= τ3(τ1 ± iτ2)Vj + ([τ1, τ3]± i[τ2, τ3])Vj , (15)

and using the Pauli algebra, we have

[τ1, τ3]± i[τ2, τ3] = i(−1)τ2 ± i2(+1)τ1 = ∓τ1 − iτ2 = ∓(τ1 ± iτ2) = ∓τ± . (16)

If we insert this result, Equation 15 becomes

λjτ
±Vj = τ3τ

±Vj ∓ τ±Vj = (τ3 ∓ 1)τ±Vj , (17)

and isolating the term with τ3 yields

λjτ
±Vj ± τ±Vj = τ3τ

±Vj ⇒ τ3(τ
±Vj) = (λj ± 1)(τ±Vj) . (18)

This shows that τ±Vj are eigenstates of τ3, and they have eigenvalues λj ± 1.

B) Prove that exactly one of the eigenstates Vmax of τ3 must satisfy τ+Vmax = 0. The eigenvalue
λmax = J of Vmax is known as the spin. Similarly, there will be an eigenvector Vmin of τ3 with
τ−Vmin = 0.

We know there are a finite number of eigenvalues, due to the dimensionalty of the system.
Since the action of τ± increases or decreases the eigenvalue by unity, this cannot go on forever.
This implies there is some Vmax for which

τ+Vmax = 0 (19)

τ3Vmax = JVmax , (20)

as well as some Vmin for which

τ−Vmin = 0 (21)

τ3Vmin = −JVmin . (22)

C) Since there are a finite number of eigenvectors, Vmin = (τ−)NVmax for some integer N . Prove
that N = 2J so that n = 2J + 1.
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Given the maximum and minimum eigenvalues, we can show there are

J − (−J) = 2J , (23)

steps, each of size unity so we can define N = 2J as the number of possible steps. This
implies

Vmax = (τ+)NVmin (24)

Vmin = (τ−)NVmin . (25)

Furthermore from the dimensionality of the space, we know there must be n eigenvalues/vectors.
We can count the eigenvectors:

Vmin = (τ+)0Vmin

V1 = (τ+)1Vmin

V2 = (τ+)2Vmin

. . .

VN = (τ+)2JVmin ,

and we see that n = N + 1 = 2J + 1.
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3 Continuity equations and the Dirac equation.

In non-relativistic quantum mechanics, the Schrodinger equation implies a continuity equation of
the form

∂ρ

∂t
+ ∇ · j = 0 , (26)

where ρ = |ψ|2 is interpreted as the probability density.

A) Derive a similar continuity equation for the Klein-Gordon equation

(∂µ∂
µ +m2)ψ = 0 . (27)

Write down ρ and j explicitly. Explain what would go wrong if you were to interpret ρ as the
probability density.

Consider multiplying the KG equation on the left by ψ∗, and multiplying the complex conju-
gate of the KG equation on the left by ψ:

0 = ψ∗(∂µ∂
µ +m2)ψ (28)

0 = ψ(∂µ∂
µ +m2)ψ∗ , (29)

the subtracting the second from the first to obtain

0 = ψ∗∂µ∂
µψ − ψ∂µ∂µψ∗ +m2(ψ∗ψ − ψψ∗) , (30)

and the last term vanishes. If we write ∂µ∂
µ = ∂2t − ∇2, then the above equation can be

rewritten
0 = ψ∗∂2t ψ − ψ∂2t ψ∗ + (ψ∇2ψ∗ − ψ∗∇2ψ) . (31)

Here we can note:

∂t(ψ
∗∂tψ − ψ∂tψ∗) = ∂tψ

∗∂tψ + ψ∗∂2t ψ − ∂tψ∂tψ∗ − ψ∂2t ψ∗ = ψ∗∂2t ψ − ψ∂2t ψ∗ , (32)

and

∇ · [ψ∗∇ψ − ψ∇ψ∗] = ∇ψ∗ ·∇ψ + ψ∗∇ ·∇ψ −∇ψ ·∇ψ∗ − ψ∇ ·∇ψ∗ (33)

= ψ∗∇2ψ − ψ∇2ψ∗ , (34)

which allows us to rewrite Equation 31 as

0 = ∂t [ψ∗∂tψ − ψ∂tψ∗]−∇ · [ψ∗∇ψ − ψ∇ψ∗] (35)

= ∂t [ψ∗∂tψ − ψ∂tψ∗] + ∇ · [ψ∇ψ∗ − ψ∗∇ψ] . (36)

From this, we identify

ρ = ψ∗∂tψ − ψ∂tψ∗ (37)

j = ψ∇ψ∗ − ψ∗∇ψ , (38)

but we see that ρ is not guaranteed to be real, and thus the probability density may have an
imaginary component.
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B) Dirac realized in 1928 while staring at a fireplace in St. John’s College, Cambridge, that the
sickness in (A) is the result of an equation of motion that is second order in time derivative.
He thus proposed instead

i
∂ψ

∂t
= HDψ . (39)

Explain why the Hamiltonian HD here must be first order in spatial derivatives and contain
only terms linear in the mass m.

In relativity the time derivative has units of mass, so that the right side must have terms
which have units of mass. The spatial derivatives have units of mass, and obviously so does
the mass. Therefore only first derivatives and terms linear in mass can be in the Dirac
Hamiltonian.

C) Dirac then guessed a general form of HD

HD = −iai
∂

∂xi
+ a4m . (40)

HD must be such that when applying Equation 39 twice one recovers the Klein-Gordon equa-
tion. (After all, E2 − |p|2 = m2!) First show that the set {ai, i = 1, 2, 3, 4} cannot be
pure numbers, then derive the conditions ai must satisfy to produce Klein-Gordon equation.
Rewrite γ0 = a4 and γi = a4ai and re-express your conditions in terms of γµ.

Consider the action of the Hamiltonian twice on a field ψ:

H2
Dψ = (−iaj∂j + a4m) (−iai∂iψ + a4mψ) (41)

= −ajai∂j∂iψ + (a4)
2m2ψ − iaja4m∂jψ − ia4aim∂iψ (42)

= −ajai∂j∂iψ + (a4)
2m2ψ − im(aja4∂j + a4ai∂i)ψ , (43)

but we must have that

H2ψ = p2ψ +m2ψ , (44)

so

1 = (a4)
2 (45)

0 = aja4∂j + a4ai∂i , (46)

but the second constraint can be modified by renaming the dummy indices: (aia4 + a4ai)∂i,
yielding the constraint

{ai, a4} = 0 , (47)

and so the ai cannot be pure numbers because pure numbers do not anticommute. Addition-
ally, to reproduce the Klein-Gordon equation, it must be that

ajai∂j∂i = ∂j∂j , (48)
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so that ajai must be a symmetric matrix, which can be expressed as the spatial components
of the metric. The constraints can then be summarized as

1 = a24 (49)

0 = {ai, a4} (50)

gij = ajai . (51)

Now consider the anticommutator

{ai, aj} = aiaj + ajai = gij + gji = 2gij , (52)

and thus

{a4ai, a4aj} = a4aia4aj + a4aja4ai = −(a4)
2aiaj − (a4)

2ajai = −1{ai, aj} = −1(2gij) (53)

using the gamma matrices, we have

{γi, γj} = −1(2gij) , (54)

from which we extrapolate

{γµ, γν} = 2gµν (55)

(γ0)2 = 1 and (γi)2 = −1 , (56)

where the minus sign disappears when we consider the spatial and temporal components due
to the sign differences in the metric.

D) What is the continuity equation following from the Dirac equation? Give ρ and j explicitly.
Can you interpret ρ as the probability density?

Starting from Schwartz equation 10.63, we multiply on the left with ψ̄, and multiply the
adjoint1 of Schwartz equation 10.63 on the right with ψ to obtain

0 = ψ̄(iγµ∂µ −m)ψ (57)

0 = ψ̄(i∂µγ
µ −m?)ψ , (58)

and we can assume m = −m? because we have previously shown the pure phase of m is
unphysical and does not impact the solution. We now subtract the second from the first,
yielding

0 = iψ̄γµ∂µψ − iψ̄∂µγµψ + im(ψ̄ψ − ψ̄ψ) , (59)

where the mass terms vanish. Dividing out the imaginary unit, we find

0 = ψ̄γµ∂µψ + ψ̄∂µγ
µψ = ∂µ

(
ψ̄γµψ

)
. (60)

We then define the four-current jµ = ψ̄γµψ, such that

ρ = j0 = ψ̄γ0ψ = ψ†γ0γ0ψ = ψ†ψ (61)

j = ji = ψ̄(γi)ψ = ψ†γ0γiψ , (62)

and we are free to interpret ρ as the probability density in this case.

1

(iγµ∂µ −m)† = −i(γµ∂µ)−m? = −i(−∂µγµ) +m = i∂µγ
µ +m .

Page 8 of 15



Dylan J. Temples Quantum Field Theory I : Solution Set Three

4 Dirac spinors.

In class we defined a Dirac spinor ψ in the chiral basis:

ψ =

(
ψL
ψR

)
(63)

where ψL and ψR are Weyl spinors transforming under the Lorentz group according to Eq. (3.37)
in Peskin and Schroeder. The Dirac Lagrangian is then written as

L = iψ†∂0ψ + iψ†α ·∇ψ −mψ†βψ , (64)

where α and β are 4× 4 matrices.

A) Write out α and β explicitly and show they satisfy the same conditions for {ai, i = 1, 2, 3, 4}
you work out in Problem 2(C) if you identify αi = ai, i = 1, 2, 3 and β = a4. Then go to a
different basis, the Dirac basis, for a Dirac spinor

ψ =
1√
2

(
ψR + ψL
ψR − ψL

)
(65)

and write out α and β in this basis. Show that in this basis α and β still satisfy the same
conditions as in the chiral basis.

The form of the Dirac Lagrangian derived in class is

L = iψ̄∂µγ
µψ −mψ̄ψ , (66)

where we can insert ψ̄ = ψ†γ0, and expand the derivative into temporal and spatial terms

L = iψ†γ0∂0γ
0ψ − iψ†γ0∂iγiψ −mψ†γ0ψ (67)

= iψ†(γ0)2∂0ψ − iψ†γ0γi∂iψ −mψ†γ0ψ (68)

= iψ†∂0ψ − iψ†γ0γ ·∇ψ −mψ†γ0ψ . (69)

Comparing this to Equation 64, we see

αi = −γ0γi =

(
σi

−σi
)

(70)

β = γ0 =

(
12×2

12×2

)
. (71)

From the previous problem, we see

β2 = (γ0)2 =

(
12×2

12×2

)(
12×2

12×2

)
=

(
12×2

12×2

)
= 1 , (72)

and

α2 = α ·α =

(
σi

−σi
)(

σi

−σi
)

=

(
(σi)2

(−σi)2
)

=

(
−12×2

−12×2

)
= −1 , (73)
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and therefore α, β obey the same conditions from problem 3. The transformation from the
chiral basis to the Dirac basis is given by

T =
1√
2

(
1 1
−1 1

)
, (74)

so that

αi → TαiT
T =

1

2

(
1 1
−1 1

)(
σi
−σi

)(
1 −1
1 1

)
=

1

2

(
1 1
−1 1

)(
σi −σi
−σi −σi

)
(75)

= −
(

0 σi
σi 0

)
(76)

β → TβT T =
1

2

(
1 1
−1 1

)(
1

1

)(
1 −1
1 1

)
=

(
1 0
0 −1

)
(77)

B) Stay in the chiral basis, work out how a Dirac spinor transform under rotation and boost,
respectively. Write out the generators for the rotation and the boost explicitly, from which
deduce the generators Sµν for the Lorentz group. Moreover, show that

Sµν =
i

4
[γµ, γν ] (78)

where the Dirac gamma matrices are defined in Problem 2(C).

In class we showed how the Weyl spinors transform under boosts and rotations:

Boost : ψL → eβ·
σ
2ψL and ψR → e−β·

σ
2ψR (79)

Rotation : ψL → e−iθ·
σ
2ψL and ψR → e−θ·

σ
2ψR . (80)

Since the different chiralities transform differently, we can write the boosts as

S0i =
i

2

(
σi
−σi

)
(81)

such that
ψ → e−iS

0i
ψ , (82)

with

ψ =

(
ψL
ψR

)
. (83)

Similarly we write

Sij =
i

2
εijk

(
σk

σk

)
, (84)

because they transform the same under a spatial rotation. The commutator of two gamma
matrices is

[γi, γj ] = γiγj − γjγi =

(
σi

−σi

)(
σj

−σj

)
−
(

σj
−σj

)(
σi

−σi

)
(85)

=

(
−σiσj

−σiσj

)
−
(
−σjσi

−σjσi

)
= −

(
[σi, σj ]

[σi, σj ]

)
(86)

= −2εijk

(
σk

σk

)
. (87)
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Comparing this to Equation 84, we see

Sij =
i

4
[γi, γj ] . (88)

Now consider the commutator

[γi, γ0] = γiγ0 − γ0γi =

(
σi

−σi

)(
σ0

σ0

)
−
(

σ0
σ0

)(
σi

−σi

)
(89)

=

(
σi
−σi

)
−
(
−σi

σi

)
= 2

(
σi
−σi

)
, (90)

from which we see

S0i =
i

4
[γi, γ0] . (91)

If we elevate i, j → µ, ν, we acheive the result

Sµν =
i

4
[γµ, γν ] . (92)
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5 Schwartz 10.5.

Supersymmetry.

A) Show that the Lagrangian

L = ∂µφ
?∂µφ+ χ†iσ̄∂χ+ F ?F +mφF +

i

2
mχTσ2χ+ h.c. (93)

is invariant under

δφ = −iεTσ2χ , (94)

δχ = εF + σµ∂µφσ
2ε? , (95)

δF = −iε†σ̄µ∂µχ , (96)

where ε is an infinitesimal spinor, χ is a spinor, and F and φ are scalars. All spinors anti-
commute. σ2 is the second Pauli spin matrix.

Let us begin by definining

T1 = ∂µφ
?∂µφ (97)

T2 = χ†iσ̄∂χ (98)

T3 = F ?F (99)

T4 = mφF (100)

T5 =
i

2
mT
χσ

2χ , (101)

such that the Lagrangian is

L = T1 + T2 + T3 + T4 + T5 + T †1 + T †2 + T †3 + T †4 + T †5 . (102)

To which we make the transformation φ→ φ+ δφ, χ→ δχ, and F → F + δF , with

δφ = −i(ε1 ε2)
(

0 −i
i 0

)(
χ1

χ2

)
(103)

= ε2χ1 − ε1χ2 (104)

δF = −i(ε?1 ε?2)σ̄µ∂µ
(
χ1

χ2

)
(105)

= −iε?1 [σ̄µ∂µχ]1 − iε
?
2 [σ̄µ∂µχ]2 (106)

δχ = εF + σµ∂µφσ
2ε? . (107)

The term T1, to linear order in ε becomes

T1 → ∂µφ
?∂µφ+ ∂µδφ

?∂µφ+ ∂µφ
?∂µδφ = T1 + ∂µφ

?∂µδφ+ ∂µδφ
?∂µφ (108)

T1 → T1 + τ1 + τ2 , (109)

where

δφ? =
(
−iεTσ2χ

)?
= (ε2χ1 − ε1χ2)

? = − (ε?1χ
?
2 − ε?2χ?1) = −

(
−iε?Tσ2?χ?

)
(110)

= −(iεT?σ2χ?) , (111)
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from which we see

τ1 = −iεTσ2∂µφ?∂µχ (112)

τ2 = −iε?Tσ2∂µχ?∂µφ . (113)

Additionally, for the term T2, to linear order in ε, we have

T2 → (χ† + δχ†)iσ̄µ∂µ(χ+ δχ) = T2 + χ†iσ̄µ∂µδχ+ δχ†iσ̄µ∂µχ , (114)

where

δχ† = ε†F ? + εTσ2σµ∂µφ
? , (115)

because the Pauli matrices are Hermitian. The derivatives of the variation of χ and its
Hermitian conjugate are

∂µχ = ε∂µF + σµ∂2µφσ
2ε? (116)

∂µχ
† = ε†∂µF

? + εTσ2σµ∂2µφ
? , (117)

so we see

T2 → T2 + χ†iσ̄µ
[
ε∂µF + σµ∂2µφσ

2ε?
]

+
[
ε†F ? + εTσ2σµ∂µφ

?
]
iσ̄µ∂µχ (118)

→ T2 + iχ†σ̄µ∂µFε+ iχ†σ̄µσνσ2ε?∂µ∂νφ+ iF ?ε†σ̄µ∂µχ+ iεTσ2σν σ̄µ∂νφ
?∂µχ , (119)

which allows us to define

τ3 = iχ†σ̄µ∂µFε (120)

τ4 = iχ†σ̄µσνσ2ε?∂µ∂νφ (121)

τ5 = iF ?ε†σ̄µ∂µχ (122)

τ6 = iεTσ2σν σ̄µ∂νφ
?∂µχ . (123)

To linear order in ε, we have

T3 → T3 + F ?δF + δF ?F = T3 + τ7 + τ8 , (124)

where

δF ? =
(
−iε†σ̄µ∂µχ

)?
= −(+i)εT σ̄µ?∂µχ

∗ , (125)

where the overall negative sign comes about in a similar way as δφ?. We see that

τ7 = −iF ?ε†σ̄µ∂µχ (126)

τ8 = −iF εT σ̄µ?∂µχ? . (127)

For the fourth term, we have, to linear order in ε:

T4 → T4 +mφδF +mδφF = T4 − imφε†σ̄µ∂µχ− imεTσ2χF , (128)

and we define

τ9 = −imφε†σ̄µ∂µχ (129)

τ10 = −imεTσ2χF , (130)
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and for the final term, we have

T5 →
i

2
m
[
χTσ2χ+ δχTσ2χ+ χTσ2δχ

]
. (131)

Using

δχT = εTF + ε†σ2σµ∂µφ , (132)

the fifth term becomes

T5 → T5 +
i

2
m
[
εTF + ε†σ2σµ∂µφ

]
σ2χ+

i

2
mχTσ2

[
εF + σµ∂µφσ

2ε?
]
, (133)

from which we define

τ11 ≡
i

2
mεTFσ2χ (134)

τ12 ≡
i

2
mε†σ2σµ∂µφσ

2χ (135)

τ13 ≡
i

2
mχTσ2εF (136)

τ14 ≡
i

2
mχTσ2σµ∂µφσ

2ε? . (137)

We can now argue that
∑

i τi = 0. Consider τ1 + τ6: the factor in τ6

σν σ̄µ∂νφ
?∂µχ = ∂µχ

?∂µφ , (138)

using the anticommutators for the σ matrices. Comparing the remaining factors, we see τ1
and τ6 sum to zero. Similarly for τ2 and τ4, from the anticommutation relations, we can write

τ4 = −iχ†σ2ε?∂µ∂µφ , (139)

which we add to τ2 to obtain

τ2 + τ4 = −iε?Tσ2∂µχ?∂µφ− iχ†σ2ε?∂µ∂µφ = −i∂µ[ε?Tσ2χ? + χ†σ2ε?]∂µφ , (140)

which is the divergence of a Lorentz four-vector, which does not effect the Euler-Lagrange
equation - and effectively leaves the Lagranginan invariant. We see, with no manipulation,
that τ5 + τ7 = 0. Now consider

τ3 + τ8 = iχ†σ̄µ∂µFε− iF εT σ̄µ?∂µχ? = −i∂µ[Fχ†σ̄?µε] , (141)

which is the divergence of a Lorentz four-vector, and is irrelevant.

B) The field F is an auxiliary field, since it has no kinetic term. A useful trick for dealing with
auxiliary fields is to solve their equations of motion exactly and plug the result back into the
Lagrangian. This is called integrating out a field. Integrate out F to show that φ and χ have
the same mass.

The Lagrangian is

L = ∂µφ
?∂µφ+ χ†iσ̄∂χ+ F ?F +mφF +mφ?F ? +

im

2

[
χTσ2χ− χ†σ2χ?

]
, (142)
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for which the equations of motion for F are

∂L
∂F

= 0 ⇒ F ? = −mφ (143)

∂L
∂F ?

= 0 ⇒ F = −mφ? , (144)

which we insert back into the Lagrangian to yield

L = ∂µφ
?∂µφ+ χ†iσ̄∂χ+m2φφ? −m2φφ? −m2φ?φ+

im

2

[
χTσ2χ− χ†σ2χ?

]
(145)

= ∂µφ
?∂µφ+ χ†iσ̄∂χ−m2φ?φ+

im

2

[
χTσ2χ− χ†σ2χ?

]
, (146)

thus both fields have mass terms with mass m.

C) Auxiliary fields such as F act like Lagrange multipliers. One reason to keep the auxiliary
fields in the Lagrangian is because they make the symmetry transformations exact at the
level of the Lagrangian. After the field has been integrated out, the symmetries are only
guaranteed to hold if you use the equations of motion. Still using δφ = iεTσ2χ, what is the
transformation of χ that makes the Lagrangian in (B) invariant, if you are allowed to use the
equations of motion.

The Lagrangian transforms (to first oreder in ε) as

L → T1 + τ1 + τ2 + T2 + χ†iσ̄µ∂µδχ+ δχ†iσ̄µ∂µχ−m2φ?φ−m2φ?δφ−m2δφ?φ

+
im

2

[
χTσ2χ+ δχTσ2χ+ χTσ2δχ− χ†σ2χ? − δχ†σ2χ? − χ†σ2δχ

]
,

and for invariance we enfore

0 = −iεTσ2∂µφ?∂µχ− iε?Tσ2∂µχ?∂µφ−m2φ?(iεTσ2χ)−m2(−iεT?σ2χ?)φ

+
im

2

[
δχTσ2χ+ χTσ2δχ− δχ†σ2χ? − χ†σ2δχ

]
.

We then need to find the equations of motion for φ and φ?, which we can insert back into the
Lagrangian, therefore integrating out φ and obtaining a Lagrangian with terms containing χ
and δχ. We insert the equations of motion into the above constraint equation, and solve for
δχ.
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