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Dylan J. Temples Quantum Field Theory I : Solution Set Four

1 Schwartz 11.1.

In practice, we only rarely use the explicit representations of the Dirac matrices. Most calculations
can be done using algebraic identities that depend only on {γµ, γν} = 2gµν . Derive algebraically
(without using an explicit representation):

A)
(γ5)2 = 1

Let us begin by clarifying the notation for the anticommutator: due to the dimensionality of
the left- and right-hand sides, we must have

{γµ, γν} = 2gµν14 ⇒ γµγν = 2gµν14 − γνγµ . (1)

With that out of the way, consider the square of γ5 = iγ0γ1γ2γ3:

(γ5)2 = (i2)(γ0γ1)γ2(γ3γ0)γ1γ2γ3 , (2)

and let us replace the products in the parenthesis with the anticommutation relation. Since
we are anticommuting different indeces, we just pick up a negative sign when we swap the
order, we do this twice, so this becomes

(γ5)2 = (i2)γ1(γ0γ2)γ0(γ3γ1)γ2γ3 , (3)

again replacing the products in parenthesis with their anticommutator relation, we pick up
two negative signs to obtain

(γ5)2 = (i2)γ1γ2γ0γ0γ1γ3(γ2γ3) , (4)

replacing the product in parenthesis with the anticommutator gives

(γ5)2 = −(i2)γ1γ2(γ0)2γ1(γ3)2γ2 . (5)

The square of a gamma matrix is easy to compute by considering the anticommutator:

2gµµ14 = {γµ, γµ} = 2(γµ)2 , (6)

so (γ0)2 = 14 and (γi)2 = −14. Inserting this result gives

(γ5)2 = 14(i
2)γ1(γ2γ1)γ2 (7)

= −14(i2)(γ1)2(γ2)2 (8)

= (−1)14(−1)(−1)(−1) = 14 . (9)

B)
γµ/pγ

µ = −2/p

Expanding the Feynman notation yields

γµ/pγ
µ = γµγ

νpνγ
µ = γµγ

νpνγ
µ = (gµσγ

σ)γνpνγ
µ = (gµσγ

σ)pνγ
νγµ , (10)

and replacing the last two gamma matrices with their anticommutator gives

γµ/pγ
µ = (gµσγ

σ)pν(2gνµ14 − γµγν) = 2gµσg
νµ
14γ

σpν − gµσγσpνγµγν . (11)
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Performing some contractions simplifies this equation to

γµ/pγ
µ = 214γµp

µ − γµpνγµγν = 214γµp
µ − γµγµpνγν . (12)

Now we must evaluate the contraction

γµγ
µ = gµσγ

σγµ =
1

2
(gµσ + gσµ)γσγµ , (13)

due to the symmetric nature of the metric tensor. If we distribute and relabel the dummy
indeces on the second term, we find

γµγ
µ =

1

2
(gµσγ

σγµ + gµσγ
µγσ) =

gµσ
2
{γσ, γµ} =

1

2
gµσ(2gσµ14) = 414 , (14)

since gαβg
αβ = 4. Using this result, we have

γµ/pγ
µ = 214γµp

µ − 414pνγ
ν = 2(γµpµ − 2γνpν) , (15)

after multiplying the identity through (acting on the gamma matrices). Relabeling the dummy
indeces on the first term, and subtracting yields the result

γµ/pγ
µ = −2γνpν = −2/p . (16)

C)
γµ/p/q/pγ

µ = −2/p/q/p

Again, we can expand the Feynman notation, and move the vectors to the right, since they
commute with the gamma matrices:

γµ/p/q/pγ
µ = γµγ

νγργσγµpνqρpσ . (17)

Now consider the quantity

γµγ
νγργσγµ = (gµαγ

α)γνγργσγµ = γαγνγργσγα . (18)

Using the anticommutator for the first two matrices yields

γµγ
νγργσγµ = (2gαν − γνγα)γργσγα = 2gανγργσγα − γνγαγργσγα . (19)

The first term can be written 2γργσγν , while the second is γν(γαγργσγα). We can express
the factor in the parenthesis as

γµγνγργµ = gαµγ
µγνγργα = gαµ ([2gµν14 − γνγµ][2gρα14 − γαγρ]) (20)

= gαµ
(
4124g

µνgρα − 214g
ραγνγµ − 214g

µνγαγρ + γνγµγαγρ
)

(21)

= 414g
ν
αg

ρα − 2gρµγ
νγµ − 2gναγ

αγρ + γνγαγ
αγρ . (22)

Note we have acted the identity on the gamma matrices in the middle two terms. If we insert
the result from Equation 14, and act the identity on one of the gamma matrices, we see

γµγνγργµ = 414g
ν
αg

ρα − 2gρµγ
νγµ − 2gναγ

αγρ + 4γνγρ (23)

= 4gνρ14 − 2γνγρ − 2γνγρ + 4γνγρ (24)

= 4gνρ14 . (25)
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Taking this result and inserting it into Equation 19, we find

γµγ
νγργσγµ = 2γργσγν − γν(4gρσ14) = 2(γργσ − 2gρσ14)γ

ν = −2(γσγρ)γν , (26)

which we can insert into Equation 17 to find

γµ/p/q/pγ
µ = −2γσγργνpνqρpσ = −2γσpσγ

ρqργ
νpν = −2/p/q/p . (27)

D)
{γ5, γµ} = 0

Writing out the commutator yields

{γ5, γµ} = i(γ0γ1γ2γ3γµ + γµγ0γ1γ2γ3) , (28)

consider the second term:

γµγ0γ1γ2γ3 = (2gµ0 − γ0γµ)γ1γ2γ3 = 2gµ0γ1γ2γ3 − γ0γµγ1γ2γ3 . (29)

If we continue this process until we have anticommuted γµ to the end, we find

γµγ0γ1γ2γ3 = 2gµ0γ1γ2γ3 − 2γ0gµ1γ2γ3 + 2γ0γ1gµ2γ3 − 2γ0γ1γ2gµ3 + γ0γ1γ2γ3γµ . (30)

Let us add the final term on the right-hand side to both sides:

γ0γ1γ2γ3γµ + γµγ0γ1γ2γ3 =

2gµ0γ1γ2γ3 − 2γ0gµ1γ2γ3 + 2γ0γ1gµ2γ3 − 2γ0γ1γ2gµ3 + 2γ0γ1γ2γ3γµ , (31)

multiplying by the imaginary unit yields

{γ5, γµ} = 2i
(
gµ0γ1γ2γ3 − γ0gµ1γ2γ3 + γ0γ1gµ2γ3 − γ0γ1γ2gµ3 + γ0γ1γ2γ3γµ

)
. (32)

Since µ ∈ {0, 1, 2, 3} and gµν is diagonal, for a given choice of µ only one term containing the
metric in the above equation is nonzero. Consider the case µ = 3:

{γ5, γ3} = 2i
(
−γ0γ1γ2g33 + γ0γ1γ2γ3γ3

)
(33)

= 2i(γ0γ1γ2 − γ0γ1γ2) = 0 , (34)

using (γi)2 = −14. Due to the pattern of the signs of the terms with the metric and how
many times the γi matrix must be anticommuted to get factors of (γi)2, we see the above
reasoning will hold for µ = 1, 2, 3. We will verify explicitly for µ = 0:

{γ5, γ0} = 2i
(
g00γ1γ2γ3 + γ0γ1γ2γ3γ0

)
(35)

= 2i
(
γ1γ2γ3 + (−1)3(γ0)2γ1γ2γ3

)
(36)

= 2i
(
γ1γ2γ3 − γ1γ2γ3

)
= 0 , (37)

using (γ0)2 = +14. Following the logic stated above, or verifying explicity if you do not
believe me, proves:

{γ5, γµ} = 0 . (38)
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E)
Tr[γαγµγβγν ] = 4(gαµgβν − gαβgµν + gανgµβ)

Let us begin by anticommuting γν to the right side of the expression:

Tr[γαγµγβγν ] = Tr[γαγµ(2gβν14 − γνγβ)] = 2gβν Tr[γαγµ14]− Tr[γαγµγνγβ] (39)

= 2gβν Tr[γαγµ]− 2gµν Tr[γαγβ] + Tr[γαγνγµγβ] (40)

= 2gβν Tr[γαγµ]− 2gµν Tr[γαγβ] + 2gαν Tr[γµγβ]− Tr[γνγαγµγβ] , (41)

where the 14 from the anticommutator was multiplied with a gamma matrix. Now consider
the trace of the product of two gamma matrices:

Tr[γργσ] =
1

2
(Tr[γργσ] + Tr[γσγρ]) =

1

2
Tr[γργσ + γσγρ] =

1

2
Tr[{γρ, γσ}] (42)

= gρσTr[14] = 4gρσ , (43)

where we have used the fact that the trace is invariant under cyclic permutations of its
arguments. Using this result, Equation 41 becomes

Tr[γαγµγβγν ] = 8gβνgαµ − 8gµνgαβ + 8gανgµβ − Tr[γνγαγµγβ] , (44)

if we cycle the trace on the right-hand side: Tr[γνγαγµγβ] = Tr[γαγµγβγν ], then move it to
the right, we see the trace terms sum. Dividing by two yields the final answer:

Tr[γαγµγβγν ] = 4gβνgαµ − 4gµνgαβ + 4gανgµβ (45)

= 4(gαµgβν − gαβgµν + gανgµβ) . (46)
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2 Schwartz 11.4.

Show that for on-shell spinors

ū(q)γµu(p) = ū(q)

[
qµ + pµ

2m
+ i

σµν(qν − pν)

2m

]
u(p) , (47)

where σµν = i
2 [γµ, γν ]. This is known as the Gordon Identity. We will use this when we calculate

the 1-loop correction to the elecctron’s magnetic dipole moment.

Consider the anticommutator identity for the gamma matrices: {γµ, γν} = 2gµν14. From the
definition of the spin operator, we have that

σµν =
i

2
[γµ, γν ] =

i

2
(γµγν − γνγµ) , (48)

but we can replace the second term with the anticommutator relation:

σµν =
i

2
(γµγν − (2gνµ14 − γµγν)) =

i

2
(2γµγν − 2gνµ14) , (49)

so

iσµν = gνµ14 − γµγν . (50)

However, if we instead anticommuted the first term, we would find

iσµν = γνγµ − gµν14 . (51)

Let us now calculate

ū(q)iσµν(qν − pν)u(p) , (52)

where u(p) is a Dirac spinor for a fermion field with momentum p. If we distribute the Pauli matrix
and replace it with both expressions we found above, this becomes

ū(q)iσµν(qν − pν)u(p) = ū(q) [(γνγµ − gµν14)qν − (gνµ14 − γµγν)pν ]u(p) , (53)

again distributing and contracting yields

ū(q)iσµν(qν − pν)u(p) = ū(q) [γνqνγ
µ − qµ − pµ + γµγνpν ]u(p) , (54)

in Feynman slash notation this can be written

ū(q)iσµν(qν − pν)u(p) = ū(q)
[
/qγ

µ − (q + p)µ + γµ/p
]
u(p) . (55)

If we insert the plane wave solutions into the Dirac equation, we find u(p) satisfies the constraint
(Peskin Eq. 3.46):

(/p−m)u(p) = (γµpµ −m)u(p) = 0 , (56)

and the adjoint of this is

ū(q)(/q −m) = ū(q)(γµqµ −m) = 0 , (57)
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from these equations, we see

/pu(p) = mu(p) (58)

ū(q)/q = ū(q)m . (59)

We can insert these results into Equation 55 to see:

ū(q)iσµν(q − p)νu(p) = ū(q)mγµu(p)− ū(q)(q + p)µu(p) + ū(q)γµmu(p) (60)

= ū(q) [mγµ − (q + p)µ + γµm]u(p) (61)

= ū(q) [2mγµ − (q + p)µ]u(p) (62)

0 = ū(q) [iσµν(q − p)ν − 2mγµ + (q + p)µ]u(p) . (63)

Bringing the term with the gamma matrix to the other side, and dividing by 2m yields

ū(q)γµu(p) = ū(q)
1

2m
[iσµν(q − p)ν + (q + p)µ]u(p) (64)

= ū(q)

[
qµ + pµ

2m
+ i

σµν(qν − pν)

2m

]
u(p) , (65)

which is the Gordon Identity.

Consider the spinor

us(p) =

(√
p · σξs√
p · σ̄ξs

)
, (66)

which has the property (Peskin Eq. 3.57):

ūs′(p)us(p) = 2mξ†s′ξs = 2mδs′s . (67)

The quantity ūσ(p)γµuσ′(p) can be expressed using the Gordon identity as

ūσ(p)γµuσ′(p) = ūσ(p)

[
pµ + pµ

2m
+ i

σµν(pν − pν)

2m

]
uσ′(p) (68)

= ūσ(p)

[
pµ

m

]
uσ′(p) =

(
pµ

p0

)
2mδσ′σ (69)

= 2pµδσ′σ . (70)
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3 Schwartz 11.8.

Fierz rearrangement formulas (Fierz identities). It is often useful to rewrite spinor contractions in

other forms to simplify formulas. Note that PL = 1−γ5
2 project out the left-handed spinor from a

Dirac fermion. The identities with PL play an important role in the theory of weak interactions,
which only involves left-hande spinors. Some hints:

1. In class we discussed there exist 16 independent matrices that can be constructed out of the
Dirac matrices: ΓA = {1, γµ, σµν , γµγ5}. Write down a basis for ΓA such that

Tr[ΓAΓB] = 4δAB .

2. Write the general Fierz identity as an equation

(ψ̄1Γ
Aψ2)(ψ̄3Γ

Bψ4) =
∑
C,D

CABCD(ψ̄1Γ
Cψ4)(ψ̄3Γ

Dψ2) ,

with unknown coefficients CABCD. Using the completeness of the 16 ΓA matrices, show that

CABCD =
1

16
Tr[ΓCΓAΓDΓB] .

Then you can complete Problem 11.8.

Show that

A)
(ψ̄1γ

µPLψ2)(ψ̄3γ
µPLψ4) = −(ψ̄1γ

µPLψ4)(ψ̄3γ
µPLψ2)

Let us begin by defining a set of Dirac spinors

ψi =

(
χi
ξi

)
so ψ̄i = ψ†i γ

0 =
(
χ†i ξ†i

)
, (71)

thus

PLψi =

(
χi
0

)
and PRψi =

(
0
ξi

)
. (72)

Now we consider the quantity

ψ̄iγ
µPLψj = ψ†i γ

0γµ
(
χj
0

)
= ψ†i γ

0

(
σµ

σ̄µ

)(
χj
0

)
= ψ†i

(
1

1

)(
0

σ̄µχj

)
(73)

=
(
χ†i ξ†i

)(σ̄µχj
0

)
= χ†i σ̄

µχj . (74)

The Fierz identity for the right-handed portion (ξi) of Dirac spinors is given by Peskin Eq.
3.78, by analogy (or Peskin Eq. 3.79) we give the identity of the left handed portions (χi):

(ξ̄1σ
µξ2)(ξ̄3σµξ4) = −(ξ̄1σ

µξ4)(ξ̄3σµξ2) (75)

(χ̄1σ̄
µχ2)(χ̄3σ̄µχ4) = −(χ̄1σ̄

µχ4)(χ̄3σ̄µχ2) , (76)

where χ̄ = χ† and ξ̄ = ξ†, because they are two-component spinors. Using Equations 74
and 76, we see

(ψ̄1γ
µPLψ2)(ψ̄3γ

µPLψ4) = (χ†1σ̄
µχ2)(χ

†
3σ̄

µχ4) = −(χ̄1σ̄
µχ4)(χ̄3σ̄µχ2) (77)

= −(ψ̄1γ
µPLψ4)(ψ̄3γ

µPLψ2) . (78)
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B)
(ψ̄1γ

µγαγβPLψ2)(ψ̄3γ
µγαγβPLψ4) = −16(ψ̄1γ

µPLψ4)(ψ̄3γ
µPLψ2)

Using the same spinor definition as the previous section, consider terms of the form:

ψ̄iγ
µγαγβPLψj = ψ̄iγ

µγαγβ
(
χj
0

)
= ψ̄iγ

µγα
(

σβ

σ̄β

)(
χj
0

)
= ψ̄iγ

µ

(
σα

σ̄α

)(
0

σ̄βχj

)
= ψ̄i

(
σµ

σ̄µ

)(
σασ̄βχj

0

)
= ψ†i γ

0

(
0

σ̄µσασ̄βχj

)
=
(
χ†i ξ†i

)(σ̄µσασ̄βχj
0

)
= χ†i σ̄

µσασ̄βχj .

which are eqivalent in form to the terms on the left-hand side of Peskin Eq. 3.82. Using this
equation, we see

(ψ̄1γ
µγαγβPLψ2)(ψ̄3γ

µγαγβPLψ4) = (χ†1σ̄
µσασ̄βχ2)(χ

†
3σ̄

µσασ̄βχ4) (79)

= 16(χ†1σ̄
µχ2)(χ

†
3σ̄

µχ4) (80)

= 16(ψ̄1γ
µPLψ2)(ψ̄3γ

µPLψ4) (81)

= −16(ψ̄1γ
µPLψ4)(ψ̄3γ

µPLψ2) , (82)

where between Equations 79 and 80, we have utilized Peskin Eq. 3.82, and at the final step
we used Equation 74.

C)
Tr[ΓMΓN ] = 4δMN , with ΓM ∈ {1, γµ, σµν , γ5γµ, γ5}

It is clear to see the scalar Γ matrix is properly normalized:

Tr[1 · 1] = Tr[1] = 4 . (83)

We will check the vector components:

Tr[aγ0aγ0] = a2 Tr[(γ0)2] = a2 Tr[1] = 4a2 , (84)

equating this with 4δ00, we see a = 1. For space-like components, we have

Tr[aγibγj ] = abTr[γiγj ] = 4abgij = −4abδij , (85)

using Equation 43 - equating this with 4δij we see this is satisfied for a = b = i. Let us check
the cross terms

Tr[γ0iγj ] = ig0i = 0 , (86)

which also satisfies equating with 4δµν . Now we will check the tensorial components of Γ,
first noting that

σµν =
i

2
[γµ, γν ] . (87)

Taking the trace of the square of σµν yields

Tr[σµνσµν ] = −1

4
Tr {[γµ, γν ][γµ, γν ]} (88)

= −1

4
Tr {γµγνγµγν − γνγµγµγν − γµγνγνγµ + γνγµγνγµ} , (89)
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we note that if µ = ν the right-hand side vanishes, so using the anticommutation relation,
this is

Tr[σµνσµν ] = −1

4
Tr
{
γµγνγµγν − (−1)γµγνγµγν − (−1)γµγνγνγµ + (−1)2γνγµγνγµ

}
(90)

= −1

4
Tr {4γµγνγµγν} = −Tr[γµγνγµγν ] , (91)

using Equation 46 this is

Tr[σµνσµν ] = −4(gµνgµν − gµµgνν + gµνgνµ) , (92)

since we have previously stated µ 6= ν this simplifies to

Tr[σµνσµν ] = −4gµµgνν , (93)

so

Tr[σµνσµν ] =

{
−4 for µ, ν both space-like

+4 for µ, ν one space-like and one time-like
, (94)

noting that the case for both indeces being time-like vanishes. Given that µ 6= ν, we have
σµν ∈ {σ01, σ02, σ03, σ12, σ13, σ23}. Consider the case for for one space-like and one-time like
Lorentz index:

Tr[ΓAΓA] = a2 Tr[σ0jσ0j ] = +4a2 , (95)

equating this with 4δAA, we see a = 1. In the case for two space-like indeces, we have

Tr[ΓAΓA] = a2 Tr[σjkσjk] = −4a2 , (96)

in which case a = i. For the pseudoscalar case it is easy to see

Tr[aγ5aγ5] = a2 Tr[(γ5)
2] = a2 Tr[1] = 4a2 , (97)

so we have a = 1 in the desired basis. The pseudovector entries are

Tr[aγ5γ
µaγ5γ

µ] = a2 Tr[γ5γ
µγ5γ

µ] = −a2 Tr[γµγ5γ5γ
µ] = −a2 Tr[γµ1γµ] (98)

= −a2 Tr[(γµ)2] , (99)

if µ = 0, we have

Tr[aγ5γ
0aγ5γ

0] = −a2 Tr[(γ0)2] = −a2 Tr[1] = −4a2 , (100)

and if µ = j, we have

Tr[aγ5γ
jaγ5γ

j ] = −a2 Tr[(γj)2] = a2 Tr[1] = 4a2 , (101)

which we equate with 4 in the desired basis. For µ = 0, a = i, and for µ = j, a = 1. Thus
the properly normalized basis for ΓA is

ΓA ∈ {1, γ0, iγj , σ0j , iσjk, γ5, γ5γ0, iγ5γj} , (102)

for j 6= k, and in this basis

Tr[ΓAΓB] = 4δAB . (103)
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D)

(ψ̄1Γ
Mψ2)(ψ̄3Γ

Nψ4) =
∑
PQ

1

16
Tr[ΓPΓMΓQΓN ](ψ̄1Γ

Pψ4)(ψ̄3Γ
Qψ2)

The quantity ψ̄iΓ
Aψj is a number, and the trace of a number is itself, so

ψ̄iΓ
Aψj = Tr[ψ̄iΓ

Aψj ] = Tr[ψjψ̄iΓ
A] , (104)

and we note that ψjψ̄i is a 2× 2 matrix (of 2× 2 matrices). The completeness relation from
quantum mechanics is 1 =

∑
k |k〉 〈k|, by analogy, we have

1 =
∑
A

(ΓA)†ΓA , (105)

but since {ΓA} are Hermetian, this becomes

1 =
∑
A

ΓAΓA . (106)

We can then expand any matrix in this basis: take, for instance, ψjψ̄i:

ψjψ̄i =
∑
A

xAjiΓ
A , (107)

where xAji is a number. Inserting this into Equation 104, we have

ψ̄iΓ
Aψj = Tr[ψ̄iΓ

Aψj ] = Tr[
∑
Z

xZjiΓ
ZΓA] =

∑
Z

xZji Tr[ΓZΓA] =
∑
Z

4xZjiδ
ZA . (108)

We can write down the general form for expressing a quantity in a different basis:

(ψ̄1Γ
Aψ2)(ψ̄3Γ

Bψ4) =
∑
C,D

CABCD(ψ̄1Γ
Cψ4)(ψ̄3Γ

Dψ2) , (109)

where CABCD is some undetermined coefficient. Consider the right-hand side:

∑
C,D

CABCD(ψ̄1Γ
Cψ4)(ψ̄3Γ

Dψ2) =
∑
C,D

CABCD

{∑
Z

4xZ41δ
ZC

}{∑
Y

4xY23δ
Y D

}
(110)

=
∑
C,D

CABCD
{

16xC41x
D
23

}
, (111)

and the left-hand side:

(ψ̄1Γ
Aψ2)(ψ̄3Γ

Bψ4) = Tr[ψ̄1Γ
Aψ2ψ̄3Γ

Bψ4] = Tr[ψ4ψ̄1Γ
Aψ2ψ̄3Γ

B] , (112)

since both quantities in parenthesis are just numbers. Using Equation 107, this is equivalent
to

(ψ̄1Γ
Aψ2)(ψ̄3Γ

Bψ4) = Tr[
∑
Z

xZ41Γ
ZΓA

∑
Y

xY23Γ
Y ΓB] =

∑
Z,Y

Tr[ΓZΓAΓY ΓB]xZ41x
Y
23 , (113)
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if we relabel the dummy indeces: Z → C and Y → D, this is

(ψ̄1Γ
Aψ2)(ψ̄3Γ

Bψ4) =
∑
C,D

Tr[ΓCΓAΓDΓB]xC41x
D
23 . (114)

Comparing this result to Equation 111, we see

CABCD =
1

16
Tr[ΓCΓAΓDΓB] , (115)

proving

(ψ̄1Γ
Mψ2)(ψ̄3Γ

Nψ4) =
∑
PQ

1

16
Tr[ΓPΓMΓQΓN ](ψ̄1Γ

Pψ4)(ψ̄3Γ
Qψ2) . (116)
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