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Dylan J. Temples Quantum Field Theory I : Solution Set Four

1 Schwartz 11.1.

In practice, we only rarely use the explicit representations of the Dirac matrices. Most calculations
can be done using algebraic identities that depend only on {v#,4”} = 2¢g"”. Derive algebraically
(without using an explicit representation):

A)

B)

(") =1

Let us begin by clarifying the notation for the anticommutator: due to the dimensionality of
the left- and right-hand sides, we must have

{77 =29"1s = M =29"Ta ="M (1)
With that out of the way, consider the square of 47 = i79~y1y2~3:
(V)2 = (P (PO (2)

and let us replace the products in the parenthesis with the anticommutation relation. Since
we are anticommuting different indeces, we just pick up a negative sign when we swap the
order, we do this twice, so this becomes

(V")? = ' PN (P (3)
again replacing the products in parenthesis with their anticommutator relation, we pick up

two negative signs to obtain

5)2()120013

(v Y'Y (v (4)

replacing the product in parenthesis with the anticommutator gives

(V)2 = (') () (5)
The square of a gamma matrix is easy to compute by considering the anticommutator:
2g"14 = {7*,7"} = 2(+*) , (6)
so (79)2 = 14 and (7%)? = —14. Inserting this result gives
()2 = L) (v )” (7)

- —m >< hy? < > (8)

Yup = —2p
Expanding the Feynman notation yields
Yy = 1 Y = Y 2 = (Guo )Y P = (9o )P Y (10)
and replacing the last two gamma matrices with their anticommutator gives

V¥ = (9o 0w (29" s — V'Y") = 2909”147 D1 — GuoV PV (11)
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Performing some contractions simplifies this equation to

V" = 21470 — Vupo Y = 2040 — v ey’ (12)

Now we must evaluate the contraction

1
Y = Guo’ Y = §(g;m + Gop )V, (13)

due to the symmetric nature of the metric tensor. If we distribute and relabel the dummy
indeces on the second term, we find

W = 5007V + 9u07"77) = Tt = S0 (2070 a) = 41 (14)
since gaggaﬁ = 4. Using this result, we have
Yupr* = 2Layup" — 4Lapy” = 2(v"pu — 297py) (15)

after multiplying the identity through (acting on the gamma matrices). Relabeling the dummy
indeces on the first term, and subtracting yields the result

Yup ' = —27"p, = =2p . (16)

W = ~2pp

Again, we can expand the Feynman notation, and move the vectors to the right, since they
commute with the gamma matrices:

Vupdpr" = 1Y YA Db - (17)
Now consider the quantity
YWY VYA = (GuaY IV AN = YA Ve - (18)
Using the anticommutator for the first two matrices yields
WY YA = (297 = ") e = 207 0 = 7P e (19)

The first term can be written 2v#y?+", while the second is v*(7Y*y*77 7). We can express
the factor in the parenthesis as

VYV = 9oV VY = Ga (29" 1a — 72297 1a — 4%9"]) (20)
= Gau (415" g7 — 21497y " — 214" Yy + 41y *yP) (21)
= 414gh9"* = 2907 M = 2057°Y" + 7 Y’ (22)

Note we have acted the identity on the gamma matrices in the middle two terms. If we insert
the result from Equation 14, and act the identity on one of the gamma matrices, we see

YA = ALagag™ = 29707 = 290779 + 47" (23)
=491y — 29"9" = 29797 + 497" (24)
= 49”71, . (25)
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Taking this result and inserting it into Equation 19, we find
WY AAVIA = 2P0 =47 (4977 1) = 2(7P77 = 2977 1a)" = =207 ) (26)
which we can insert into Equation 17 to find

Vbt = =297 PP = =277 e 47 P = 24P - (27)

{1 =0
Writing out the commutator yields

(75,9 = i(PY 2R + a0y 2R (28)

consider the second term:

YO0yl = (2670 — A0qH)yla2y? = 2gH0yly2q3 — A O0ykylay2e3 (29)

If we continue this process until we have anticommuted ~+* to the end, we find

POyt = 2gH0y 1y 2a3 — 29 0gila2a3 4 290yt gi2a3 99 0yta2ghd 4 A0yta2a3yi 1 (30)

Let us add the final term on the right-hand side to both sides:

P+ Ay =

29"0919%97 = 290" 127 + 2909 g2y — 2909192010 1 2Oyl P P (31)

multiplying by the imaginary unit yields
{77, 9"} = 2i (6" %y — 0" 2y + A0 g2y — A0 2 gk APyl L (32)

Since p € {0,1,2,3} and g is diagonal, for a given choice of p only one term containing the
metric in the above equation is nonzero. Consider the case y = 3:

{777} = 20 (-7°7'7%9% +9°919%7°7°) (33)
=2i(y"y'7? =" =0, (34)
using (7%)2 = —14. Due to the pattern of the signs of the terms with the metric and how

many times the 7* matrix must be anticommuted to get factors of (v°)2, we see the above
reasoning will hold for = 1,2,3. We will verify explicitly for p = 0:

{,75,,70} — 9 (900717273 + 7071,72,7370) (35)
=2i (V' + (-1)°(7°)*7'7*%) (36)
=2i (v'** —+'9**) =0, (37)

using (7°)? = +14. Following the logic stated above, or verifying explicity if you do not
believe me, proves:

{4} =0. (38)

Page 4 of 12



Dylan J. Temples Quantum Field Theory I : Solution Set Four

E)

Te[y*y#y7y") = 4(g™ g™ — g*P g + g g"?)

Let us begin by anticommuting v” to the right side of the expression:

Tr[y7"977"] = Te[y** (29”7 14 —"7")] = 26" Te[y*y"1a] — Trly*y"7"7”] (39)
= 2¢% Tr[y*y*] — 2¢" Tr[y*7"] + Tr[y*y"7#9] (40)
= 2¢% Tr[y*y#] — 2g" Tr[y*~y’] + 2¢° Tr[v#~°] — Te[y"y*4#~P],  (41)

where the 14 from the anticommutator was multiplied with a gamma matrix. Now consider
the trace of the product of two gamma matrices:

Tr[y"y7] = % (Tr[y*7°] + Tr[y747]) = % Ty + 97 = % RLLEK
= ngTT[L;] = 4ng s (43)

where we have used the fact that the trace is invariant under cyclic permutations of its
arguments. Using this result, Equation 41 becomes

Trly®yiyPy"] = 8g7 gk — 8" g°F + 8¢°¥ g% — Tx[y"4"+7] | (44)

if we cycle the trace on the right-hand side: Tr[y”y®y#4%] = Tr[y*y*+5+*], then move it to
the right, we see the trace terms sum. Dividing by two yields the final answer:

Te[y*yyy"] = 497 gH — 49" g™ + 49° g (45)
=4(g™ g™ — g™ g™ + 9" g"7) . (46)
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2 Schwartz 11.4.

Show that for on-shell spinors

u(q)y" u(p) = ulq) qg;p# + igw(g”m_ Py) u(p) (47)

where 0, = %[7#, vy]. This is known as the Gordon Identity. We will use this when we calculate
the 1-loop correction to the elecctron’s magnetic dipole moment.

Consider the anticommutator identity for the gamma matrices: {y*,7”} = 2¢*”14. From the
definition of the spin operator, we have that

174 Z v 2‘ v v
ot =0T =5 (0" =) (48)

but we can replace the second term with the anticommutator relation:

oM = L (P — (29" 1y —A19")) =

: (297" — 26" 1) (49)

N =

SO

1ot = g"F 1y — AHAY (50)
However, if we instead anticommuted the first term, we would find

ioh =AYyt — gty . (51)
Let us now calculate

u(q)io"” (qy — pv)u(p) (52)

where u(p) is a Dirac spinor for a fermion field with momentum p. If we distribute the Pauli matrix
and replace it with both expressions we found above, this becomes

u(q)ic™” (g — py)ulp) = u(q) (V' — 9" La)qw — (9" 1a — ¥*7")pu] u(p) | (53)
again distributing and contracting yields
u(q)io™ (g, — p)ulp) = ulq) W a" — ¢ =" + "7l ulp) , (54)
in Feynman slash notation this can be written
u(q)ic™ (qu — po)ulp) = ulq) [¢7" — (a+p)" +~"p ulp) - (55)

If we insert the plane wave solutions into the Dirac equation, we find u(p) satisfies the constraint
(Peskin Eq. 3.46):

(p —m)u(p) = (V'pu —m)u(p) =0, (56)
and the adjoint of this is

u(q)(¢ —m) = u(q)(y'qu —m) =0, (57)
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from these equations, we see

We can insert these results into Equation 55 to see:

u(q)ioc"” (¢ — p)ou(p)
[mA" — (g + )" ++"m]u(p)
[2mA" — (g + p)*]u(p)
[

Il
I

Il
Sl

u(q)
(9)
(9)
u(q)

u(q)my*u(p) — u(q)(q + p) u(p) + w(q)y"mu(p)

u(q) [ic"(q — p)v — 2my" + (¢ + p)"] u(p) -

Bringing the term with the gamma matrix to the other side, and dividing by 2m yields

ﬂ((l)% [ic"(q — p)v + (g + p)"] u(p)

(@ [q”ﬂo“ P —pu)] u(p) |

u(q)y"u(p)

Il
N

2m 2m

which is the Gordon Identity.

Consider the spinor

win = (VEZe) |

which has the property (Peskin Eq. 3.57):

Uy (p)us(p) = 2mel &, = 2mdy, .

The quantity @, (p)y"u, (p) can be expressed using the Gordon identity as

_ _ M"’ H .O-MV v — Mv
R L
_ P! P!
- u0'<p) |:m:| ua’(p) - (po) 2m50’o‘
= 2p#50’0

(66)

(67)
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3 Schwartz 11.8.

Fierz rearrangement formulas (Fierz identities). It is often useful to rewrite spinor contractions in

other forms to simplify formulas. Note that P, = # project out the left-handed spinor from a
Dirac fermion. The identities with P, play an important role in the theory of weak interactions,
which only involves left-hande spinors. Some hints:

1. In class we discussed there exist 16 independent matrices that can be constructed out of the
Dirac matrices: T4 = {1,v#, 0", y#~4°}. Write down a basis for I'* such that

Te[[ATP] = 4648 |
2. Write the general Fierz identity as an equation

(1T 4h2) (3T Pajy) Z DT ) (s Ppg)

with unknown coefficients Cég. Using the completeness of the 16 T'4 matrices, show that

CAE = 6 Tr[FCFAFDFB] .
Then you can complete Problem 11.8.
Show that
A) ) ) ) )
(V1" Prabe) (W3 Prpa) = —(1y" Praba) (Y37 Prap2)

Let us begin by defining a set of Dirac spinors

w= () o w=uht = o). ()

thus

Prab; = <>6> and  Pri; = <§> . (72)

Now we consider the quantity

iy Praby = I0AH ( ) W] °< Uu) <>f)]> =] (1 1) <5£Xj> (73)
- (d ) (7o) =l )

The Fierz identity for the right-handed portion (&;) of Dirac spinors is given by Peskin Eq.
3.78, by analogy (or Peskin Eq. 3.79) we give the identity of the left handed portions (x;):

(£10"82)(E30,a) = —(€10"€4) (€30,.62) (75)
(X10"x2)(X30uxa) = —(X10""X4)(X30uX2) » (76)

where ¥ = x' and € = ¢', because they are two-component spinors. Using Equations 74
and 76, we see

(V19" Prape) (s Prapy) = (XI5“X2)(X;,5”X4) = —(x10"x4) (X30ux2) (77)
— (17" Prapa) (V37" Prapa) - (78)
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B)

(D1y" P Prabe) (3 v yP Praps) = —16(p17y" Priba) (3" Prapa)

Using the same spinor definition as the previous section, consider terms of the form:

_ 7y g / ) i

D'y P = bty *y” (0> = vt <f_fﬁ ’ > G}J) — (5a ’ ) <6ﬁOXj>
o » . Uﬂ ; 0 B ; ; 5#0a5ﬂx.
= <J“ ) ( 0 ) PP (O—uo—agﬁxj) N (Xi §i> ( 0 ]>

= X;r&“aaﬁﬁxj .

which are eqivalent in form to the terms on the left-hand side of Peskin Eq. 3.82. Using this
equation, we see

(D179 P Prape) (937" 7%4P Prapa) = (x13"0%55 x2) (x}5" 057 x4) (79)
= 16(x} 5" x2) (x}7" x) (80)
= 16(Y1y* Pri2) (¥sy" Priba) (81)
= —16(17" Pria) (Vs Praba) (82)

where between Equations 79 and 80, we have utilized Peskin Eq. 3.82, and at the final step
we used Equation 74.

Te[TMTN] = 46MN | with TM € {1,4, 0™, y57", 75}
It is clear to see the scalar I' matrix is properly normalized:
Te[l-1) = Te[1] =4 . (83)
We will check the vector components:

Tr[ayar’] = a® Tr[(7°)?] = a® Tr[1] = 4a® (84)

090 we see a = 1. For space-like components, we have

equating this with 4

Tr[ay'by’] = abTr[y'y/] = 4abg” = —4abs™ | (85)
using Equation 43 - equating this with 40" we see this is satisfied for @ = b = 4. Let us check
the cross terms

Tr[y%iy] = ig” =0, (86)

which also satisfies equating with 40*¥. Now we will check the tensorial components of T,
first noting that

o = 11t "] (87)

Taking the trace of the square of " yields
Tro" o] = — Te {lr#,7 1,71} (55)
= —i Tr {y# Y Hy” — Pty — Ayt AR (89)
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we note that if 4 = v the right-hand side vanishes, so using the anticommutation relation,
this is
Tr[o" o] = —% Tr {#9" 7" — (17" "7 = (=D " + (=1)*7"y#4"y*} (90)
= —% Tr {47979} = = Tr[y"+"7*9"] (91)
using Equation 46 this is
Tr[o" o] = —4(g" g™ — "™ + " g"") , (92)
since we have previously stated u 7% v this simplifies to
Trlo ot| = —4gttg"" | (93)
SO

—4 for pu,v both space-like

Tr[o" o] = { (94)

+4 for p,v one space-like and one time-like ’

noting that the case for both indeces being time-like vanishes. Given that p # v, we have
o € {d", 092, 09,512 513 523}, Consider the case for for one space-like and one-time like
Lorentz index:

Tr[[AT4] = a® Tr[o% 0] = +4a? | (95)

644 we see a = 1. In the case for two space-like indeces, we have

equating this with 4
Te[[AT4] = a2 Tr[o?*67%] = —4a? | (96)

in which case a = i. For the pseudoscalar case it is easy to see
Trlaysays] = a® Tr[(y5)?] = a® Tr[1] = 4a® , (97)

so we have a = 1 in the desired basis. The pseudovector entries are

TrlavsyH avsy"] = a? TrlvsvH 574 = —a? Tr[v*y5v5vH] = —a? Tr[y*1~*] (98)
= —a®Tr[(v")?] , (99)

if u =0, we have
Trlaysy’avs7Y] = —a® Tr[(7°)?] = —a® Tr[1] = —4a? , (100)
and if u = j, we have
Trlaysy aysy'] = —a® Tr[(79)?] = a® Tr[1] = 4a? | (101)

which we equate with 4 in the desired basis. For 4 = 0, a = 4, and for 4 = j, a = 1. Thus
the properly normalized basis for 4 is

I e {1,7°,i77,0% io7*, 75,757", 577} (102)
for j # k, and in this basis

Tr[[ATP) = 4648 | (103)
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D)

(aTM o) (1haTNepy) = > % Te[CFTMTOTN] (117 400) (P37 V)
PQ

The quantity &Z-I‘A@bj is a number, and the trace of a number is itself, so
Yil ey = Te[hiTy] = Tolyil ] (104)

and we note that 1;1; is a 2 x 2 matrix (of 2 x 2 matrices). The completeness relation from
quantum mechanics is 1 = ), |k) (k|, by analogy, we have

1=>) (Y, (105)

A

but since {I'4} are Hermetian, this becomes

1=>) I, (106)
A

We can then expand any matrix in this basis: take, for instance, quﬁi:

Wb = ZxAFA (107)
where :c;1 is a number. Inserting this into Equation 104, we have
T A4p; = Tr[ihTAY,] = Tr| Z 2Z 07T =Y " 2? Te[M 7T = Z daZ574 . (108)
Z

We can write down the general form for expressing a quantity in a different basis:

(1T 40p2) (1hsT Papy) = Z DT ) (s Ppg) (109)

where Cég is some undetermined coefficient. Consider the right-hand side:

ZC (10%%a) (93T P o) = ZC {Z4xfldzc} {szsggém} (110)
Z Y
:ZCCD{lthflx%} , (111)
C,D

and the left-hand side:

(017%%9) (03T Behy) = Tr[tha T44haths T Bpy] = Tr[thgthy T gehs T (112)

since both quantities in parenthesis are just numbers. Using Equation 107, this is equivalent
to

(101 D499 (3T Bapy) Ter41I‘ZFAZ BIVTP =Y T TAT TP |afiad; . (113)
zZY
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if we relabel the dummy indeces: Z — C and Y — D, this is

(01T Mp0) (s Papy) = > Tr[PCTATPTP |2 ady
C,D

Comparing this result to Equation 111, we see

1
Cak = o Te[rCTATPTE] |

proving

(1T M ao) (D3 TV py) = > % Te[TPTMTOTN) (1T 4p) (5T V)

PQ

(114)

(115)

(116)
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