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1 Invariance of Dirac Lagrangian.

A) Show that the Dirac Lagrangian

L =i —m)y (1)
is invariant under C, P, and T separately. (Hints: i) recall that time-reversal operator T is
anti-unitary, and ii) remember the identity 02002 = —a’.)

Writing out the Dirac Lagrnagian we have
Lp = i@Z’y“@,ﬂﬁ - md;¢ > (2)

so we need to investigate how each term transforms under C, P, and T individually!.

Charge Conjugation.
Let us begin by denoting the charge conjugation operator as C. Then, the Dirac spinors
(four-component) transform as

C:1p = CYC = —in** = —i(py"7*)" (3)
C: 9 = CYC = —i(y* )" = —i(y"7y*y)" . (4)

Consider the act of charge conjugation on the second term of the Lagrangian:
C: ) — CPYC = [—i(y"7* )] [=i(r°7?)T] = =(1**) T (¥r )T . (5)

Let us note that the components of the product of two general matrices can be expressed as
(MN)ae = MapNpe (6)
where the repeated index b = 1, 2 is summed over, and thus
(MN)ge = MgyNye = MygNep = (MN)cq - (7)
Generalizing this logic, we can express Equation 5 as
COYC = Yoy VeVl VaeVea = VaVab Vo Ve Veale » 8)

note that we anticommuted the fermions to obtain a factor of —1. Now, since we are working
in components, the 1) components are two-component spinors and the gamma matrix entries
are either zero, the identity, or the second Pauli matrix, so we are free to move them around
without consequence:

CYYC = bavgeVeaVapVorte = DYV = =97° 7220 9)
by anticommuting the two-right most gamma matrices. We have that (79)? = 1 = —(1?)2,
SO

CyC =y (10)

and thus the mass term of the Dirac Lagrangian is invariant under charge conjugation.

!The transformations of the spinors ¢ and 1 under C, P, and T can be found in Peskin & Schroeder section 3.6.
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Parity.

Denoting the parity operator as P, the Dirac spinors (four-component) transform as
P2t = Pt x)P =117 (t, —x) (11)
P = Pt x)P =" P(t, —x)7" (12)

where 7 is a pure phase. The mass term in the Lagrangian transforms as

P s gt x) = PUd(t,x)P = [n*97" 0 = gt —x) , (13)
using (7°)? = 14 and |n|? = 1, and thus the mass term is invariant under parity.

Time Reversal.
Denoting the time reversal operator as 7, the Dirac spinors (four-component) transform as

T = Tt x)T = —(v'7)(~t,%) (14)
T = Ty, x)T = P(=t,x)(v'7%) (15)
so the mass term transforms as
T (%) = T, x)T = =y y° ' = 0(v1)2(v°) 0 (16)
using the anticommutator. Since ()% = (73)? = —14, we have
Tt x) = T, x)T = Py(—t,%) , (17)

and is thus invariant under time reversal.

The Kinetic Term.
Since the quantity v*0,, behaves as a Lorentz scalar, we expect that the results from the mass
terms hold for the kinetic terms, under C, P, and T individually. Therefore

CYy" 9 C = Yy (18)
’P@Z_W/Ma,udjp = QZJ’YHa,uw (19)
TV 0T = 97" (20)

and thus the Dirac Lagrangian is invariant under C, P, and 7T individually - let’s verify this.
For charge conjugation we have

CYV9,4C = —i(v*h) 419, [—iv*v*] (21)
= — (V)90 = =T 209 2 0,0* (22)
e e e ale s M (23)

We should now investigate the quantity 2y~

0 o2 0 ot 0 o? _ 0 o2gHg? 94
—02 0 a0 —02 0 ) \o20Hg? 0 ’ (24)

0 o2102 0 1
2 0.2 0
T <02]la2 0 ) <]l 0) ’ (25)
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because (o#)? = 1. Now consider the spatial components

2 i 9 0 —o?olo?\ 0 (e))T
Yy = <020¢ 2 0 = _(O.i)T 0 ) (26)
for i = 1,3 we have that (0/)T = ¢ but for i = 2, we have (¢2)T = —¢2, here we can also
note that (72)7 = +2. With these facts we see y2y#y? = 4. Using this result, we have
CPYOuC = 1A 9100 = T 9™y "y (27)

Putting this in component notation, we have
Cpr 0 C = Ya (8t (V7 ab - (28)
Schwartz equation 3.14 allows us to do integration by parts neglecting the boundary terms:
A0,B = —(0,A)B (29)
so the previous equation can be written

CYY00C = —(0)athy (V4" = —(Bu) T " = = (0 h)ir™ = dduy”  (30)
= YO = P (31)
and thus is invariant under charge conjugation. This proves the entire Dirac Lagrangian is

invariant under charge conjugation.

Under parity, we have
PYy 0,0 P = 11 Py 0 y° = [P " 0,7 ° = 4y 0, (32)
Consider the spatial components:
PYy 0P = 7' (=81 = =y °y Y (=09 = Yy 0 (33)
and the temporal component:
Py 00y P = 97"y 00 = ¥y 000 (34)
SO Pil;’y“(%l/ﬁ) = &7“8,@ = @), and is thus invariant under parity. This proves the Dirac

Lagrangian is invariant under parity.

Under time reversal, we have
Ty 00T = =y v (v)* 0,7 v = =y (7)) * v 20,0 = Py P (V) >+ 9, (35)

note that the complex conjugate of the gamma matrices only affects 72, it picks up a negative.
For the temporal component:

TP 00T = 7' 73 7°*y o = vy '3yt (—1)27 %00y (36)
=y (=)' 900 = (—=1)*¢ 00 = ¥4 9y (37)
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and the second spatial component:
TV 0T = py 00 (38)

using an identical process (we picked up a negtive from the complex conjugate, and a negative
sign from the derivative), since {7°,7(13} = {42, 413} = 0. This is more complicated for
1=1,3:

T 0s0T = vy V> 23y (= 0s) = =y 3y (=0s)9h = oy 'y P (—05)h = Py 059 (39)

and for ¢ = 1 use the same process but in the first step you pick up two factors of —1 from

anticommuting both pairs of y!'43. Collecting the results, we find

Ty O T = v (40)
proving the kinetic term, and therefore the Dirac Lagrangian is invariant under time reversal.

Replace the derivative 0" by the covariant derivative D* = 0* — ijgA* and show that, if
electromagnetism is invariant under charge conjugation, the photon A* must be odd under
charge conjugation

CAM(2)C = —AMz) . (41)

The electromagnetic Lagrangian is
L = P(inud" + gy A* —m)y = Lp + gy A" (42)
so under charge conjugation we have:
CLC = CLpC + gCyry, A"YC = Lp + gCpy, A*pC | (43)

because we have shown the Dirac Lagrangian is invariant under charge conjugation. For the
electromagnetic Lagrangian to be invariant under charge conjugation, we enforce

L= Lp+ gCipry, A*YC (44)

but comparing this to Equation 42 leaves us the following condition for the above equation
to be true:

Py At = Cipry, AHYC = Cipyp AMC (45)
Since CC = 1, we have
VAt = (CypC)(CAC) | (46)

for now let us assume that the vector Dirac bilinear is odd under charge conjugation. In this
case,

Py At = (=py ) (CAPC) = =, (CAFC) (47)
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and for the above statement to be true it must be that
CAH(x)C = —AF(z) . (48)

so proving that the vector Dirac bilinear is odd under charge conjugation proves the photon
A, is also odd under charge conjugation. Consider the charge conjugation of the vector Dirac
bilinear:

CPypC = [=i(V* ) Y] v [—iv*¢*] = —=(v*9) "V 970" = =T %%y (49)
= P70 = YT Py = =Py yn? (50)

using Schwartz equations 11.48 and 11.49. Moving the v back to the right and using the
result from before v2y#~y? = v, we have

C?Z’Wbc = _1Z7uw ) (51)

and is in fact odd under charge conjugation.
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2 Feynman propagator as Green’s function.
One way to define the Feynman propagator is as follows:
Dp(z —y) = 0(z° —y°) (0]6(2)(y)[0) + 8(y" — 2°) (0] (y)H(2)[0) - (52)
Show, by direct differentiation, that Dp(x —y) is a Green’s function of the Klein-Gordon operator:
(00" +m*) Dp(z — y) = —id W (z — y) | (53)

where 0, = 0/0z".

We should begin by noting that 6(z) in the above expression is the Heaviside function. The
Feynman propagator can also be expressed as

Dr(z —y) = (0.7 {o(x)(y)} |0) , (54)

where .7 is the time-ordered product operator (operators at later times are to the left of operators
which occur earlier). The four-dimensional derivative of the propagator has terms:

2
525 017 (@OWI0 = 5555 017 {6t} 0 (59)
V- OL7 (6@ew 0 = V2017 {6()6()} 0) (56)
We will begin with the time derivative:
o Dr(—y) = (0] 5 7 {6(x)6(w)} ) 57)

the time-derivative of a time-ordered product is given by the lemma?:

%(9{/1(1&)3(750)}) - y{(%ﬁ“) B(to)} + 6(t—to) x [A(t), B(to)] . (58)

Using this, Equation 57 is

0 0
gDt =) =07 { (%5 ) ot} + 8= 10 x [ot@r0mi0) . 69
the second term, due to the Delta function, can only be nonzero for 20 = ¢, if this is the case:
[¢(2°,x), (", y)] =0, (60)
SO
0 0
gDt = =07 { (%5 ) ot} o) (61)
We now take a second time derivative:
0 9 99 ()
s Dete =) = 00057 { (%550 ) ot b o (62)

= (017 {(90)*d(x)p(y)} + 6(z° —4°) x [Bod(z), H(y)]0) (63)

2See Kaplunovsky, “Feynman Propagator of a Scalar Field”, equations 6- 9 for a derivation.
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using the lemma again. Noting the canonical momentum to ¢, we have

a(iz)zDF(x —y) = (017 {(%0)’d(@)o(y)} + 5(2° —¢°) x [(2", %), 6(=",y)][0) , (64
but
[7(2°,%),6(2°, y)] = —[¢(2°,y), 7(2°,x)] = —i6@®(y —x) , (65)
vielding
8(?;)2%(9: —y) = (017 {(30)°d(@)d(y)} —id(a" —¢°) x 6P (x = y)]|0) (66)
= (017 {(20)*6(x)d(y)} —i6W(z —y)]|0) . (67)
Moving on to the spatial part, we have
ViDe(z —y) = (0|V2T {¢(x)$(y)} 10) = (0|7 {(V?¢(x))b(y)} |0) , (68)

and now we can write the Klein-Gordon operator acting on the Feynman propagator:

(00" +m®)Dp(z —y) = (0] [(9o)7 — V3 +m*] T {¢(x)$(y)} |0) (69)
= (01(90)3.7 {¢(2)(1)} = VaT {6(2)o(y)} + m* T {d(x)6(y)} |0) , (70)

inserting our previous results to the right-hand side yields:

(017 {(00)?d(x)p(y)} —idW(z—y) — T {(V*0(2)o(y)} + T {m*d(2)d(y)} [0)  (71)
(017 {[(90)2 — V2 +m?] ¢(z)(y)} — 6™ (z — y)|0) (72)

The Klein-Gordon operator (for coordinate z) is acting on the field ¢(z), which satisfies the Klein-
Gordon equation:

[(0)* = V2 + m?] ¢(x) =0, (73)
thus the first term in the previous equation is zero:
(00" +m*)Dp(x — y) = (0] — i6™W (2 — )|0) = =i (z — ) (00) = —i6W (@ —y) ,  (74)

and therefore the Feynman propagator is a Green’s function.
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3 Schwartz 6.1.

Calculate the Feynman propagator in position space. To get the pole structure correct, you may
find it helpful to use Schwinger parameters (see Appendix B). Take the m — 0 limit of your result
to find

1 1
o|T O=———-——"--+——". 75
OIT {bo(r1)o0(e2)}0) = ~ g oo, (75)
We can express the Feynman propagator as an integral over momentum-space:
d*p i ,
Dp(z —y) = —ip(zy) | 76
(=) / (27T)4p2—m2+iee (76)
Let’s factorize the exponential:
e~ (@) — o=ip’(wo—y0) oip-(x—y) (77)

which lets us write the propagator as

dp® .o d3p i (e
Die(r — ) = [ 22 g—ir’(xo yo)/ ipr(x—y)
F(T=y) / or ¢ (2m)3 p2 —m?2 + it (78)

Let us now define 2° = 2° — 4%, z = x — y, and 2 = |z|, and switch the integration from Cartesian
to spherical coordinates:

dp® _. o < b 9rp?dvdp ) -
D — s p-z0 1Pz 7
F(2) / o ¢ /p:[) [9:1 (2m)3  p2—m2+ el (79)

where we have integrated the azimuthal angle out (gaining a factor of 27) and used the integration
variable 9 = cos § instead of the polar angle . Doing some rearrangement we have the expression:

dpo .0 oo p2dp i 1 -
D _ Y —iplzg dYeiP?
r(2) o7 € /pzo (2m)2 p? — m?2 + ie /9:_1 c (80)

- f(zo)/poo rdp i (2 Siﬂ(W)) (81)

—o (2m)2 p2 —m? +ie \ pz
2 i o0 psin(pz)
=F - dp——"-—7>7—"— 82
(Zo)z (2m)? /p:0 pp2 —m?+ie’ (82)
where we’ve defined
_ > dpo —ipYz
f(Z[)) —/0 g@ . (83)
We can factor the denominator:
2 o0 psin(pz)
Dp(z) = F(20) - / dp . — (84)
227 Sy P = (m—ielp— (—m + ie)]

and we see the pole structure of the integrand. If we integrate this in the complex plane by selecting
a contour along the real axis closed by an infinite arc in the upper half plane. The arc vanishes
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because the integrand approaches zero at complex infinity. Therefore, by Cauchy’s integral formula,

we have
psin(pz)
27 Z a1(po) / dp [p — (m —i€)][p — (—m +i€)] ’ )

where »_ a1(po) is the sum of all residues of the poles enclosed by the contour. With the selected
contour, we only enclose the pole at pg = —m + i¢, so

psin(pz)

_ O — 1 _ 86
arlpo=m+ie) = lim (P =p0) = —i5p - (cm + i) (86)
_ (=m +ie)sin(z[—m +ie])  (—m 4+ i€) sin(z[—m 4 i€]) (87)
 (—m+ie) — (m—ie) 2(—m + ie)
1
=3 sin(z[—m + i€]) . (88)
Inserting this result, we find
2 ¢ 1 _ i sin(|x —y|[—m + i€])
Dp(z) = F(z0)- S on )2 3 sin(z[—m + i€]) = F(xo — yo) g (21)? , (89)
taking the m — 0 limit yields:
B i sin(ie]x —yl])
Alternatively, from Equation 82, we can use Scwhinger parameters:
D<>f<>21/°°d[ e pein(e2) (o1)
2) =F(z0)——=— ———— | psin(pz
P 0 (27)2 pO p P2 —m? +ie psmip
2
= }'(zo); [ daei®*=m 'He)a] psin(pz) (92)
> 2 > —m2+ie)a,
= daF(z0)— )2 dpe'®” psin(pz) . (93)
0 z( p=0

This is hideous, let’s start from the beginning using Schwinger parameters:

4 00
DF(:E _y) _/ d |:/ dae i(p>—m +ze)a:| —ip-(z—y) (94)

(2m)4

/ do‘/ gy e (95)

here we make the definition of the four-vector z = = — y:

P_g—ia(m?—ie) gipa ,—ip-z (96)
o da AP iam—ie) ia(p2—22) (97)

Completing the square in the expoenential:
O N (99
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yields the expression for the Feynman propagator:

o0 d4p . 2 N 22 iy 22
D _ — d —ia(m?®—ie) Jia(p—5%) (ia) 3 99
oo 4
_ / dae—i% d p4 e—icx(mz—ie)eioz(p—%)2 ) (100)
0 (2m)

Now we will define k = p — z/2a, such that d*k = d*k:

D ( ) /oo d —ii—Q —ia(m?—ie) / d4k iak? (101)
x—y) = ae tiae e .
BEEIT ()1

Since this is an isotropic four-dimensional integral (i.e., the integrand has no angular dependence),
we can write this as

o0 22 - 2m2k3dk |
Dp(r —y) = /0 dove i g~ io(m? —ic) / ETemkg (102)
00 ) . o2 )
- /0 dae ™7 /4orgia(m?—ic) (2;4 / k3dke'” . (103)
Now consider only the momentum integral:
/ kBdker (104)
we can make a substitution u = —iak? (such that du = —2iakdk):
du du U du 1
ks —u = k2 —u = _— —u = ———= 7Ud ].
/ <—2iak> ‘ / <—2ia> ‘ /—ia <—2ia> ‘ 202 /ue w o (105)
1
- 106
2a2 ’ ( )
using identities for the Gamma funtion. Therefore the Feynman propagator can be written
> ; . o 2m? 1
D - _ d —i22 /4o —ic(m? —ie) - 107
F(x y) /0 ae € (271')4 20,2 ( )
— _ 241 - /OO %e—i22/4ae—ia(m2—ie) ] (108)
™ Jo
We can make another substitution w = 1/a, so dw = —1/a?da:
1 o0 i . .
Dp(r—y) = 5 / dwe ™ 1# 0 emim?—i0/w (109)
™ Jo

Here we note that this integral is of the form of Bessel functions of the second kind:
1 o i 2 N m
Dp(z —y) = / dwe 1% Wemim —i)/w — [ (imx/—zQ - ie) . (110
v =50 ), Tt i (o)
If we expand the Bessel function into a Laurent series and keep only the leading order:
1
K (im\/ —22 +i€) - — 111
! imv—2z2 + i€ (111)
inserting this to our result, we find:
m 1 1 1 1 1

D —y) = = — = 112
rl@—y) 47222 ficimv/—22 +ie  Am? —2% + e An? (z — y)? —ie (112)
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