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1 Amplitudes for spinor Yukawa processes.

Go to the “real” Yukawa theory, Lint = −igψ̄ψφ, where ψ is now massive Dirac fermion. Use
Feynman rules to write down the amplitudes for the following processes:

A) ψ(k1) + ψ̄(k2)→ ψ(p1) + ψ̄(p2)

Let us begin by listing the Feynman rules for the Yukawa Fermion interaction, to which we
will refer to for the remainder of this problem:

• Start at the end of fermion lines, and pick up a spinor with the appropriate momentum
for each external fermion. A final state fermion gets a ū(p), a final state anti-fermion
gets a v(p), an initial state fermion gets a u(p), and an initial state anti-fermion gets a
v̄(p).

• At each vertex, pick up a factor of (−ig).

• At each vertex, conserve momentum to find momenta of propagators. External initial
state particles have incoming momenta, and external final state particles have outgo-
ing momenta. Internal fermion propagators have momentum flow determined by the
direction of the U(1) charge current.

• For each fermion propagator, pick up a factor of

i(/p+m)

p2 −m2
ψ + iε

(1)

while for each scalar propagator, pick up a factor of

i

p2 −m2
φ + iε

(2)

• Integrate over any undetermined (free) momenta in a loop.

Note that none of the processes we will explore here have identical fermions in the final state.
Therefore the amplitudes simply add, there is no destructive interference.

Figure 1: Feynman diagrams corresponding to the process ψ(k1) + ψ̄(k2)→ ψ(p1) + ψ̄(p2).
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Now we consider the process ψ(k1) + ψ̄(k2) → ψ(p1) + ψ̄(p2), which to leading-order, is a
second order process. The diagrams for this process are shown in Figure 1. For the s-channel
(Figure 1 left) process, following the product fermion lines, we have

ū(p1)(−ig)v(p2) , (3)

for the scalar propagator, we have

i

(k1 + k2)2 −m2
φ + iε

=
i

(p1 + p2)2 −m2
φ + iε

(4)

and for the incoming fermion line, we have

v̄(k2)(−ig)u(k1) . (5)

Collecting factors yields the amplitude:

iAs = (−ig)2 [ū(p1)v(p2)] [v̄(k2)u(k1)]
i

(k1 + k2)2 −m2
φ + iε

. (6)

For the t-channel (Figure 1 right) , we have similarly:

iAt = (−ig)2 [ū(p1)u(k1)] [v̄(k2)v(p2)]
i

(k1 − p1)2 −m2
φ + iε

. (7)

The total amplitude is the sum of these two, because there are no identical particles in the
final state.
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B) ψ(k1) + φ(k2)→ ψ(p1) + φ(p2)

Figure 2: Feynman diagrams corresponding to the process ψ(k1) + φ(k2)→ ψ(p1) + φ(p2).

Now we consider the process ψ(k1) + φ(k2) → ψ(p1) + φ(p2), which to leading-order, is a
second order process. The diagrams for this process are shown in Figure 2. For the s-channel
(Figure 2 left) process, we have:

ū(p1)(−ig)
i(/p+m)

p2 −m2
ψ + iε

(−ig)u(k1) . (8)

To find p, we conserve momentum at both verteces to find

k1 + k2 = p (9)

p = p1 + p2 , (10)

so

iAs = ū(p1)(−ig)
i(/k1 + /k2 +m)

(k1 + k2)2 −m2
ψ + iε

(−ig)u(k1) . (11)

For the u-channel (Figure 2 right) , we conserve momentum:

k1 = p+ p2 (12)

k2 + p = p1 , (13)

so we have:

iAu = ū(p1)(−ig)
i(/k1 − /p2 +m)

(k1 − p2)2 −m2
ψ + iε

(−ig)u(k1) . (14)

The total amplitude is the sum of these two, again because there are no identical particles in
the final state.
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C) ψ(k1) + ψ̄(k2)→ φ(p1) + φ(p2)

Figure 3: Feynman diagrams corresponding to the process ψ(k1) + ψ̄(k2)→ φ(p1) + φ(p2).

Now we consider the process ψ(k1) + ψ̄(k2) → φ(p1) + φ(p2), which to leading-order, is a
second order process. The diagrams for this process are shown in Figure 3. For the t-channel
(Figure 3 left) process, we have conserve momentum:

k1 = p1 + p (15)

k2 + p = p2 . (16)

Therefore,

iAt = v̄(k2)(−ig)
i(/k1 − /p1 +m)

(k1 − p1)2 −m2
ψ + iε

(−ig)u(k1) . (17)

For the u-channel (Figure 3 right) process, we have conserve momentum:

k1 = p2 + p (18)

k2 + p = p1 . (19)

Therefore,

iAu = v̄(k2)(−ig)
i(/k1 − /p2 +m)

(k1 − p2)2 −m2
ψ + iε

(−ig)u(k1) . (20)

The total amplitude is the sum of these two, since scalar particles commute, there is no
destructive interference.

D) φ(k)→ ψ(p1) + ψ̄(p2)

Figure 4: The leading order Feynman di-
agram corresponding to process φ(k) →
ψ(p1) + ψ̄(p2).

Now we consider the process φ(k)→ ψ(p1) +
ψ̄(p2), which to leading-order, is a first or-
der process. The diagram for this process is
shown in Figure 3. There are no propagators,
so

iA = ū(p1)(−ig)v(p2) . (21)
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E) φ(k1) + φ(k2)→ φ(p1) + φ(p2)

Figure 5: The leading order diagrams for the process φ(k1) + φ(k2)→ φ(p1) + φ(p2).

Now we consider the process φ(k1)+φ(k2)→ φ(p1)+φ(p2), which to leading-order, is a fourth
order process. The (non-redundant) diagrams for this process are shown in Figure 2. There
are no external fermions, so we acquire no spinors. We pick up a factor of (−ig)4 for the four
verteces. There are four fermion propagators so for each diagram the base amplitude is

iA = (−ig)4
i(/p+m)

(p)2 −m2
ψ + iε

i(/p′ +m)

(p′)2 −m2
ψ + iε

i(/p′′ +m)

(p′′)2 −m2
ψ + iε

i(/p′′′ +m)

(p′′′)2 −m2
ψ + iε

, (22)

so the only exercise is to determine the four propagators’ momenta: p, p′, p′′, p′′′. Let us define
these momenta such that p corresponds to the top leg of the box, p′ to the left, p′′ the bottom,
and p′′′ the right. Now if we consider the left-most diagram, we have

k1 + p = p′ (23)

p′′ = k2 + p′ (24)

p′′ = p′′′ + p2 (25)

p′′′ = p+ p1 , (26)

from conserving momentum at each vertex. Equating the second and fourth, solving for p′

and inserting into the first gives an expression for p′′′. Taking this expression and inserting
it into the fourth yields and expression for p′′. Using these, and the first equation, we have

p′ = p+ k1 (27)

p′′ = p1 + p2 + p (28)

p′′′ = p+ p1 , (29)

where p is a free parameter, which we must integrate over. For the left-most diagram in
Figure 5, we have

iA = (−ig)4
∫

d4p

(2π)4
i(/p+m)

(p)2 −m2
ψ + iε

i((/p+ /k1) +m)

(p+ k1)2 −m2
ψ + iε

i((/p1 + /p2 + /p) +m)

(p1 + p2 + p)2 −m2
ψ + iε

×
i((/p+ /p1) +m)

(p+ p1)2 −m2
ψ + iε

. (30)
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For the center diagram, conservation of momentum yields

k1 + p = p′ (31)

p′′ = k2 + p′ (32)

p′′ = p′′′ + p1 (33)

p′′′ = p+ p2 , (34)

which give the relations

p′ = k1 + p (35)

p′′ = k1 + k2 + p (36)

p′′′ = p+ p2 , (37)

where p is a free parameter, which we must integrate over, yielding

iA = (−ig)4
∫

d4p

(2π)4
i(/p+m)

(p)2 −m2
ψ + iε

i((/k1 + /p) +m)

(k1 + p)2 −m2
ψ + iε

i((/k1 + /k2 + /p) +m)

(k1 + k2 + p)2 −m2
ψ + iε

×
i((/p2 − /p) +m)

(p2 − p)2 −m2
ψ + iε

. (38)

For the right-most diagram, conservation of momentum yields

k1 + p = p′′′ (39)

p = p′ + p1 (40)

p′ + k2 = p′′ (41)

p′′ = p2 + p′′′ , (42)

Solving the fourth for p′ and equating it with the third yields an expression for p′′. Inserting
this expression into the third gives an expression for p′. The first equation gives the expression
for p′′′. These give the results

p′ = p− p1 (43)

p′′ = p2 + k1 + p (44)

p′′′ = k1 + p , (45)

where p is a free parameter, which we must integrate over, yielding

iA = (−ig)4
∫

d4p

(2π)4
i(/p+m)

(p)2 −m2
ψ + iε

i((/p− /p1) +m)

(p− p1)2 −m2
ψ + iε

i((/p2 + /k1 + /p) +m)

(p2 + k1 + p)2 −m2
ψ + iε

×
i((/k1 + /p) +m)

(k1 + p)2 −m2
ψ + iε

. (46)

The total amplitude is the sum of these three.
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2 Complex scalar field.

Consider a complex scalar field φ coupling to the muon (µ−) field µ and the neutrino (ν) field νL
through the following interaction

LI = CF (∂µφ)(µ̄γµνL) + (h.c.), (47)

where we have assumed the neutrino is massless and exists only in the left-handed component
νL = (1/2)(1−γ5)ν. The complex scalar φ has a mass mφ and the muon has a mass mµ. Compute
the differential cross-section dσ/dΩ for the scattering process ν̄ + ν → µ+ + µ− to leading order in
CF in the centre-of-mass frame.

Figure 6: (Left, center) The vertex diagrams allowed by the interaction Lagrangian. (Right) The
only allowed diagram for the process ν̄ + ν → µ+ + µ−, momenta and spinors of each particle are
noted.

This process is the scattering of a fermion/anti-fermion pair, which has an amplitude found in
problem 1A, however the Feynman rules are different. First we should note this interaction breaks
the U(1) symmetry of the complex scalar propagator, and it therefore carries no U(1) charge.
Additionally, the interaction of the neutrino and muon couples to the vector channel of the complex
scalar, so at each vertex we pick up a factor

iCFγ
µqµPL (48)

where the left-projection operator comes from the fact we are only interested in the left-handed
interaction, and q is the momentum of the scalar propagator (from the vector derivative). We have
defined the left- and right- hand projection operators as

PL = (1/2)(1− γ5) (49)

PR = (1/2)(1 + γ5) , (50)

which satisfy γµPL = PRγ
µ and vice-versa, also: P 2

L = PL and P 2
R = PR.

Let us first note that the only allowable channel for this process to occur is the t channel. Since
there is no vertex coupling two muons or two neutrinos to a scalar the s channel is forbidden.
Additionally, the final and initial states are both comprised of distinguishable particles, so the u

Page 8 of 12



Dylan J. Temples Quantum Field Theory I : Solution Set Seven

channel process cannot occur either. Consider the only allowable process (t-channel) shown by the
left diagram in Figure 6, starting with the top fermion line:

(iCF )ūs
′
(p1)γ

µqµPLu
s(k1) , (51)

and the bottom line:

(iCF )v̄r(k2)γ
νqνPLv

r′(p2) . (52)

In this case, the scalar propagator is

i

q2 −m2
φ + iε

(53)

Note the factor of p2 in the numerator of the propagator. Since the vector fermion current couples
to the derivative of the scalar, we acquire a factor of p, but this is a second-order process, so in
reality we acquire two factors. Conserving momentum at each vertex yields: k1− p1 = p = p2− k2,
so tossing in the scalar propagator gives the result:

iAt = (iCF )2
[
ūs

′
(p1)γ

µqµPLu
s(k1)

] i

q2 −m2
φ + iε

[
v̄r(k2)γ

νqνPLv
r′(p2)

]
. (54)

It is useful to note that each term (propagator, and both fermion lines) in Equation 54 is a C
number, as expected for an amplitude. For this reason, we can take the modulus squared of each
of these factors independently.

First Fermion Line
Consider the first fermion line:∣∣∣ūs′(p1)γµqµPLus(k1)∣∣∣2 = ūs

′
γµqµPLu

sus†PLqσγ
σ†γ0†us

′
(55)

= ūs
′
γµqµPLu

sus†PLqσ(γ0)2γσ†γ0us
′

(56)

using the fact (γ0)2 = 1 and γ0† = γ0, and that the projection operators are Hermitian. Noting
γ0γµ†γ0 = γµ and γµPL = PRγ

µ, so moving a projection operator past two Dirac matrices leaves
it unchanged and we can see∣∣∣ūs′(p1)γµqµPLus(k1)∣∣∣2 = ūs

′
γµqµPLu

sus†PLγ
0qσγ

σus
′

(57)

= ūs
′
γµqµPLu

sus†γ0qσγ
σPLu

s′ (58)

= ūs
′
γµqµu

sus†γ0qσγ
σPLu

s′ , (59)

this quantity remains a C-number, so we can take the trace:∣∣∣ūs′(p1)γµqµPLus(k1)∣∣∣2 = Tr
[
ūs

′
γµqµu

sus†γ0qσγ
σPLu

s′
]

= qσqµ Tr
[
γµusus†γ0γσPLu

s′ ūs
′
]
, (60)

after cyclic permutation and factoring out the momentum transfer vectors. To find the amplitude
we will need to sum over all possible spin states:∑

spins

∣∣∣ūs′(p1)γµqµPLus(k1)∣∣∣2 =
∑
s,s′

qσqµ Tr
[
γµusūsγσPLu

s′ ūs
′
]
, (61)
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and if we note the completeness relations for Dirac spinors∑
s

us(p)ūs(p) = γµpµ +m = /p+m (62)∑
s

vs(p)v̄s(p) = /p−m , (63)

we can move the sum into the trace and find∑
spins

∣∣∣ūs′(p1)γµqµPLus(k1)∣∣∣2 =
qσqµ

2
Tr
[
γµ/k1γ

σ(1− γ5)(/p1 +mµ)
]

(64)

=
qσqµ

2
Tr
[
γµ/k1γ

σ
/p1

]
+mµ Tr [γµ/k1γ

σ]− Tr
[
γµ/k1γ

σγ5/p1

]
−mµ Tr [γµ/k1γ

σγ5] . (65)

We can again factor the momenta vectors out, and note that traces of an odd number of Dirac
matrices (γ5 counts as four γ matrices) vanish:

=
qσqµ

2

{
k1αp1β Tr

[
γµγαγσγβ

]
+ k1δp1ε Tr

[
γµγδγσγεγ5

]}
=
qσqµ

2

{
4k1αp1β(gµαgσβ − gµσgαβ + gµβgασ) + k1δp1ε(−4)iεµδσε

}
= 2

{
(q · k1)(q · p1)− (q · q)(k1 · p1) + (q · p1)(q · k1)− iqσqµk1δp1εεµδσε

}
,

bringing us to the simplest expression for the first fermion line:∑
spins

∣∣∣ūs′(p1)γµqµPLus(k1)∣∣∣2 = 2
{

2(q · k1)(q · p1)− q2(k1 · p1)− iqσqµk1δp1εεµδσε
}
. (66)

Second Fermion Line
Consider the second (anti-)fermion line:∣∣∣v̄r(k2)γνqνPLvr′(p2)∣∣∣2 = v̄rγµqµPLv

r′vr
′†PLqνγ

ν†γ0vr (67)

= v̄rγµqµPLv
r′vr

′†PLqν(γ0)2γν†γ0vr (68)

= v̄rγµqµPLv
r′vr

′†qνγ
0γνPLv

r (69)

= v̄rγµqµv
r′vr

′†qνγ
0γνPLPLv

r (70)

= v̄rγµqµv
r′ v̄r

′
qνγ

νPLv
r , (71)

where on the second line we’ve inserted an identity, on the third line we’ve used γ0γα† = γ0 = γα,
and moved (the right-most) PL past two gamma matrices, so it remains PL, on the fourth again
moved (the left-most) PL through two gamma matrices, and on the fourth we’ve contracted the
adjoint of a spinor and γ0 to get a barred spinor. We can now take the trace, perform two cyclic
permutations and factor out the momenta vectors:∣∣∣v̄r(k2)γνqνPLvr′(p2)∣∣∣2 = qµqν Tr

[
vr

′
v̄r

′
γνPLv

rv̄rγµ
]
, (72)

and will need to sum over all spins:∑
spins

∣∣∣v̄r(k2)γνqνPLvr′(p2)∣∣∣2 =
∑
r,r′

qµqν Tr
[
vr

′
v̄r

′
γνPLv

rv̄rγµ
]
. (73)

Page 10 of 12



Dylan J. Temples Quantum Field Theory I : Solution Set Seven

We can move the sum into the trace, and replace the spinor products with their completeness
relations: ∑

spins

∣∣∣v̄r(k2)γνqνPLvr′(p2)∣∣∣2 =
qµqν

2
Tr
[
(/p2 −mµ)γν(1− γ5)/k2γµ

]
, (74)

and inserting an explicit expression for the projection operator. Carrying out the multiplication
yields: ∑

spins

∣∣∣v̄r(k2)γνqνPLvr′(p2)∣∣∣2 =
qµqν

2
Tr
[
(/p2γ

ν − /p2γ
νγ5 −mµγ

ν +mµγ
νγ5)/k2γ

µ
]

(75)

=
qµqν

2

{
Tr
[
/p2γ

ν/k2γ
µ
]
− Tr

[
/p2γ

νγ5/k2γ
µ
]
−mµ Tr [γν/k2γ

µ] +mµ Tr [γνγ5/k2γ
µ]
}

(76)

=
qµqν

2

{
p2αk2β Tr

[
γαγνγβγµ

]
− p2δk2ε Tr

[
γδγνγ5γ

εγµ
]}

(77)

after noting traces of an odd number of Dirac matrices vanish (as well as an odd number times γ5).
We can permute the trace until γ5 is at the end, then use the identities for traces of Dirac matrices
(see e.g., Peskin A.3) to find:

=
qµqν

2

{
4p2αk2β(gανgβµ − gαβgµν + gαµgνβ) + 4iεεµδνp2δk2ε

}
(78)

= 2
{

(p2 · q)(k2 · q)− (p2 · k2)(q · q) + (p2 · q)(k2 · q) + ip2δk2εqµqνε
εµδν

}
(79)

= 2
{

2(p2 · q)(k2 · q)− q2(p2 · k2) + ip2δk2εqµqνε
εµδν

}
, (80)

which is the simplest form of the anti-fermion line.

Propagator and Constants
Finally we need the modulus squared of the propagator and the coupling factors from the verteces:∣∣∣∣∣(iCF )2

i

q2 −m2
φ + iε

∣∣∣∣∣
2

= C4
F

1

(q2 −m2
φ)2

(81)

where we’ve taken ε→ 0. We then sum over the all the spin states so we acquire a factor of 24.

Gathering the three moduli squared summed over all spin states, we have:∑
spins

|iA|2 = 22
{

2(q · k1)(q · p1)− q2(k1 · p1)− iqσqµk1δp1εεµδσε
}

×

(
C4
F

24

(q2 −m2
φ)2

){
2(p2 · q)(k2 · q)− q2(p2 · k2) + ip2δk2εqµqνε

εµδν
}
, (82)

where q = k1 − p1 is the propagator momentum. We will note that

q2 = (k1 − p1) · (k1 − p1) = k21 + p21 − 2(p1 · k1) (83)

= k22 + p22 − 2(p2 · k2) (84)
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In the centre-of-mass frame, the three-momenta of the neutrinos have the same magnitude but in
opposite directions, so{

k1 = (|k|,k)

k2 = (|k|,−k)
⇒ k1 + k2 = (2|k|, 0) ≡ (Etot, 0) , (85)

because they are massless. Additionally, in the final state:p1 = (
√
|p|2 +m2

µ,p)

p2 = (
√
|p|2 +m2

µ,−p)
⇒ p1 + p2 = (2

√
|p|2 +m2

µ, 0) = (Etot, 0) , (86)

yielding the energy conservation condition:

|p|2 +m2
µ =

E2
tot

4
. (87)

The differential cross-section of a two-body scattering process is given by

dσ =
∑
{q}

1

4E1E2|v1 − v2|
|A|2dπ̃2 , (88)

where {q} is the set of all possible quantum numbers in the final state, Ei and vi are the energy
and velocities of the incoming particles, and dπ̃2 is the two-body phase-space factor:

dπ̃2 = (2π)4δ(4)(pi − pf )
1

16π2
|k̃1|
Etot

dΩ , (89)

where pi and pf are the four-momenta of the initial and final states, and k̃1 is the momentum of
one of the outgoing particles which satisfies the energy conservation condition. We have already
performed the sum over spin states when calculating the modulus squared of the amplitude (Σ|A|2),
so in the specific case at hand, we have

dσ =
1

8E2
Σ|A|2dπ̃2 (90)

dπ̃2 = (2π)4δ(4)((k1 + k2)− (p1 + p2))
1

16π2
|p̃|
2E

dΩ (91)

= (2π)4δ
(
Etot − 2

√
|p|2 +m2

µ

)
δ(3)(0)

1

16π2

√
E2

tot
4 −m2

µ

2E
dΩ , (92)

where E is the energy of one neutrino in the centre-of-mass frame. Note since the neutrinos are
moving at the speed of light: |v1 − v2| = 2. Collecting these results, we find

dσ

dΩ
=

π2

16E3
Σ|A|2

√
E2
tot

4
−m2

µδ
(
Etot − 2

√
|p|2 +m2

µ

)
δ(3)(0) , (93)

with the sum over spin states of the modulus squared of the amplitude Σ|A|2 is given by Equation 82.
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