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Dylan J. Temples Quantum Field Theory II : Solution Set One

1 Classical Electromagnetism.

Consider classical electromagnetism, defined by the Lagrangian

1

£:4

F P (1)

(a) Derive Maxwell’s equations by computing the Euler-Lagrange equations of motion, and iden-
tifying E' = —F% and €9¥B), = —F,

First we note the form of the field tensor:

0 -E, —E, —E,
E. 0 —B. B, @
E, B. 0 -B,
E. —B, B, 0

FH =

Using the fact F* = gFAY — 0¥ A*, we see that the Lagrangian only depends on partial
derivatives of the photon field:

1
L= 1 (OuALFH — 0, A, FH) (3)
on the second term we can switch the dummy indeces and use the fact that F*¥ is antisym-
metric:
1 174
L= —3 (OuALEFHY) . (4)

Since there is no dependence on the field A* (outside of partial derivatives) the Euler-Lagrange
equation gives us

oL
_8“76((%14,,) =0. (5)
So now we take the derivative indicated above:
oL 1
5(0,AL) 2 (6)

When we took the derivative we neglected the fact that we could have instead written the
second field tensor out performed the derivative. This would result in an identical term, so
we are free to cancel the factor of 2. The negative sign is killed by the equation of motion,
and we obtain

0=0,F" (7)

We can do a similar derivation with the dual of the field strength tensor .#*", which by
definition is

0 -B, -B, —B.
1 B 0 E —-F
ghy _ T _pvpo _ T z Yy
F 26 Fpo- By _Ez 0 Ex ) (8)
B. E, -E, 0
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Dylan J. Temples Quantum Field Theory II : Solution Set One

and one can see it satisifes the same equation of motion:
0=0,F" . (9)

The system of these equations of motion results in the sourceless Maxwell equations (i.e., all
the currents are zero). Note that both F*” and its dual are antisymmetric, so

0=0;F° = -0,F" = —0,(~E,) — 0s(—E,) — 03(~E,) =V -E. (10)
We can take a similar approach:
0=08,F" = 9yF" — 9;(FI") = 9g(—E") + 0;(€9*By,) = 8@—? ~-VxB. (11)
Doing the same with the dual gives
0=0,7"=-0,7% = —9,(-B;) =V -B (12)
0=0,7 Fr = 9y.F% — 0} FIt = —OoBiaj(—Fij) =—00B; + Oj(eij’“Ek) = %—]? —-VxE.

(13)
Construct the energy-momentum tensor for this theory. You will need to supplement the
naively computed T in the following way:

TH =T 4 O, KPH (14)
where KPH = FFPAY. This is needed because TH is not symmetric under interchange
of its indices, which should occur for the energy-momentum tensor. Show that K"’ so
that it does not affect the conservation of energy-momentum. Show that T is symmetric,

and that it leads to the usual expressions for the energy density and momentum density in
electromagnetic fields:

5:%(E2+B2), S=ExB. (15)

For the energy-momentum tensor to be symmetric, we require

T =T 4 O, KPH Y =TH + 0,(FMPAY) =TH — 0,(FPFAY) (16)
TVH = TVF 4 O, KPPV ' ="T"F + 0,(F"PAF) = T"" — 0,(FP" AF) (17)
to be equivalent. Let’s investigate the terms of the form
0,(FPFAY) = AY0,FP" 4 FPrO,AY = FPF'0,AY (18)
from using the equations of motion 9, F*# = 0. We have then,
TH =T — FPrO,AY = TH + Fr9,A" (19)
TVH =TV — FPro,Al =T 4 FP9, A" . (20)
From Schwartz 3.35, the energy—momentum tensor is
Ty = Z a1 y¢n O — gL (21)
so for us this is
Ty = —Fu,0,A" — gL . (22)
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2 Scalar QED.

Consider the scalar QED theory defined in class. Denoting the positively and negatively charged
scalar particles respectively as €~ and 7.

(a) Compute the amplitudes for the scattering processes ¢ ¢~ — é ¢~ and ¢ et — e éet.

The Feynman rules we will need for these processes are:

e Photon propagator:

—1 pHp”
w1 —
p? +ie {g =9 p? }

e Vertex (two charged scalars A,C and one photon b):

—ie(pa +po)y

2.1 & (p1) € (p2) — € (p3) € (pa)

To leading order, this process can occur through the ¢ and u channels, and the corresponding
diagrams shown in figure 1.

¢~ (p1) ¢ (p3) e (p1) e (p3)
\‘\ /,/ \\\‘\ ff/
o
v(p1 —p3) Y(p1 —pa)Q x
%
Ea RN o~
e (p2) € (p4) e (p2) € (p4)

Figure 1: The Feynman diagrams describing the process é~é~ — é~é~. (Left) t-channel. (Right)
u-channel.
2.1.1 t-Channel Matrix Element

We can write down the matrix element for the ¢-channel:

iM, = (—ie) (1 + ps)y {¢W—<r—oﬁﬁy}@u+p@u, (23)

p? + i€
where the photon momentum p = p; — p3 = py — p2. We can contract the index v:
)

M“:@“”mwmfmy%m+mw—a—@@1Zw”mﬁmy@ﬂpg}’<M>
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note we’ve taken the € — 0 limit. Lets consider the first term:

ie2

iMi_1 = m(?l +P3)u<p2 +pa)t (25)
where, in the center-of-momentum frame:
pi = (Ei, pi) v = (Ey, py) (26)
SO
Q = (p1+ p3)u(p2 + pa)t' = (B + Ef)2 — (pi +ps) (—Pi — Py) (28)
= (E;i + Ep)* + |pil> + [ps|> + 2|pilps| cos b (29)
where 6 is the scattering angle between p; and ps (or equivalently pe and pg). We have also
t=(p1—p3)* = (ps — p1)* = (Ey — E:)* — (py — pi) - (Py — P1) (30)
= E} + E} + 2E¢E; — (Ips1* + Ipsl* — 2|py||pi cos 6) (31)
=2mZ + 2B E; + 2|p;||pi| cos 6 . (32)
Let us expand on equation 29:
Q= (Ei+Ep) + (B} —m2) + (B3 —m +2\/ (E3 —m2)(E2 —m2)cos®  (33)
— 2E? + 2E? — 2m? + 2E,E; + 2\/ (B —m2)(E2 —m?2) cosh | (34)
we can now identify s = 4E? = 4EJ% (the square of the total energy available), such that
s s
Q:2{Z+Z—m§+EiEf+\/(E]% m2)(E} —m2) cosf} . (35)
Note we are dealing with identical particles in the center-of-mass frame, and as such E; = Fy:
Q:2{Z+Z—mg—i—i—k(Ef—mg)cos@} (36)
3
—Q{E—mg—&-(fl—m%) cos@} (37)
1
=3 5(3 4 cosf) — 2m2(1 + cos9) . (38)

Therefore, the first term in the matrix element is

. 9 _ 2
My = %Q _ (1:62)8(3 + cosf) ;me(l + cos ) ‘ (39)

We can argue the second term:

—ie*(1 - ¢§) (p1 — p3)"(p1 — p3)”
iMpg = — "5 g 4 )y 40
2= o et Ze(pl P3)u po (p2 + pa) (40)
vanishes because

(p1 +p3)u(p1 —p3)" = (Ei + E¢, pi +Py) - (Ei — Ef,pi — Py) (41)
= (2E;)(0) — (pi + Pf) - (Pi — Py) (42)
= (pi + pf) (ps —pi) = Ips* = Ipif? (43)
= (Ef —m2) — (B} —m2) =0, (44)

and thus the whole term vanishes.
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2.1.2 wu-Channel Matrix Element

The matrix element for this channel is

My = (iR +p g {8 = - 9P} ) (15)

with p = p1 — ps. First, let us argue the second term in the photon propagator vanishes here
as well. This term is proportional to the Lorentz invariant quantity

(p1 + pa)u(pa —p1)" = (E1 + E4,p1 + Pa) - (B4 — E1,Ps — P1) (46)
we are free to evaluate this in any frame, so we select the center of mass frame: F1 = F; =
E,=FEy, so

(p1+ pa)u(ps — p)* = 2E;, pi + ps) - (0,pf — pi) = — {|ps|” — [pil*} (47)

= (Bf —m2) — (Bf —mZ) =0, (48)

)

and we can see that as long as the incoming and outgoing scalar has the same mass, this term
will always vanish - we will use this result in the next section. The matrix element is then

—1

m(m +p3)", (49)

iMy, = (—ie)*(p1 + pa),
which is proportional to the dot-product:

(p1 +pa)u(p2 + p3)* = (2E,pi — pf) - 2E, —p;i + py) , (50)

in the center-of-momentum frame, using the same definitions as before, with £ = E; = Ey.
Carrying out the product yields

(p1+pa)u(p2 + p3)" = 4E? — {~|ps[* — [ps[* + 2|ps||py| cos O} (51)
= s+ (B — m32) + (B2 —m2) — 2,/ (B2 — m2)(E? — m2)cosf  (52)
:s—|—§—2m§—2EQCOSG—2m§cosﬁ (53)
= 2(3—C089) —2m2(1 — cosb) . (54)

Inserting this into the matrix element, and performing some simplification yields
) ie? s 9
M, = —5(3—0089) —2mZ(1 —cos®@) . (55)
U
2.1.3 Squaring the Amplitude
We will collect our results here:
: 3 0) — 4mZ(1 6
iM, = ie? (p1 + p3) t (P2 +p1) _ (i62)8( + cos 6) 2tme( + cos ) (56)
: 3 —cosf) — 4mZ(1 — cosf
ZMU — Z-e2 (pl +p4) (p2 +p3) _ ('i62)5( COS ) 5 me( COS ) ) (57)
U U
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We can examine the dot products:
(p1+p3) - (p2+pa) =p1-p2+p1-Pa+p3-P2+p3-pa (58)

We must note that since the final state particles are identical, the matrix elements have a
relative sign difference, so the total matrix element for this process is

M =iMy —iM, , (59)
so the modulus squared is
IM|? = |M[? + M + 2R{IMEM,} (60)

There is no spin or external polarization in this process, so we do not need to sum over final
states or average over initial states. Let us calculate these terms:

s(3 4 cosf) — 4m2(1 + cos @
‘Mt2:€4< ( ) e( )

2 el 2
5 > — (s(3 + cos ) — 4mZ(1 + cosh))” (61)

a2

_ —4 g 1— 2 4
IM,[? = <s(3 cos ) 2ume( cos9)> :4%2(5(3—0089)—4m§(1—c059))2 (62)
* s(3 4 cosb —4m§1+cos0 s(3 — cos b —4m§1—cose
MtMu:€4( ) . ( ) s( )2u ( ) 63)
4
— ;—u (3(3 + cosf) — 4m§(1 + cos 9)) (5(3 —cosf) — 4m§(1 — Cos 9)) . (64)
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2.2 & (p1) €t (p2) = € (p3) €t (pa)

This process can occur through the ¢ and u channels, and the corresponding diagrams shown
in figure 2. As stated previously, the second term in the photon propagator vanishes in the
center of momentum frame, thus due to Lorentz invariance, vanishes in all inertial frame for
particles with identical mass. We have that the modulus squared of the matrix element for
the entire process is

IM? = M + [M* + 2R{MEM,} (65)

so we will calculate these terms separately below. Now since we are dealing with anti-particles
as well, if the momentum is in the opposite direction of the charge flow, we pick up a negative

sign.
¢ (p1) ¢ (ps)
& (1) &~ (ps) .
\‘\ /’,
:/\/\/\/\/\/\/\/\/\ "f (pl — pg)
/‘/ v(p1 + p2) \‘\
et (p2) ¢t (pa) A
e (p2) ¢ (pa)

Figure 2: The Feynman diagrams describing the process ¢ é™ — ¢~ é*. (Left) s-channel. (Right)
t-channel.

2.2.1 s-Channel Matrix Element

The matrix element for this channel is

2 uv 2

( ) 1€
P3— P4y = ———
(p1 + p2)?

. e
iMs = (Pl - p2)up72 T e (pl —P2)M(P3 - p4)u ) <66)
where the propagator momentum is p = p; + p2. We will continue working in the center
of mass frame, using the definitions given by equations 26 and 27, with Ey = E; = E and

|p¢| = |pi| = p. The product of the momenta is

(p1 — p2)u(ps — pa)* = (0,2ps) - (0,2py) = —4pi - py = —4p° cos 0 (67)
= —4(FE* —m%)cos = (4m2 — s5) cos (68)

We can then express the matrix element as

. i62 " ie2 9
iMs = (p1 — p2)u(ps — pa)t = ?(4mé — s)cosb . (69)

S
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2.2.2 {-Channel Matrix Element

The matrix element for this channel is

ie? ie2
m(?l +p3)u(—p2 —pa)y=——( +p3)u(p2 + pa)* (70)

iMy = ;

the scalar product is

(p1 + P3)u(p2 + pa)" = (2B, pi + ps) - 2, —pi — py) = 4E% + (pi + py)’ (71)
=4F? + p? +p? + 2p® cos O = s + 2p*(1 + cos 6) (72)
=5+ 2(FE* —m2)(1 + cosh) = 5(2—6050) —2micos®  (73)
= 2(3—1—6059) —2m2(1 + cosb) . (74)
The matrix element becomes
) ie? 9
iMy = ~or (3 + cos @) — 4mZ(1 + cos )} . (75)
2.2.3 Squaring the Amplitude
It is trivial to take the modulus squared of the terms:
oA
|IM,|? = ;(4m§ —5)2cos? 6 (76)
4
M| = 467 {5(3 + cos ) — 4mZ(1 +c086)}2 (77)
4
2R{MEM,} = —%(4771% — 5)(cos0) {s(3+ cosf) — 4mZ(1 + cos )} . (78)
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(b) Take the non-relativistic limits of the amplitudes computed in part (a), and compare them
to the usual quantum-mechanical scattering expressions. What are the non-relativistic po-

tentials that mediate the scatterings in part (a)?

Let us collect the results from section 5:

€ (p1) € (p2) — € (p3) € (pa)

52+ B%(1 + cos )

My = —ie T2 (1 —cost) (79)
] 2 + 2 sin 29
2
L= 80
iM ﬂz(l—i-cos&) (80)
& (p1) €7 (p2) = & (p3) € (pa)
2 + %sin” 0
iM, = w2+/3% (81)
, 92+ 3%(1 + cos )
2
— 82
My B2 (1 — cosb) (82)
where
4m?
g=\1- 5 (83)
with |5 < 1, and E., = 2E;. In the non-relativistic limit 5 < 1.
Let us sum the terms for the first process:
2+ 821 +cosf 2+ %sin®0
2
M=e { 321 — cos O + B21 + cos (84)
/Bgsm 0+ B2 cos® 0 + 252 cosf — B2sin® O cosb + B2+ 4 (85)
B2(1+ cos ) (1 — cos )
_ 5B%*(1+2cosf —sin*Hcosf + 1) + 4 (86)
N B2(1 + cos)(1 — cosb)
e? 4
:1_60820<52+2+2C08081n 00089) (87)
e? 4 9
= —5 +2+2cosf — (1 —cos” ) cos ¢ (88)
sin? 6 8
_ 1 42+ cosf 4 cos® 0 (89)
" sin20 \ 82 ’
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and the second:

o [24B%sin?0 24 B%(1 + cosb)

M=e { 2 B2 (1 — cosb) } (90)
o[ (2+ B%sin?6) (B2 (1 —cosb)) 44 2B%(1+ cosb) 01
- { 232 (1 — cos6) 262 (1 — cosb) } (91)
= 1_6;80 <542+4—|—62(1—C059) sin? 9) . (92)

In the B <« 1 limit, these become

4e?
" B2sin20 (93)
4e?
M= B2(1 —cosf) ’ (94)

respectively.
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3 Electron Spin & Lorentz Boost.

Consider a electron at rest, with spin along the +z axis. Its wave function can be written as

vlo) = ulpe = Vi (§) (95)

The spin and boost operators for this representation can be written as

. 1 .., . a0 . i (ot 0
i — ijk _jkl i _ 7 )
5= 1€ <0 0l>7 K= 2 <0 —0’> ’ (96)

respectively. A Lorentz transformation acts on this particle as
= Aot

where
Ayjy = exp (—;wwSW> ) (97)

(a) What is the expectation value of S* in the at-rest electron state (be careful with the normal-
ization of the single-particle state)?

Consider the S% operator:

1 ooy ! 1 ! !
T B T R B

since the completely antisymmetric tensor is zero for any repeated indeces. We can permute

one of these tensors, noting €312 = 1 = —¢321:

e ) )G )
:i@g%){C§ g&}::;<f ﬁQ . (100)

To find the expectation value of this operator, we calculate the matrix element

o3¢

3
WISt = 5530 (3 ) v =55 € € (0) = gpmeio’s, oy

where the factor of 2E comes in from the relativistic normalization ¥ = 2E. In the rest
frame of the electron £ = m,, so

(wIs%p) = 5€To (102)

We can define a two-component spinor £ as

§:N<$, (103)
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where N is a normalization factor, such that

. 1 1 0 a 1
31 — N2 — NIN2(02 _p2
wistho) = 5P @ 0) (o %) (3) = 5P -2 (101
We can determine the value for |N|? from the normalization conditions
1=¢16 = NP +b7) (105)
S0
1a? — b?
3 — —
WISTI) = 5 o - (106)

Outside of the normalization condition & is arbitrary, but we are interested with spin oriented
along the +z axis so we will take a =1 and b = 0:

(®|S?|y) = % : (107)

(b) Perform a boost by an amount 1 along the z-direction. What is the new wavefunction of the
electron? What is the expectation value of S in this state, and what does it become in the
ultra-relativistic (n — oco) limit?

A boost along the z axis by 7 of the wavefunction yields

v e {0 (7 W) () (108
see Peskin 3.49. Following Peskin, this can be expressed
o) = {eont) (5 V) s (5 0) v (E) ao
= vin{eosnn/2) (1) — st/ () | (110)
let us note
- 90-0-c
(o) = v {eosnn/2) (1) ~sinnn/2) () - (12)
Let us act the S, operator on the new wavefunction:
5% 1ut) = Y {eostty2) () — st ()| (13)
- \/f {cosh(n/2) <2> + sinh(n/2) (?)} . (114)
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Now when we take the expectation value, the cross-terms from the multiplication cancel
exactly:
m .
W18 = 1 {cos®(n/2) (2] €4) — sinb?(n/2) 26 ¢ )} (115)

where we’ve introduced the factor of 2E for the relativstic normalization. The normalization
of the spinors £ is one, so

1
2coshn ’

2m

W\ |SP) = Imcoshn {cosh®(n/2) — sinh®(n/2)} =

(116)

because after the boost by 7, the particle has £ = mcoshn. In the ultrarelativistic limit
(n — 0) this vanishes.

(c) Take the ultra-relativistic limit of the wavefunction. Show that the result is an eigenstate of
the helicity operator, p - S. Interpret the result of part (b) using this result.

The helicity operator is

o Lo 0\ 1(p-o O
p~S—p-2(0 a-)_Q(O ﬁ-a)’ (117)
where p is the particle’s momentum. Since we have boosted in the z direction from rest:
p=(1,0,0), (118)
SO
pol(o 0 119
- 5 0 0.1 . ( )
The boosted wavefunction
Y (x) = \/ﬁ{cosh(n/Q) <§+> — sinh(n/2) (g)} . (120)
+ —
in the ultra-relativistic limit becomes
1
1o w2 ) (§+ &\ _ n2 | —1
W(2) = v/me - — e , (121)
£+ - 1
-1

because both hyperbolic functions diverge (the negative exponential term vanishes). We can
act the helicity operator on the boosted wavefunction:

1 01 00 1
e (0[] v (10 0 o] [
= ge (0 )| 1 2 “ looo 1|1 (122)
-1 00 10 -1
-1 1
1 -1

which is an eigenstate of helicity n with eigenvalue —1/2.
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4 Schwartz 9.1.

Compton scattering in QED.

(a) Calculate the tree-level matrix elements for y¢ — v¢. Show that the Ward identity is satisfied.

o(p1) ¥(pa)

d(p1) (ps) ) ¥(ps) . ﬂfﬁf

|
N ﬁ;@(}?lﬁLpg)\\\ &(p1 —p3) !

\\ \\\ :
v(p2) d(pa) Y(p2) o(pa) ﬁ ‘

Y(p2) B(pa)

Figure 3: The tree-level Feynman diagrams describing the process v¢ — v¢. (Left) vertex only.
(Center) s-channel. (Right) t-channel.

Let us label the process as follows:

¢(p1) + (P2, €2) = V(p3,€3) + d(p4) (124)

where the ¢ are photon polarization vectors. The tree-level diagrams for this scattering
process are shown in figure 3, the corresponding matrix elements will be My, Mg, and M,
respectively. The vertex-only diagram is trivial:

iMy = 2ie’ey - €5 . (125)

Since the remaining two processes are mediated through a scalar propagator, we need the
appropriate Feynman rule:

—1

) 126
p? —mj +ie (126)
Using the Feynman rule for the two scalar-one photon vertex yields, for the s-channel:
. . —1 *U
iMs = (—26)2(1)1 +p);ﬁg - 3 (ps +p)ues” (127)
pm—m,
where the propagator momentum is p = p; + p2 = p3 + p4. Inserting this yields
—1
iMs = (—ie)*(2p1 +p2) - €2 2ps +p3) - €5 128
= CiePm ) s | G | G (128)
but we have the conditions
g5 p3=0=¢c2-p2, (129)
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so the matrix element reduces to

—1i
iMg = (—2ie)%(p1 - 2 D4 E4 130
s = (—2ie)”( ) 1+ 02— (P4 - €3) (130)
_ 4i62 (pl . 62)(p42 53) ) (131)
s —mg
The t-channel element is
. . X —1
iMy = (—16)2(]91 + p)ues” R (pa+p)uey (132)
pT—my
where the propagator momentum is p = p; — p3 = ps — p2. Inserting this, one obtains
—1q
iMy = (—ie)*(2p1 — p3) - €5 2ps —p2) - €2 133
(—ie)™( ) - €3 1= paf = 1 ( ) (133)
but again:
ea-pp=0=¢e3-p3, (134)
SO
. . —1
iMy = —(2ie)?(py - €5) 5 5 | (Pa-€2) (135)
(p1 —p3)* — my
_ g2 )P 2) (136)
t— mg
Thus, the total matrix element is
M =26 {s2 ERTLAL LA L ‘63)@42'&2)} . (137)
s—m t—m
¢ ¢
To check the Ward identity, we make the substitution €5 — ps:
s—m t—m
¢ ¢
Now, since the final states are on-shell, p? = mzﬁ = p? and p% =0=p2, and so
t=(p1—p3)® =pi+p3—2p1-p3s=m;—2p1-ps (139)
s = (p1+p2)° = (p3+pa)® = p3+pi — 2p3-pa = m — 2p3 - pa (140)
which we can insert into the denominators to obtain
M = 262 {52 ps+ o (P1 - €2)(P4 - p3) n o (P1-P3)(pa - 62)} (141)
—2p3 - pa —2p1 - p3
=2¢?{es-py —p1 2 —p1-e2} =22 - (p3 — p1 — 1) (142)
=2e€y - (P4 —p2 —pa) = —2€% e =0, (143)

and so the Ward identity is satisfied.
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(b)

Calculate the cross section do/d cos @ for this process as a function of the incoming and out-

going polarizations, ;' and gout

", in the center-of-mass frame.

In terms of these polarization vectors, the matrix element is

. ~in . ~outx . ~outx . ~in

M:262 Eln_é-out*_i_Q(pl € )(p42€ )+2(p1 € )(24 € ) (144)

5 —mg t— mg

. ~in . ~outx . ~outx . ~in
— 9262 {5“1 . goutx _ (p1-e")(pa-e ) . (pl € )(ps - € )} ’ (145)
P3 - P4 P1-P3

and we will use the definitions M1, Mg, M; respectively for these terms. If we define the
initial photon momentum to be along the z axis, then the polarization vectors 5;?/ " must

be perpendicular to the photon momentum. Since we have been working in the center-of-
momentum frame we know the photon and scalar have anti-parallel momenta, and thus:

py - eM/outt) — (146)
and then Mz = M; = 0. Finally, we obtain
M = 2¢%e™ . goutr (147)
SO
IM? = de (Ein ] gout*) (gin* .gout) ‘ (148)
The differential cross-section in the center-of-momentum frame is, by Schwartz equation 5.32

==Y 149
dQ ~ 64m2E2, p; IMI™ (149)

where p; = |p1| = |p2| (similarly with the final state) and E.,, = E1 + E2 = E3 + E,. Using
this, we have

do 4et Ez -m
dQ  64m2EZ E% —m

:

(Ein i gout*) (gin* _Eout) ’ (150)

N

but in the center of mass frame F; = F3 by energy-momentum conservation. so

4
;1?2 — 42328 (5in . Eout*) (5in* X Eout) (151)
2
— % (gin . Eout*) (Eim< . gout) 7 (152)

where o = €2 /4m and s = E2,,.

out

Evaluate do/d cos @ for 521 polarized in the plane of the scattering, for each &)™

We have enforced the polarizations are transverse to the z-axis, and can define them as

1
e1=—7(0,1,0,0) and & (0,1,—4,0) , (153)

_ 1
V2
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and e/°" can take either value. These satisfy:
51~51:—%(12+i2):0 52-51:—%(1—2’2):—1 (154)
e =g (1~ ) =1 52-52:—%(1+(—¢)2) — 0 (155)
€1 =€, g9 =¢7 , (156)

the first four can be expressed €; - ¢; = d;; — 1. Consider a given ¢®** = ¢;, then the cross
section is

do a2, . : a? . :
Y (Ln 1n*_i:7 in | 1n*.i 1_51”’ 1
10 . (5 51) (5 5) . (5 5]) (5 € ) ( ) (157)
the only way this is nonzero is if € = ¢; as well:
do  o? . a?
0= s (ei-€5) (ef ~&i) (L —bi5) = e (gi-€j) (g5 &) (1 — byy) (158)
042 2
= (Eireg)” (1= 0y) - (159)

Note this is to be expected for a process mediated by a spinless propagator. We can express
the cross-section for each polarization as

do(ep —€1)  do(ea =€) «

e  de s (160)
do(eg — €2) do(ea — €1)
= == . 1 1
dQ dQ 0 (161)
Alternatively, we can use the linearly polarized basis:
e1 =(0,1,0,0) and e3=(0,0,1,0), (162)

which satisfy €; - €; = (d;; — 1), but € = ¢;. Working in the center-of-momentum frame, we
define the z axis to be along the incoming photon’s momentum, which is transverse to these
polarization states. The scatter occurs in the y — z plane (i.e., all z-components of momenta
are zero), so polarization in the plane of scattering means

el =gy . (163)
The cross-section is then
do Oé2 tx t
a0 =y (E2ee™) (e e™) (164)
in the linearly polarized basis, the polarization basis vectors are real, so
do o 2
0= s (52 . 50‘1t) , (165)
and due to the normalization condition, we get:
do (52 — 61)
—= =0 166
dQ (166)
do (82 — 52) (0}
—_— " = 167
dQ s (167)
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(d)

Evaluate do/d cos @ for Eif polarized transverse to the plane of the scattering, for each 5?}“.

Again, we will work in the center-of-momentum frame with the linearly polarized basis. Here
the incoming photon is polarized transverse to the plane of scattering (y — z), so

e =g, (168)
thus
do _o® out)2
d—Q:?(el-s ) (169)
and again by the normalization of the polarization basis:
o ) _ o am
dg(e;; 2 _g, (171)

and again we see no polarization change.

Show that when you sum (c¢) and (d) you get the same thing as having replaced (ei?)*ei,n with

— g and (e9™)* €)™ with —g,,.

We start from equation 152, using Lorentz indeces:

do 012 in out* ink out\v a2 out* out\v / _inx in
o= M E PN (M = PN (M, (172)
Oé2 OéQ 052
— — ")V (=gu,) = — g g = 4— . 173
- (=" (=guu) = — 9" 9, . (173)

If we sum the results for each combination of incoming and outgoing polarizations, we get

do  do(er =€) | do(er —e2)  do(ea —e1)  do(ea =€)
o dQ @ T an o s (174)

Should this replacement work for any scattering calculation?

No, because it doesn’t even work in this one. ..
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5 Problem 2 - Matrix Element Recalulation.

The momenta definitions are

Ecm Ecm .
P = 2(1,0,0, ) P = Z2(1,0, Bsin 6, feos ) (175)
n Ecm ”w Ecm .
p2 = 9 (170707 _6) p4 = 9 (1>O> _ﬁSlnea _BCOSH) 9 (176)
SO
Ecm
b1 +p2 = 2 (2307070) (177)
Ecm .
D1 +Dp3 = 92 (2707/881n076(1+0080)) (178)
E
P14 pa = %(2, 0, —Bsinf, B(1 — cos b)) (179)
EC’)’TL .
P2 +p3 = 7(270718811’197 _5(1+C0S9)) (180)
Ecm .
Do+ pg = 5 (2,0,—Bsinf, —5(1 + cosh)) (181)
Ecm
D3 +p4 = 2 (2707070) (182)
(183)
and
Ecm .
pP3—pP1 = 2 (07 0,Bsind, _6(1 — COS 9)) (184)
Ecm .
Dy — P = T(O7 0,—Bsin6, —3(1 + cos b)) (185)
E.
po—p1 = Tm(o, 0,0, —23) (186)
Ecm .
pP3 —p2 = 7(1,07/8811’197,6(1+COSG)) (187)
Ecm .
P4 — P2 = 7(1,0, —Bsinf, (1 — cos b)) (188)
Ecm .
pa=p3=—, (0,0, —28sinf, —2[ cosb) . (189)
From the Lorentz condition we have
EQm / 4m?

with || < 1, and E.,, = 2E;.
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Solution Set One

5.1 ¢ (p1) e (p2) = ¢ (p3) € (pa)
5.1.1 ¢-channel.

- 9
1€
iMy = ——=(p1 +p3)u(p2 + pa)*
! (p3 —p1)2( )”( )

(p1 + p3)u(p2 + pa)t = 2

n (4 — {—p%sin? 0 — B*(1 + cos 0)?})
4m (4+ B*sin® 0 + B*(1 + cos® § + 2 cos 0))
2
EZm (4+ *sin? 0 + B2 + B2 cos® O + 232 cos 0)
2
E;m (24 B%(1 + cos0))
(p3—p1)° = — (ﬁ2sm 0+ B*(1 — cos0)?)
Z (B%sin? 0 + B*(1 + cos® 6 — 2 cos0))
E2
Zm (B%sin® 0 + B* + B% cos® 0 — 23% cos §)
2
Eflm (252 2 cos 0) = Ecm —em 32 (1 — cos )
2
iM, = —(ie?) 201+ cos )

B2 (1 — cos6)

(191)

—(2,0,Bsin6, 3(1 + cos)) - %(2,0, —Bsinf, —B(1+cosh)) (192)

(193)
(194)
(195)

(196)

(197)
(198)
(199)

(200)

(201)

Page 21 of 23



Dylan J. Temples Quantum Field Theory II : Solution Set One

5.1.2 wu-channel.

P52

1€
My = ————(p1 + + p3)t
i ( _p4)2(p1 p1)u(p2 + p3)

Eem . Eem :
(P14 pa)u(p2 + p3)" = == (2,0, =B sind, B(L — cos b)) - —=(2,0, Fsind, —5(1 + cos )

E

m

4— {—=p?sin® 6 — 57(1 = cos 0)(1 + cos ) })

RN NN V]

E

Q

RIS

Q

m

(
™ (4 — {—B*sin®f — B*(1 — cos?0) })
(

4 — {—52 sin? @ — 32 + 32 cos® 9)})
2
= 4m (44 52 {sin20+ 1 — cos? 0)}) = Eim (4+2B2 sin” 6))
2
= Ezﬂ (2 + 32 sin? 9)

RIS

Q

E? E;
(1 = pa)® = =5(0,0, Fsinf, H(1 + cos9))* = — == {5 sin” 0 + 5%(1 + cos 9)*}
E?
= = {8 sin® 0 + B*(1 + cos” 0 + 2cos ) }

2
- _% {B?sin? 0 + B* + B* cos® @ + 23> cos 6) }

E2
—%BQ {1+ cosfh)}

2
— 7E‘4ﬂ {28 +26%cos )} =

52+ B%sin?0

M, = —ie m

(202)

(203)
(204)
(205)
(206)
(207)

(208)

(209)
(210)
(211)

(212)

(213)
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5.2 & (p1) €t (pa) = & (p3) €7 (pa)
5.2.1 s-channel.

ie?

iMg = m(m —p2)u(p3 — pa)” (214)
ECm . ECm .
(pl +p4)#(p2 +p3)# = 2 (2707 _BSIHGaB(l _COSH)) ’ 7(2307/8811197 _6(1+C089)) (215)
2
= E4ﬂ (4 {-Bsin®0 — B*(1 — cosO)(1 + cos ) }) (216)
E? 2 . 9

= (p1 + pa)u(p2 + pa)H = % (2 + B%sin® ) (217)

E? E
(1 +p2)” = =57(2,0,0,0) - =5(2,0,0,0) = EZ,, (218)

92 2 12
iM, = ie2w (219)
5.2.2 t¢-channel.
. ie2

iMi = —m@l + p3)u(p2 + pa)* (220)

(01 -+ 3)ulp + p1) = Z2(2,0, 85in 6, B(1 +cos0)) - (2,0, ~Bsind, —5(1 + cos6))  (221)

2
= Ef” (4= {-p%sin*0 — B*(1 + cos6)*}) (222)
2
= (14 pa)u(pa + ) = T (24 61+ cos)) (223)
2
(1 —p3)* = (p3—p1)° = —%52 (1 —cosb) (224)

92+ (14 cosH)
My =ie B2 (1 —cos) (225)
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