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1 Problem #1: Hydrogenic Atoms.

The Schrödinger equation for a Hydrogenic atom of nuclear charge Ze is

− ~2

2m
∇2ψ − Ze2

r
ψ = εψ (1)

where e,m, and ~ are the electron charge, electron mass and Planck’s constant over 2π, respectively.
The radial distance of the electron relative to the nucleus is r and ψ(r) is the probability amplitude
for the electron to be measured at radial position r.

1.1 Dimensionless Shrödinger Equation.

First, we begin by noting some scales set by the parameters and constants of the problem. The
dimensions of each constant are

[[~]] = E T = M L2 T−1 (2)

[[m]] = M (3)

[[e]] = L3/2 M1/2 T−1 (4)

[[ε]] = ML2 , (5)

to make Equation 1 dimensionless first we must change our position coordinate r with dimensions
of length to a dimensionless coordinate ρ. Using dimensional analysis, a conversion factor 1/aZ can
be formed from the parameters above with dimensions of inverse length:{

[[Ze2]] = L3M
T 2

[[h−2]] = T 2

L4M2

⇒
[[
mZe2

~2

]]
= L−1 , (6)

we can now define the dimensionless coordinate

ρ =
1

aZ
r =

~2

mZe2
r . (7)

Furthermore, we can define a dimensionless energy using the conversion factor with units of inverse
energy 1/E0,

E =
1

EZ
ε =

~2

m(Ze2)2
ε . (8)

The Hydrogenic atom potential is entirely radial so the wave function is separable, and we can
write in spherical coordinates

ψ(r, θ, φ) = R(r)Y (θ, φ) ≡ U(r)

r
Y (θ, φ) , (9)

we can now use the radial equation given by Shankar page 353 with the potential in Equation 1 to
write

− ~2

2m

d2

dr2
U(r) +

(
Ze2

r
+
l(l + 1)~2

2mr2

)
U(r) = εU(r) , (10)
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which by adding in the conversion factors from above, we get

εU(r) = − ~2

2m

a2
Z

a2
Z

d2

dr2
U(r) +

(
aZ
aZ

Ze2

r
+
a2
Z

a2
Z

l(l + 1)~2

2mr2

)
U(r) (11)

εU(r) = − ~2

2m

1

a2
Z

d2

dρ2
U(r) +

(
Ze2

aZρ
+
l(l + 1)~2

2ma2
Zρ

2

)
U(r) (12)

εU(ρ) = − ~2

2m

(
mZe2

~2

)2
d2

dρ2
U(ρ) +

(
mZe2

~2

Ze2

ρ
+

(
mZe2

~2

)2
l(l + 1)~2

2mρ2

)
U(ρ) (13)

εU(ρ) = −mZ
2e4

2~2

d2

dρ2
U(ρ) +

(
mZ2e4

~2ρ
+
mZ2e4

~2

l(l + 1)

2ρ2

)
U(ρ) (14)

~2

mZ2e4
εU(ρ) = −1

2

d2

dρ2
U(ρ) +

(
1

ρ
+
l(l + 1)

2ρ2

)
U(ρ) (15)

EU(ρ) = −1

2

d2U(ρ)

dρ2
+

(
1

ρ
+
l(l + 1)

2ρ2

)
U(ρ) , (16)

which is dimensionless. For the following sections we will be interested in the ground state only,
which we will assume an isotropic probability distribution. Therefore the angular momentum
quantum number l is zero so the third term on the right hand side of the above equation drops out.

1.2 Ground State Binding Energy.

Simply using dimensional analysis to form a constant with the dimensions of energy, we can estimate
the binding energy of the electron. We have already done this by defining the energy scale Ez in
section 1.1, so

Ez =
m(Ze2)2

~2
, (17)

is the estimated electron binding energy.

1.3 Most Probable Position.

Given the radial wave function is R = rU , we get that

R(r) =

√
2

aZ
e−r/aZ , (18)

using the definition of ρ. Then we can say the most probable radial position is the location of
the maximum of the probability density distribution. This distribution is the integral of the radial
wave function (because the distribution is isotropic) over the surface of a sphere of radius r∫

|R(r)|2r2drdΩ ∝ r2e−2r/aZ , (19)

where factors do not matter, we are only interested in the functional form. If we maximize this,
and solve for the position coordinate we get

d

dr

[
r2e−2r/aZ

]
= 0 =

2re
− 2r
aZ (aZ − r)
aZ

⇒ r = aZ , (20)

so the characteristic length scale identified in section 1.1 is the most probable radial location. This
is the equivalent of the Bohr radius for the Hydrogenic atom with nuclear charge Ze.
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1.4 Velocity Dispersion.

Using dimensional analysis again, we can construct a constant with units of length per time to
serve as a characteristic velocity, as follows[[

e2

~

]]
=
L

T
, (21)

so the characteristic velocity for the electron in the Hydrogenic atom potential is

∆v =
Ze2

~
. (22)

This theory would fail if the electron velocities approach the speed of light, ∆v = c, which happens
when the atomic number Z is of the order ~c/e2, about Z = 137.
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2 Problem #2: Electron Bound to Dielectric Plane.

The force between an electron (mass m and charge e) and a dielectric film is given by a potential,
V (z) = −αe2/z, for z > 0, where 0 < α < 1 is related to the dielectric constant of the film and the
substrate on which the film resides (see Figure 1). In this example assume α = 0.01. For z ≤ 0
assume the potential is infinitely repulsive, thus preventing penetration of the electron into the
dielectric film.

2.1 The Hamiltonian.

The coordinate basis representation of the
Hamiltonian in the half space z > 0 is

H = − ~2

2m
∇2 − αe2

z
, (23)

using Cartesian coordinates, with the Laplacian
represented as

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (24)

Figure 1: Diagram showing the coordinate sys-
tem and dielectric film for problem #1.

2.2 Conservation Laws.

The operators of observable conserved quantities, or constants of motion, commute with the Hamil-
tonian. Immediately we can see that the Hamiltonian has no explicit time dependence (and com-
mutes with itself) the conservation of energy is obeyed by this system. Additionally, the commutator
of the Hamiltonian and one component of momentum is

[H,Pi] = a[|p|2, Pi] + b[z−1, Pi] , (25)

which, because the total momentum operator commutes with any component, is zero except for
i = z. In this case the z position would not commute with the z component of momentum.
Therefore

[H,Px] = 0 (26)

[H,Py] = 0 , (27)

so this system obeys conservation of momentum in the x and y directions.

2.3 Stationary States.

We can use separation of variables to write ψ(x, y, z) = χ(x, y)φ(z), because the potential is solely
dependent on the z coordinate. Therefore in x and y the electron is a free particle, so it obeys the
Shrödinger equation given by

Hχ = − ~2

2m

(
∂2

∂x2
+

∂2

∂y2

)
χ = (Ex + Ey)χ , (28)

which can be solved by separating variables again and getting two exactly similar equations, one
for x and y. The above equation is satisfied by two dimensional plane waves

χ(x, y) = Aei(κxx+κyy) +Be−i(κxx+κyy) , (29)
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after making the substitution κi = (2mEi/~2)1/2. The quantum numbers that describe their mo-
tion are the wave numbers κx and κy, which are free parameters, because the electron is a free
particle.

We had used separation of variables to write Equation 28, thiis also yielded an equation for the
amplitude for the electron to be a distance z above the film,

− ~2

2m

∂2φ

∂z2
− αe2

z
φ = Ezφ , (30)

2.4 Ground State Wave Function.

The 1/r form of the potential implies the electron’s amplitude above the film must obey certain
boundary conditions. The potential barrier at the film is infinite so φ(z = 0) = 0, and to be able
to normalize the wave function φ(z →∞) = 0. The simplest function that obeys these conditions
is of the form

φ(z) = Aze−az , (31)

it is easy to see this obeys the first condition. It obeys the second because the decaying exponential
term dominates the linear term as z → ∞. This ansatz can be substituted into Equation 30 to
yield

− ~2

2m

[
aAze−az

(
a− 2

z

)]
− αe2

z
[Aze−az] = Ez[Aze

−az] (32)

− ~2

2m

[
a

(
a− 2

z

)]
− αe2

z
= Ez , (33)

we can now equate like powers of z term by term to get{
Ez = −~2a2

2m

0 = ~2a
m − αe

2
⇒

{
a = αe2m

~2

Ez = α2e4m
2~2

. (34)

With the value for a known, we can normalize the wave function

1 =

∫ ∞
0
|φ(z)|2dz =

A2~6

4α3e6m3
, (35)

so the wave function for the amplitude of the electron above the film is

φ(z) = 2

√
α3e6m3

~6
ze−

αe2m
~2 z , (36)

which has probability density

P (z) = |φ(z)|2 = 4
α3e6m3

~6
z2 exp

[
−2αe2m

~2
z

]
(37)

2.5 Most Probable Position.

To find the most probable position of the ground state electron above the film, we need to maximize
the probability distribution of the electron’s amplitude above the film. Setting the first derivative
of the probability density equal to zero gives

0 =
d

dz

[
A2z2e−az

]
|z0 = −2A2z0e

−2az0(az0 − 1) ⇒ z0 =
1

a
=

~2

αe2m
. (38)
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So the most probable height above the film in angstroms is

z0 =
(1.054 56e−27 erg · s)2

(0.01)(4.803e−10 esu)(9.1095e−28 g)
= 5.292 04e−7 cm = 5.29204 Å. (39)

2.6 Ground State Binding Energy.

When separation of variables was done on the total wave function, the total energy was written as
the sum of an energy for each coordinate. So the total energy is

E = Ez + Ex + Ey =
~2

2m
(κ2
x + κ2

y)−
α2e4m

2~2
, (40)

however, the binding energy of the ground state is independent of the total energy (which is modified
by the energy of the free particle energies in x and y). Therefore the binding energy is

E0 = −(0.01)2(4.803e−10 esu)4(9.1095e−28 g)

2(1.054 56e−27 erg · s)2
= −2.179 57e−15 erg = −1.36e−3 eV . (41)

If a photon with an energy greater than the absolute value of this interacted with the electron,
it would liberate it through photo-ionization. From the relationship between photon energy and
wavelength we have

|E0| =
hc

λmin
⇒ λmin =

(6.626e−27 erg · s)(3e10 cm · s−1)

2.179 57e−15 erg
= 0.0912013 cm , (42)

which is in the microwave region of the electromagnetic spectrum.

2.7 Energy Spectrum.

It is easy to see Equation 30 has the form of the Hydrogen atom with no angular momentum
(l = 0), so we must have a spectrum of bound state energies and wave functions that are of the
same form as the Hydrogen atom. In this case, the electron charge is associated with a factor of α,
so by Shankar Equation 13.1.16, the energy spectrum is

En = −α
2e4m

2~2n2
=
E0

n2
, (43)

where the integer n ≥ 1 is the number of the state. Note the ground state is n = 1 but has energy
E0, this is just poor notation. The corresponding wave functions are the solutions to the Hydrogen
atom’s radial equation with l = 0, see Shankar Equations 12.1.22 and 13.1.23,

φn(z) =

(
αe2m

~2n

)
z exp

[
−αe

2m

~2n
z

]
L1
n−1

(
αe2m

~2n
z

)
, (44)

where Lji (z) represent the associated Laguerre polynomials, which can be found in any standard
reference.
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3 Problem #3: Annular Potential.

The Hamiltonian for a non-relativistic electron
moving in two dimensions in the presence of a
potential V (|r|) is

H =
1

2m
|p|2 + V (r) , (45)

where

V (r) =


V0, 0 ≤ |r| < R

0, R < |r| < R+ w]]

V0, R+ w ≤ |r|
, (46) Figure 2: Diagram showing the coordinate sys-

tem and toroidal barrier for problem #2.

is a toroidal barrier. For V0 →∞ the electron is strictly confined within the strip R < r < R + w
as shown in Figure 2.

3.1 Angular Momentum.

The angular momentum of the system Lz = xpy − ypx is a constant of the motion because it
commutes with the Hamiltonian,

[H,Lz] ∼ [|p|2, Lz] + [V0, Lz] = [p2
x + p2

y + p2
z, xpy − ypx] , (47)

if we note that any component of momentum commutes with any component of position (as long as
they’re not the same component) and that the components of momentum commute with themselves,
we can write

[H,Lz] ∼ [p2
x, xpy]− [p2

x, ypx] + [p2
y, xpy]− [p2

y, ypx] + [p2
z, xpy]− [p2

z, ypx] = 0 , (48)

so angular momentum is a conserved quantity.

The angular momentum projection operator for systems with rotational invariance (which this
system exhibits) which is easy to remember (see Shankar page 335) is

Lz = −i~ ∂

∂φ
, (49)

note that the coordinate φ is the same in cylindrical and spherical coordinates. Additionally, we
know the eigenvalues of this operator are

Lz |Φ〉 = `~ |Φ〉 , (50)

where ` is the angular momentum z projection quantum number. If we write this as

−i~ ∂

∂φ
Φ(φ) = `~Φ(φ) , (51)

we find the wave function for the azimuthal coordinate,

Φ(φ) = Aei`φ , (52)

where ` = 0,±1,±2 . . . and A is some normalization factor.
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3.2 Stationary States.

We can write the Shrödinger equation in the coordinate basis with the Laplacian operator in
cylindrical coordinates

− ~2

2m
∇2ψ(r, φ, z) + V (r)ψ(r, φ, z)

=

[
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂φ2
+

∂2

∂z2

]
ψ(r, φ, z) + V (r)ψ(r, φ, z) = Eψ(r, φ, z) , (53)

we can eliminate the z coordinate because the particle is constrained to move in the x − y (r, φ)
plane, so the derivative with respect to z is zero, and the third term in the Laplacian drops out.
If we note the similarity between the second term in the Laplacian and the angular momentum
operator, we can substitute

∂

∂φ
=
i

~
Lz ⇒ ∂2

∂φ2
= − 1

~2
L2
z , (54)

into the equation. Furthermore, we can separate variables and write ψ(r, φ) = Sn(r)Φ`(φ), where n
is the quantum number corresponding to radial motion. Consider now the limit in which V0 → +∞,
so the only region the electron can occupy is the toroid with no potential. This forces the radial
wave function to be zero at the toroid boundaries

Sn(R) = Sn(R+ w) = 0 . (55)

In this region Equation 53 is[
1

r

∂

∂r

(
r
∂

∂r

)
− 1

r2

L2
z

~2

]
Sn(r)Φ`(φ) = −2m

~2
En`Sn(r)Φ`(φ) , (56)

if the operator on the left acts on the product of wave functions the first term will only effect the
first wave function, likewise for the second. We can then replace the L2

z operator with it’s eigenvalue
and divide the entire equation by Φ`(φ),[

1

r

∂

∂r

(
r
∂

∂r

)
− `2

r2

]
Sn(r) = −κ2

n`Sn(r) , (57)

where we’ve defined κn` = (2mEn`/~2)1/2. Now we can expand the derivatives in the Laplacian,
move the energy term over, and finally multiply by r2 to get

0 = r2

[
1

r

∂

∂r
+

∂2

∂r2
+ κ2

n` −
`2

r2

]
Sn(r) (58)

= r2 ∂
2

∂r2
Sn(r) + r

∂

∂r
Sn(r) + (κ2

n`r
2 − `2)Sn(r) , (59)

which is Bessel’s equation (Arfken page 647), and has solutions of the form

S(r) = AJ`(κn`r) +BY`(κn`r) , (60)

where Ji(x) and Yi(x) represent Bessel functions of the first and second (Neumann functions) kinds,
respectively, and A and B are arbitrary constants. To satisfy the boundary conditions, we impose

0 = AJ`(κn`R) +BY`(κn`R) (61)

0 = AJ`(κn`(R+ w)) +BY`(κn`(R+ w)) . (62)
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We can combine these conditions to obtain a transcendental equation for the quantization conditions
on n and `,

AJ`(κn`R) +BY`(κn`R) = AJ`(κn`(R+ w)) +BY`(κn`(R+ w)) = 0 . (63)

3.3 Lowest Energy Radial Modes.

Consider now, stationary states with the angular momentum eigenvalue ` = 0. We can make the
change of variables x = r −R, such that

dr = dx (64)

r = x+R = R
(

1 +
x

R

)
' R , (65)

because the x is on the domain [0, w], if we make the approximamtion that w � R, then Equation 65
holds. If we substitute this variable into Equation 58 (without the factor of r2 that was added) we
get

0 =

[
∂2

∂x2
+

1

R

∂

∂x
+ κ2

n0

]
S(x) , (66)

which is a linear, second-order ordinary differential equation with constant coefficients. We can
solve the characteristic equation

λ2 +
1

R
λ+ κ2

n0 = 0 (67)

to find the two roots

λ =
1

2

(
±
√

1

R2
− 4κ2

n0 −
1

R

)
= − 1

2R
± 1

R

√
(−1)(4R2κ2

n0 − 1) , (68)

which gives the solution

S(x) = e−1/2R

(
C+ exp

[
i

1

R

√
4R2κ2

n0 − 1x

]
+ C− exp

[
−i 1

R

√
4R2κ2

n0 − 1x

])
, (69)

where C± is an arbitrary constant. We can throw out the positive exponential (first term) so the
wave function is normalizable. We can also note the term in the radical is negative because 1/R2

is a small number for large R, so the complex exponential can be expressed as a linear combination
of sines and cosines,

S(x) = e−1/2R

(
ξ cos

[
1

R

√
4R2κ2

n0 − 1x

]
+ ξ sin

[
1

R

√
4R2κ2

n0 − 1x

])
, (70)

where ξ and ζ are arbitrary constants. This equation must satisfy the boundary conditions S(x =
0) = S(x = w) = 0. For the s = 0 boundary, it must be that ξ = 0 so that the radial wave function
is zero at the origin of the coordinate x. At the second boundary

0 = e−1/2Rξ sin

[
1

R

√
4R2κ2

n0 − 1w

]
⇒ 1

R

√
4R2κ2

n0 − 1w = nπ , (71)

so the sine will always be zero here. This gives the quantization condition

κ2
n0 =

(
nπR
w

)2
+ 1

4R2
=

2mEn0

~2
, (72)
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from the definition of κn`. So the energy spectrum is

En0 =
~2

8mR2

(
n2π2R2

w2
+ 1

)
. (73)

The ground state is n = 1 and the first excited state is n = 2 so the energy gap is

∆E = E10 − E00 =
π2~2

8mw2
. (74)

Using the definition of the thermal energy, we can find the maximum temperature of a heat bath
in thermal contact with the system, that keeps the electron in the ground state:

∆E = Etherm = kTmax =
π2~2

8mw2
, (75)

where k is Boltzmann’s constant. Therefore the maximum temperature of the bath that keeps the
electron in its lowest energy state is

Tmax =
1

4

π2~2

8kmw2
. (76)

3.4 Magnetic Field Perturbation.

Now we can consider the same geometry as before but in the presence of a magnetic field B =
BΘ(R − |r|)ẑ for all φ and z that penetrates the region, r ≤ R. Note that Θ(x − x0) is the
Heaviside step function. Using Stokes’ theorem we can write∫

S
dS · (∇×A) =

∮
C(S)

d` ·A , (77)

where the surface S is the area of the circle of radius R in the ẑ direction, and the line element is
d` = rdφφ̂. Since ∇ ×A = B, and if we take A to only have an azimuthal component, we can
write

πR2B = 2πrA = ΦB , (78)

where ΦB is the magnetic flux, in the region the Heaviside function is nonzero. Therefore the vector
potential that preserves cylindrical symmetry is

A(r) =
R2B

2r
φ̂ . (79)

The Hamiltonian, in the region with no potential is

H =
1

2m

(
|p| − e

c
A
)2

=
1

2m

(
|p| − e

c

R2B

2r
φ̂

)2

. (80)

Due to the Aharanov-Bohm Effect the wave function remains the same, but picks up a phase
determined by the vector potential. The new wave function is then

ψB(r) = ψ0(r) exp

[
− ie
~c

∫
A · d`

]
= ψ0(r) exp

[
− ie
~c

∫
A · d`

]
= ψ0(r) exp

[
− ie
~c

ΦB

]
, (81)

Page 11 of 12



Dylan J. Temples Northwestern University, Quantum Mechanics II : Solution Set One

where ψ0 is the wave function with no magnetic field, ψ0 = Sn(r)Φ`(φ). We can now write the
angular momentum projection operator as

Lz → L′z = Lz −
e

c
A ⇒ L2

z

r2~2
→ 1

r2

[
−i ∂
∂φ
− eΦB

2πc~

]2

, (82)

when this acts on the azimuthal wave function it returns a new eigenvalue which can be substituted
into the Schrödinger equation as in Equation 57, so we get the same equation but with the angular
momentum projection quantum number replaced as

`2 →
(
`− eΦB

2πc~

)2

, (83)

so the total energy (found by repeating the calculation from section 3.3 with ` 6= 0), Equation 73,
is

En` =
~2

2m

[
n2π2

4w2
+

4`2 + 1

4R2

]
→ E

(B)
n` =

~2

2m

n2π2

4w2
+

4
(
`− eΦB

2πc~

)2
+ 1

4R2

 . (84)
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