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1 Problem #1: Interference of Neutron Beams.

Consider a nearly monoenergetic beam of neutrons of mass MN initially prepared as a wavepacket,
ψ(r), with a well defined momentum p0 = p0x̂, i.e. a momentum spread ∆px � p0. The neutron
beam is split into two coherent beams by Bragg reflection from a Silicon crystal at position A
and reflected by Bragg mirrors at positions B and C,then recombined at position D in front of
the detector as indicated in Figure 1. One beam travels along path ABD, while the other beam
travels along path ABC. If the plane of the interferometer is perpendicular to the gravitational
acceleration, g = −gẑ, then neutrons propagating along either of the two paths pass through the
same gravitational potential. However, if the plane of the interferometer is inclined by an angle δ
about the axis AB then the gravitational potential is different for the neutrons propagating along
path ABD and path ACD.

Figure 1: Diagram showing the coordinate system and Bragg mirror orientation for problem #1.

1.1 The Hamiltonian.

Write down the Hamiltonian that determines the time evolution of a neutron in a gravitational
field of uniform acceleration, g. The Hamiltonian for a massive particle in a gravitational field is
given by

Ĥ =
p̂2

2Mn
−Mngz , (1)

and the time evolution of a state with this Hamiltonian is given by

ψ(t) = e
i
~ tĤ |ψ〉 , (2)

where |ψ〉 is a properly normalized eigenstate of the Hamiltonian. If we tilt the system by an angle
δ such that the path CD is at a height ` sin δ, we can define the potential energy level to be at
the path AB. Furthermore, the neutrons traveling along either path all must go against the same
gradient to reach the potential, so the phase shift along the paths AC and BD are exactly the same,
and only the phase shift along path CD relative to path AB contributes to the phase difference
between path ACD and ABD. Let us consider the Hamiltonians of neutrons traveling along path
CD and neutrons on path AB, which are respectively given by

ĤCD =
p̂2

2Mn
−Mng` sin δ (3)

ĤAB =
p̂2

2Mn
. (4)

However, we must note some subtleties about the momenta along the different paths. As a neutron
moves along path ACD, it begins with momentum p0 and loses an amount ∆p as it moves against
the gradient of the gravitational field, which is converted to potential energy, reflected in the
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Hamiltonian ĤCD. While it moves along the path CD, a neutron has momentum p0 −∆p, while
a neutron moving along path AB has momentum p0. But when the neutron moves against the
gravitational gradient on path BD, it also loses momentum ∆p. From this it is clear to see the the
neutrons are emitted with the same momenta (at point A) and detected with the same momentum
(at point D). For this reason we can treat the momenta as equivalent through this problem.

1.2 Phase Difference.

Calculate the phase difference of the wavepackets which arrive at the detector from the two paths
ABD and ACD when the interferometer is tilted by angle δ. Express the difference in phase in terms
of the neutron mass, Mn, the acceleration due to gravity, g, the dimensions of the interferometer,
L and `, the de Broglie wavelength of the neutrons, λ, the tilt angle δ and relevant fundamental
constants.

The phase difference between the two states comes completely from the time evolution operator
expressed in Equation 2. If we look at this operator, we see that the phase difference is completely
determined by the extra term in the Hamiltonian on the path along CD. Let us look at the argument
of the exponential for this path

i

~
t

(
p2

2Mn
−Mng` sin δ

)
, (5)

we can also note that the time the particle spends traveling along this path is t = (L/p)Mn, so the
argument of the exponential becomes

i

(
Lp

2~
− Mng`L sin δ

p~

)
. (6)

If we introduce the deBroglie wavelength λ = (2π~)/p, the above expression simplifies to

i

(
Lπ

λ
− λM2

ng`L sin δ

2π~2

)
, (7)

where the first term is the same as the argument of the exponential of the time evolution operator
for the Hamiltonian along path AB. Therefore the relative phase shift for the neutron travelling
along path ACD relative to the phase shift of the neutron traveling along path ABD is simply the
second term above, however we must include the phase shift picked up by the reflection due to the
Bragg mirrors. A neutron moving along ACD picks reflects once, while one moving along ABD is
reflected twice, so there is an overall phase difference of π, so the total relative phase shift between
the paths ACD and ABD is

π − λM2
ng`L sin δ

2π~2
, (8)

which if we set δ = 0 we get the expected relative phase shift of π.
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1.3 Detection Rate.

In an actual version of this experiment (see Fig-
ure 2) the number of neutrons arriving at the
detector is represented in the figure below. If the
dimensions of the interferometer are L = 10cm
and ` = 1cm calculate the wavelength of the
incident neutrons.

Given the overall phase shift

ε = π − λM2
ng`L sin δ

2π~2
, (9)

we get a minimum count rate (maximally out-of-
phase) when the Bragg setup is not inclined, i.e.
δ = 0.

Figure 2: Neutron count rates at the detector as
a function of the inclination of the Bragg mirror
setup.

If we insert the dimensions of the Bragg interferometer and values of constants, we find

ε = π − λα sin δ (10)

where α = 3.934 48e11m−1. We expect a maximum detection rate when the phase shift is at a
minimum, or at

π = λα sin δ , (11)

which if we estimate the maximum occurs at an inclination of δ = 2.5 deg, we see that

λ = 1.83e−10 m = 1.83Å . (12)
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2 Problem #2: Electron in Uniform Magnetic Field.

Consider an otherwise free electron moving in a uniform magnetic field B = Bẑ.

2.1 Symmetric Gauge.

Show that the static vector potential, A = 1
2B× r, referred to as the “symmetric gauge”, accounts

for the magnetic field everywhere in space.

The magnetic field in all space is given by the curl of the vector potential,

∇×A =
1

2
∇× (B× r) =

1

2
∇×

[̂
i(Byz −Bzy) + ĵ(Bzx−Bxz) + k̂(Bxy −Byx)

]
(13)

=
1

2

[̂
i(Bx − (−Bx)) + ĵ(By − (−By)) + k̂(Bz − (−Bz))

]
(14)

= Bxî +By ĵ +Bzk̂ = B . (15)

Clearly, this is satisfied for any magnetic field B, including our choice B = BẐ.

2.2 The Hamiltonian.

Write down the Hamiltonian for the electron in this gauge. Identify the conserved variables and
mutually commuting set of operator observables that include the Hamiltonian.

The Hamiltonian for a particle in a vector potential is

Ĥ =
1

2µ

(
p− e

c
A
)2

, (16)

where c is the speed of light and e is the magnitude of the electron charge and µ is the electron
mass. If we expand the square, we find that

Ĥ =
1

2µ

(
|p|2 +

e2

c2
|A|2 − e

c
[p ·A + A · p]

)
. (17)

If we note the form of the magnetic field, we see that the vector potential is A = 1
2(−Byî +Bxĵ).

Then, the dot product with momentum is

p ·A =
B

2
(−pxy + pyx) (18)

A · p =
B

2
(−ypx + xpy) , (19)

which if we note that [px, y] = [py, x] = 0, we can flip the order of the operators in Equation 18 and
note both expressions are equivalent, and in fact their sum is

p ·A + A · p = BL̂z , (20)

so we can express the Hamiltonian as

Ĥ =
1

2µ

(
|p|2 +

e2

c2
|A|2 − e

c
BL̂z

)
=

1

2µ

(
p2x + p2y + p2z +

e2

4c2
B2(y2 + x2)− e

c
BL̂z

)
. (21)
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Let us define a natural frequency ω0 = eB/µc, which allows us to write the Hamiltonian as

Ĥ =
1

2µ
(p2x + p2y) +

1

2
µ
(ω0

2

)2
(x2 + y2)−

(ω0

2

)
L̂z +

p2z
2µ

. (22)

This Hamiltonian has the form of a two dimensional isotropic harmonic oscillator of frequency
ω0/2 plus an angular term, and a term representing a free particle in the z direction. The angular
momentum projection operator commutes with the Hamiltonian for a two dimensional oscillator,
and the z momentum operator commutes with both,

[Ĥ, Ĥ] = [Ĥ, L̂z] = [Ĥ, p2z] = 0 . (23)

From this we know the conserved quantities are the total energy, the z projection of angular momen-
tum, and the linear momentum in the z direction. A basis that diagonalizes the two dimensional
isotropic oscillator will also diagonalize this Hamiltonian.

2.3 Two Dimensional Isotropic Harmonic Oscillator.

In the coordinate representation use section 2.2 to show that the energy eigenstates are determined
by the equation for a two-dimensional, isotropic harmonic oscillator. Specify the set of quantum
numbers that label each energy eigenstate.

In the cyindrical coordinate representation, we can denote the wave function as ψ(ρ, ϕ, z) =
R(ρ)Φ(ϕ)Z(z), which due to the form of the Hamiltonian, we may assume solutions of the form

Φ(ϕ) ∼ eimϕ and Z(z) ∼ eikzz , (24)

where m is an integer and kz is a wavenumber. We may write the Hamiltonian as

Ĥ = − ~2

2µ

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂ϕ2

)
+

1

2
µ
(ω0

2

)2
ρ2 +

(ω0

2

)(
i~

∂

∂ϕ

)
− ~2k2z

2µ
. (25)

Using separation of variables, we find the Z function drops out, and the pz term becomes a constant.
We can now act on the angular solution, to get its eigenvalues, and divide through by the angular
solution Φ, which yields

ĤR = − ~2

2µ

(
∂2R

∂ρ2
+

1

ρ

∂R

∂ρ
+
−m2

ρ2
R

)
+

1

2
µ
(ω0

2

)2
ρ2R+

(ω0

2

)
(−m~)R−~2k2z

2µ
R = EnmkzR . (26)

We can gather the constant terms to write

− ~2

2µ

(
∂2R

∂ρ2
+

1

ρ

∂R

∂ρ
− m2

ρ2
R

)
+

1

2
µ
(ω0

2

)2
ρ2R =

[
Enmkz +

1

2
m~ω0 +

~2k2z
2µ

]
R , (27)

and denote a shifted energy εnmkz as the coefficient of the radial function on the right hand side of
the above equation, which yields the differential equation

− ~2

2µ

(
R′′ +

1

ρ
R′ − m2

ρ2
R

)
+

1

2
µ
(ω0

2

)2
ρ2R = εnmkzR , (28)

which has the same form as Shankar Equation 12.3.13, the differential equation that leads to a two
dimensional isotropic harmonic oscillator. The quantum numbers that label each state are n the
quantum number that defines the energy state of the two dimensional oscillator, m the angular
momentum z-projection quantum number, and kz the wavenumber that defines the plane wave
solutions for the motion in the z direction.
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2.4 Energy Eigenstates.

Solve the Schrödinger equation for the spectrum of energy eigenvalues and eigenfunctions. Tip:
Choose a coordinate origin, then analyze the solutions in the limits r →∞ and r → 0. Construct
exact wave functions by “stitching together” the asymptotic solutions. What is the condition lead-
ing to quantization of the energy levels?

We can find the functional form of the radial solution by examining liiting cases1. If we examine
the behavior of the solution in the limit ρ→ 0, we find that the constant term is negligible, as well
as the potential because it goes like ρ2, this has the form of a power,

R(ρ)
ρ→0−−−→ ργ . (29)

If we plug this solution in to the modified differential equation (no potential or constant terms) we
find2 that γ = |m|. Additionally, if we explore the behavior of R as ρ→∞, we see the negligible
terms are negative powers of ρ, so we get

− ~2

2µ
R′′ +

1

2
µ
(ω0

2

)2
ρ2R = 0 , (30)

which is amenable to a solution of the form exp[−βρδ]. If we plug this back into the modified
differential equation, we find3

R(ρ)
ρ→∞−−−→ exp

[
−µ(ω0/2)

2~
ρ2
]
. (31)

With the asymptotic behavior of R(ρ) known, we can fill in the behavior by defining a function
U(ρ) such that

R(ρ) = U(ρ)ρ|m| exp
[
−µω0

4~
ρ2
]
. (32)

If we consider the change of variables

ε =
2

~ω0
εnmkz y =

√
µω0

2~
ρ , (33)

we find that Equation 28 becomes4

0 = [2ε− y2 −m2y−2]R(y) + y−1R′(y) +R′′(y) , (34)

which when we plug in the solutions for R in terms of our dimensionless variable y, and its deriva-
tives, we get a differential equation for U(y),

0 = U ′′ + U ′
[

1 + 2|m|
y

− 2y

]
+ U [2ε− 2|m| − 2] . (35)

1I have already solved this (see Shankar Problem 12. 3.7), so this will be a more abridged version. For more detailed
steps, see Temples, Shankar Solution Set 5, section 3 (http://dylanjtemples.com/solutions/ShankarSolution05.pdf).
2015.

2Temples, Shankar Solution Set 5. Equations 22-24. 2015.
3Temples, Shankar Solution Set 5. Equation 29. 2015.
4Temples, Shankar Solution Set 5. Section 3.4. 2015.
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We will assume a power series solution U(y) =
∑∞

r=0Cry
r, which when we insert in the above

differential equation leads to the recursion relation5

Cr+2 [2|m|+ 2r − 2ε+ 2] = Cr [(r + 2)(2|m|+ r + 2)] . (36)

In order to maintain the correct asymptotic behavior as y → ∞, the power series must maximize
at some power, so that it will cancel the power of y in the numerator, and keep the function finite.
We can impose that the series terminates for some maximum value of r, which therefore means
terms of higher power also vanish (see recursion relation). It was found that all Cr = 0 for odd r6 ,
so all r values are even (including the maximum). The maximum value of r is given by setting Cr
to zero and solving the polynomial on the left hand side of Equation 36 for r,

r = ε− |m| − 1 , (37)

so we can see the truncation point of the power series depends on the dimensionless energy ε. If
we define a new variable k such that r = 2k (so k can be any positive integer. If we insert this into
the above expression, and solve for the dimensionless energy we find

εnmkz =
~ω0

2
(2k + |m|+ 1) (38)

Enmkz +
1

2
m~ω0 +

~2k2z
2µ

=
~ω0

2
(2k + |m|+ 1) (39)

Enmkz =
~ω0

2
(2k + |m| −m+ 1)− ~2k2z

2µ
, (40)

after substituting in the definition of dimensionless energy and the shifted energy εnmkz . If we
define the quantum number for the energy state of the harmonic oscillator n = k+ 1

2(|m| −m), we
find the energy of the system to be

Enmkz = ~ω0(n+ 1
2)− ~2k2z

2µ
, (41)

which are the Landau energy levels for a particle in this potential.

2.5 Degeneracy of Landau Levels.

Determine the degeneracy of each energy level (“Landau level”). From the exact energy level spec-
trum derive a formula to calculate the density of states as a function of energy.

We can note the degeneracy of this system dependent on the integers k and m, and the continuous
wavenumber kz. The quantum number k completely determines the value of n for m > 0. This is
the case because for all positive values of m, |m|−m = 0, so n = k, and the energy level is therefore
infinitely degenerate in m (for any given k). Additionally, the energy is two-fold degenerate with
respect to the wave number because k2z = (−kz)2. Therefore for m < 0, the states aree two-fold
degenerate due to the wavenumber kz.

5Temples, Shankar Solution Set 5. Equation 51. 2015.
6Temples, Shankar Solution Set 5. Page 9. 2015.
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The field energy, If we define the wavevector of the nth Landau level as kn, we see7

~2k2n
2µ

= ~ω0(n+ 1
2) . (42)

To find the density of states in k-space, we need to find the number of states that exists in the
volume of a spherical shell in k-space between kn and kn+1, and divide by this k-space volume
(area if the separation between wavenumbers is low). From the indicated reference, we see the
degeneracy of a two dimensional phase space is

N = 2
1√
2π
ArAk , (43)

where Ar is the area in r-space, Ak is the area in k-space and the factor 2 is due to the two
possibilities of the electron’s spin projection. From this we find

N

A
= 2

πk2n+1 − πk2n
(2π)2

, (44)

which if we substitute in our definition of the wave number kn (Equation 42), we find the density
of states is

N

A
=
eB

π~
. (45)

7Here we are following the treatment discussed in Magnetoresistance in two-dimensional systems and the quantum
Hall effect. Page 112.
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3 Problem #3: Coherent States.

Consider a coherent state defined by â |α〉 = α |α〉, where α = |α|eiθ is a complex number.

3.1 Unitary Transformation Form.

Show that the normalized coherent state can be represented by a unitary transformation of the
ground state of the form |α〉 = D̂(α) |0〉. Determine D̂(α). Hint: Use the Campbell, Baker, Haus-
dorff identity.

A coherent state (Glauber state) is a linear combination of energy eigenstates of the harmonic
oscillator (number states),

|α〉 =
∞∑
n=0

= cn |n〉 . (46)

but we can also insert a complete set of states on the left of this ket to find

|α〉 =

∞∑
n=0

|n〉 〈n|a〉 , (47)

and by equating the two we find cn = 〈n|α〉. We can write a number eigenstate as a series of
operations of the creation operator acting on the vacuum state

|n〉 =
(â†)n√
n!
|0〉 , (48)

which allows us to calculate cn

〈n|α〉 =
1√
n!
〈0|(â)n|α〉 , (49)

by taking the conjugate transpose of Equation 48. If we note the action of the annihilation operator
on a coherent state, we can replace the operator with the complex number α,

〈n|α〉 =
αn√
n!
〈0|α〉 . (50)

We can now rewrite coherent states (Equation 47) as

|α〉 = 〈0|α〉
∞∑
n=0

αn√
n!
|n〉 , (51)

and impose the normalization condition

1 = 〈α|α〉 = | 〈0|α〉 |2
∞∑
n=0

α2n

n!
〈n|n〉 = | 〈0|α〉 |2

∞∑
n=0

(α2)n

n!
= | 〈0|α〉 |2e|α|2 , (52)

from which we get 〈0|α〉 = exp[−|α|2/2]. Furthermore, if we substitute this result and Equation 48
into the expression for a coherent state, we find

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!

(â†)n√
n!
|0〉 = e−|α|

2/2
∞∑
n=0

(αâ†)n

n!
|0〉 = e−|α|

2/2eαâ
† |0〉 . (53)
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Note that we specified that the operator that propagates |0〉 to |α〉 must be unitary, and hence
must obey D(α)† = D(−α),

D(α)† = exp
(
−|α|2/2

)
exp (α∗â) 6= exp

(
−|α|2/2

)
exp

(
−αâ†

)
= D(−α) , (54)

so there must be another component to D. We note that this operator is of unit norm, but does
not satisfy unitarity, if we introduce another term in the operator that still preserves the norm but
makes it unitary, we will have a definition of D(α) which satisfies our constraints. Consider the
operator exp[−α∗â], which we can expand to be

∞∑
n=0

(−α∗â)n

n!
= 1− (α∗â) +

1

2
(α∗â)2 + . . . (55)

which when acting on the vacuum state, only the first term survives (â |0〉 = 0) so we get the
eigenvalue equation

exp[−α∗â] |0〉 = 1 |0〉 ⇒ e−|α|
2/2eαâ

† |0〉 = e−|α|
2/2eαâ

†
e−α

∗â |0〉 . (56)

We can now define the displacement operator

D(α) |0〉 = e−|α|
2/2eαâ

†
e−α

∗â |0〉 = |α〉 . (57)

If we examine the operators in the exponentials of the displacement operator, Â = αâ†, and
B̂ = −α∗â, we find

[A,B] = [αâ†,−α∗â] = −|α|2[â†, â] = −|α|2(−1) = |α|2 (58)

[[A,B], A] = [|α|2, A] = 0 (59)

[[A,B], B] = [|α|2, B] = 0 . (60)

Additionally, we can move the first exponential term in the displacement operator around as we
choose because it is just a real number, this allows us to an identity8 and we can write

D(α) = e−|α|
2/2eαâ

†
e−α

∗â = eαâ
†−α∗â . (61)

Let us show quickly this is a unitary operator,

D(α)† = eα
∗â−αâ† = e(−α)â

†−(−α)∗â = D(−α), (62)

so indeed all of our constraints have been met.

3.2 Displacement Operator.

Show that D̂(α) “displaces” the annihilation operator by α, i.e.

D̂†(α)âD̂(α) = â+ α . (63)

Give a physical interpretation of the generator of the unitary transformation.

8Reinhold Bertlmann, Time-Dependent Schrödinger Equation. Equation 2.72
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Consider the operation

D̂†(α)âD̂(α) = eα
∗â−αâ† âeαâ

†−α∗â = eα
∗â−αâ† âe−(α

∗â−αâ†) , (64)

and the commutation relations

[α∗â− αâ†, â] = [α∗â, â]− [αâ†, â] = α∗[â, â]− α[â†, â] = α (65)

[α∗â− αâ†, [α∗â− αâ†, â]] = [α∗â− αâ†, α] = 0 , (66)

because the commutator with an imaginary number is zero. Then using the Baker-Campbell-
Hausdorff formula, we can write

D̂†(α)âD̂(α) = â+ α , (67)

which proves Equation 63.

Coherent states (Glauber states) are linear combinations of stationary states of the harmonic oscil-
lator that saturate the uncertainty principle. Since they are eigenstates of the annihilation operator,
a single state can be measured (annihilated) without affecting the overall coherent state. For ex-
ample, a coherent state (laser) would remain unchanged if one photon annihilated (detected).9 The
generator G of a unitary transformation is given by U = eiG, so for this unitary transformation
the generator is given by G(α) = −i(αâ† − α∗â), which is a linear combination of the annihilation
and creation operators. If we compare this generator to the generator of translations (momentum),
we can call the generator of a displacement of a coherent state, as some kind of phase-momentum
operator acting on a coherent state.

9Reinhold Bertlmann, Harmonic Oscillator and Coherent States. Page 111.
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