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1 Problem #1: Stark Effect for Hydrogen n = 3 Levels.

Work out the Stark effect to linear order in the electric field for the n = 3 levels of Hydrogen. Ignore
relativistic corrections to the level structure. Sketch the energy level diagram and label each of
the levels by the quantum numbers of the unperturbed Rydberg states. Calculate the eigenvectors
that diagonalize the perturbation within the subspace of n = 3 levels.

Let us denote the n = 3 states of the Hydrogen atom as |`,m〉. If the applied electric field E = E ẑ
( ẑ is unit vector) is aligned with the z axis, the selection rules are ∆` = ±1 and ∆m = 0.
The electrostatic potential φ = −E z (z is the coordinate) is coupled to the electron charge −e,
so the perturbation is V ′ = eE ẑ, where ẑ is now a quantum-mechanical operator. Consider the
perturbation matrix defined by the elements Vij = 〈i| − eE z|j〉, where i, j ∈ {|`,m〉}:

|0, 0〉 |1,−1〉 |1, 0〉 |1, 1〉 |2,−2〉 |2,−1〉 |2, 0〉 |2, 1〉 |2, 2〉



〈0, 0| 0 0 α∗ 0 0 0 0 0 0
〈1,−1| 0 0 0 0 0 γ∗ 0 0 0
〈1, 0| α 0 0 0 0 0 β∗ 0 0
〈1, 1| 0 0 0 0 0 0 0 δ∗ 0
〈2,−2| 0 0 0 0 0 0 0 0 0
〈2,−1| 0 γ 0 0 0 0 0 0 0
〈2, 0| 0 0 β 0 0 0 0 0 0
〈2, 1| 0 0 0 δ 0 0 0 0 0
〈2, 2| 0 0 0 0 0 0 0 0 0

(1)

note the kets are just there as labels and are obviously not included in the perturbation matrix.
This leaves only four matrix elements to be calculated:

α = eE 〈1, 0|ẑ|0, 0〉 (2)

β = eE 〈2, 0|ẑ|1, 0〉 (3)

γ = eE 〈2,−1|ẑ|1,−1〉 (4)

δ = eE 〈2, 1|ẑ|1, 1〉 . (5)

The n = 3 states of the Hydrogen atom, represented in the spherical coordinate basis, are

|`,m〉 =

√(
2

3a0

)3 (2− `)!
6[(3 + `)!]

e−r/3a0
(

2r

3a0

)`
L2l+1
2−`

(
2r

3a0

)
Y m
` (θ, φ) ≡ R`(r)Y m

` (θ, φ) , (6)

where Lba(x) are the generalized Laguerre polynomials and Y m
` (θ, φ) are the spherical harmonics,

and a0 is the Bohr radius. Consider the ẑ = r cos θ operator, in the spherical coordinate basis,
acting on the states indicated:

ẑ |0, 0〉 = R0(r)r cos(θ)Y 0
0 (θ, φ) =

r√
3
R0(r)Y

0
1 (θ, φ) (7)

ẑ |1, 0〉 = R1(r)r cos(θ)Y 0
1 (θ, φ) = rR1(r)Y

0
2 (θ, φ)

(
2

√
3

5

1

3− sec2 θ

)
(8)

ẑ |1,−1〉 = R1(r)r cos(θ)Y −11 (θ, φ) =
r√
5
R1(r)Y

−1
2 (θ, φ) (9)

ẑ |1, 1〉 = R1(r)r cos(θ)Y 1
1 (θ, φ) =

r√
5
R1(r)Y

1
2 (θ, φ) , (10)
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of which three are easily obtained1. The first matrix element is

α = −eE 〈1, 0|ẑ|0, 0〉 = −eE
∫ ∞
0

∫ π

0

∫ 2π

0
(r2 sin θdrdθdφ)R∗1(r)Y 0∗

1 (θ, φ)
r√
3
R0(r)Y

0
1 (θ, φ) (11)

= − eE√
3

∫ ∞
0

rR∗1(r)R0(r)(r
2dr)

∫
Y 0∗
1 (θ, φ)Y 0

1 (θ, φ)dΩ (12)

= − eE√
3

∫ ∞
0

rR∗1(r)R0(r)(r
2dr) , (13)

where the angular integral is unity due to orthonormality (note that dΩ = sin θdθdφ). Similarly,
for the m 6= 0 matrix elements:

γ = −eE 〈2,−1|ẑ|1,−1〉 = − eE√
5

∫ ∞
0

rR∗2(r)R1(r)(r
2dr) (14)

δ = −eE 〈2, 1|ẑ|1, 1〉 = − eE√
5

∫ ∞
0

rR∗2(r)R1(r)(r
2dr) , (15)

and finally

β = −eE 〈2, 0|ẑ|1, 0〉 (16)

= −eE
∫ ∞
0

∫ π

0

∫ 2π

0
(r2 sin θdrdθdφ)R∗2(r)Y 0∗

2 (θ, φ)rR1(r)

(
2

√
3

5

1

3− sec2 θ

)
Y 0
2 (θ, φ) (17)

= −2

√
3

5
eE

∫ ∞
0

∫ π

0

∫ 2π

0
(r2 sin θdrdθdφ)R∗2(r)Y 0∗

2 (θ, φ)rR1(r)

(
1

3− sec2 θ

)
Y 0
2 (θ, φ) (18)

= −2

√
3

5
eE

∫ ∞
0

(r2dr)R∗2(r)rR1(r)

∫
dΩ

|Y 0
2 |2

3− sec2 θ
(19)

= − 2√
15
eE

∫ ∞
0

(r2dr)R∗2(r)rR1(r) , (20)

so all that remains is to calculate two integrals:

I01 =

∫ ∞
0
rR∗1(r)R0(r)(r

2dr) (21)

I12 =

∫ ∞
0
rR∗2(r)R1(r)(r

2dr) , (22)

using Equation 6, and defining ξ = 2/(3a0), we can write2 the integrands as

r3R1(r)R0(r) =
ξ4e−ξr

12
√

2

(
−1

6
ξ3r7 +

5

3
ξ2r6 − 5ξr5 + 4r4

)
(23)

r3R2(r)R1(r) =
ξ6e−ξr

122
√

5

(
−ξr7 + 4r6

)
, (24)

1Multiply cos θY 0
1 by the factor

√
5
3
· 1
2
, and we obtain√

5

3

1

2
cos θY 0

1 =
1

4

√
5

π
(cos2 θ)

then multiply 3− sec2 θ on both sides and isolate cos θY 0
1 , to obtain the result.

2See attached work.
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by noting the radial equations are real so R∗` = R`. These integrals can be evaluated using the
identity3: ∫ ∞

0
xne−ax =

n!

an+1
(25)

which, after some work yields the results

I01 = −9
√

2a0 (26)

I12 = −9

2

√
5a0 . (27)

We note that all the integrals evaluate to real quantities so α = α∗, and similarly for β, γ, δ.

We can summarize the perturbation matrix elements as

α = eE 〈1, 0|ẑ|0, 0〉 = −3
√

6a0eE = α∗ (28)

β = eE 〈2, 0|ẑ|1, 0〉 = −3
√

3a0E e = β∗ (29)

γ = eE 〈2,−1|ẑ|1,−1〉 = −9

2
a0eE = γ∗ (30)

δ = eE 〈2, 1|ẑ|1, 1〉 = −9

2
a0eE = δ∗ , (31)

and if we define η = 3a0eE , the perturbation matrix becomes

Vij = −η



0 0
√

6 0 0 0 0 0 0
0 0 0 0 0 3

2 0 0 0√
6 0 0 0 0 0

√
3 0 0

0 0 0 0 0 0 0 3
2 0

0 0 0 0 0 0 0 0 0
0 3

2 0 0 0 0 0 0 0

0 0
√

3 0 0 0 0 0 0
0 0 0 3

2 0 0 0 0 0
0 0 0 0 0 0 0 0 0


. (32)

To diagonalize this matrix, we can break it down into smaller subspaces, one for each value of m,
because there is no mixing between states with different m values. We will return to writing the
matrix elements are α, β, γ, δ. We can note the m = 2 and m = −2 subspaces are one state each
and cannot mix with any other state, so these states are stable under the perturbation and have
an energy shift of zero. Let us begin in the m = 1 subspace, which has the basis {|1, 1〉 , |2, 1〉}.
The perturbation matrix for this subspace is

V
(1)
ij =

|1, 1〉 |2, 1〉( )
〈1, 1| 0 δ
〈2, 1| δ 0

, (33)

from which we can easily determine the eigenvalues ±δ with the associated eigenvectors

|m = 1,+〉 =
1√
2

(
|1, 1〉+ |2, 1〉

)
⇒ ∆E = +δ = −3

2
η (34)

|m = 1,−〉 =
1√
2

(
|1, 1〉 − |2, 1〉

)
⇒ ∆E = −δ =

3

2
η , (35)

3Zwillinger. CRC Standard Mathematical Tables and Formulae, 31 ed. Equation 641.
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where the plus or minus in the ket denotes which eigenvalue it is associated with (note that since
the matrix elements are all negative, when we insert the values the kets with + will have negative
energy shifts). We can repeat this process for the m = −1 subspace, with basis {|1,−1〉 , |2,−1〉}:

V
(−1)
ij =

|1,−1〉 |2,−1〉( )
〈1,−1| 0 γ
〈2,−1| γ 0

, (36)

from which we can easily determine the eigenvalues ±γ with the associated eigenvectors

|m = −1,+〉 =
1√
2

(
|1,−1〉+ |1,−1〉

)
⇒ ∆E = +γ = −3

2
η (37)

|m = −1,−〉 =
1√
2

(
|1,−1〉 − |1,−1〉

)
⇒ ∆E = −γ = +

3

2
η . (38)

Finally, we repeat this for m = 0, which is the only non-trivial diagonalization. This subspace has
the basis {|0, 0〉 , |1, 0〉 , |2, 0〉}, and the perturbation matrix is

V
(0)
ij =

|0, 0〉 |1, 0〉 |2, 0〉( )〈0, 0| 0 α 0
〈1, 0| α 0 β
〈2, 0| 0 β 0

, (39)

if we represent the eigenvalues with µ, we can write the characteristic equation

0 = µ(µ2 − β2)(−µ) + α2µ , (40)

which has solutions µ = 0,±
√
α2 + β2. Letting x, y, z represent the elements of the eigenvector:

|0, 0〉 , |1, 0〉 , |2, 0〉, respectively, the first eigenvalue, µ = 0 gives the equations

αy = 0 (41)

αx+ βz = 0 (42)

βy = 0 , (43)

implying α = −β, y = 0. We can write the normalized eigenvector as

1√
α2 + β2

(
β |0, 0〉 − α |2, 0〉

)
⇒ ∆E = 0 . (44)

The second and third eigenvalues give the equations

αy = ±
√
α2 + β2x (45)

αx+ βz = ±
√
α2 + β2y (46)

βy = ±
√
α2 + β2z , (47)

which is solved by

z =
β

±
√
α2 + β2

y x =
α

±
√
α2 + β2

y so


x = α

y = ±
√
α2 + β2

z = β

. (48)
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We can calculate the normalization factor for the resulting eigenvector:

N =
1√

α2 + (±
√
α2 + β2)2 + β2

=
1√
2

1√
α2 + β2

. (49)

If we insert the values of the matrix elements α, β, γ, δ, we get the results

|m = 0, 0〉 =
1

3η

(
−
√

3η |0, 0〉+
√

6η |2, 0〉
)
⇒ ∆E = 0 (50)

|m = 0,±〉 =
1

3
√

2η

(√
6η |0, 0〉 ∓ 3η |1, 0〉+

√
3η |2, 0〉

)
⇒ ∆E = ∓3η (51)

The first-order energy shifts and their corresponding perturbation eigenstates (now normalized)
are:

∆E = −3η ⇒ |m = 0,+〉 = 1√
3
|0, 0〉+ 1√

2
|1, 0〉+ 1√

6
|2, 0〉

∆E = −3
2η ⇒ |m = 1,+〉 = 1√

2

(
|1, 1〉+ |2, 1〉

)
|m = −1,+〉 = 1√

2

(
|1,−1〉+ |2,−1〉

)
∆E = 0 ⇒ |m = 2〉 = |2, 2〉

|m = 0, 0〉 = − 1√
3
|0, 0〉+

√
2
3 |2, 0〉

|m = −2〉 = |2,−2〉
∆E = 3

2η ⇒ |m = 1,−〉 = 1√
2

(
|1, 1〉 − |2, 1〉

)
|m = −1,−〉 = 1√

2

(
|1,−1〉 − |2,−1〉

)
∆E = 3η ⇒ |m = 0,−〉 = 1√

3
|0, 0〉 − 1√

2
|1, 0〉+ 1√

6
|2, 0〉

(52)

this energy splitting is illustrated in Figure 1, below.

Figure 1: Energy splitting diagram of the n = 3 states of the Hydrogen atom due to the Stark
effect. E0 is the Rydberg constant for Hydrogen (-13.6 eV), and η = 3a0eE . The eigenstates of the
unperturbed Hamiltonian are denoted |n = 3, `,m〉.
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2 Problem #2: Spins in Inhomogeneous Magnetic Field.

In an atomic beam experiment atoms with total angular momentum quantum number j and a
definite projection mj along a specific axis n pass through an inhomogeneous magnetic field, B =
B(y)z. The magnetic moment operator for the atom is proportional to the total angular momentum
operator, Ĵ,

µ̂ = g
|e|

2mc
Ĵ , (53)

where g is the gyromagnetic ratio for the atom in its ground state, and e and m are the electron
charge and mass, respectively, with c being the speed of light. If the direction of the magnetic field
is not along the quantization axis of Ĵ for the atoms, the beam is observed to separate into 2j + 1
component beams. For atoms with j = 1, determine the relative intensities of the three beams if
the incident atoms have a definite value of n · Ĵ = ~ along an axis n, that makes an angle ϑ with
respect to the direction of the field.

For j = 1 we can express the vector of total angular momentum operator4 in matrix form as

Ĵ =
~√
2

0 1 0
1 0 1
0 1 0

x +

0 −i 0
i 0 −i
0 i 0

y +

√2 0 0
0 0 0

0 0 −
√

2

 z

 , (54)

and an arbitrary unit vector n can be written

n = sinϕ cosϕx + sinϑ sinϕy + cosϕz , (55)

so their dot product, the total angular momentum projected along the axis n, is5

Ŝn = n · Ĵ =
~√
2

√2 cosϑ sin θe−iϕ 0
sinϑeiϕ 0 sinϑe−iϕ

0 sinϑeiϕ −
√

2 cosϑ .

 (56)

Since, for j = 1, there are three possible projections mn of the total angular momentum along the
axis n, the three eigenvalues of this matrix are ±~ and 0. If we consider atoms in a state with a
definite projection in this axis of ~, the state of the atoms is the eigenvector corresponding to this
eigenvalue. To find this vector, we solve the equation

~√
2


√

2 cosϑ−
√

2 sinϑe−iϕ 0

sinϑeiϕ −
√

2 sinϑe−iϕ

0 sinϑeiϕ −
√

2 cosϑ−
√

2 .

αβ
γ

 = 0 , (57)

for the elements α, β, γ. We can see this results in the conditions

0 = α
√

2 (cosϑ− 1) + β sinϑe−iϕ (58)

0 = α sinϑeiϕ − β
√

2 + γ sinϑe−iϕ (59)

0 = β sinϑeiϕ − γ
√

2 (cosϑ+ 1) . (60)

Solving the first and second equations we find

αeiϕ =
−β sinϑ√

2(cosϑ− 1)
and γe−iϕ =

β sinϑ√
2(cosϑ+ 1)

, (61)

4In the form of the spin operators for s = 1. The basis for the matrices is {|mz = −1〉 , |mz = 0〉 , |mz = 1〉}.
5To get to this form, we note sinϑ cosϕ± i sinϑ sinϕ = sinϑ(cosϕ± i sinϕ) = sinϑe±iϕ.
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which we can plug into Equation 59, to find

0 = −β sin2 ϑ√
2(cosϑ− 1)

− β
√

2 + β
sin2 ϑ√

2(cosϑ+ 1)
(62)

0 = β

(
− sin2 ϑ

cosϑ− 1

cosϑ+ 1

cosϑ+ 1
− 2 +

sin2 ϑ

cosϑ+ 1

cosϑ− 1

cosϑ− 1

)
, (63)

and we note
(cosϑ− 1)(cosϑ+ 1) = cos2 ϑ− 1 = − sin2 ϑ , (64)

so the equation for β reduces to

0 = β ([cosϑ+ 1]− 2− [cosϑ− 1]) = β(0) , (65)

so β is a free parameter, and we can determine α and γ using Equation 61, and setting β = 1. We
can then calculate the normalization factor for this eigenvector:

1

N2
= |α|2 + |β|2 + |γ|2 =

(
− sinϑ√

2(cosϑ− 1)

)2

+ 1 +

(
sinϑ√

2(cosϑ+ 1)

)2

(66)

=
sin2 ϑ

2

(
1

(cosϑ− 1)2
+

2

sin2 ϑ
+

1

(cosϑ+ 1)2

)
, (67)

using a common denominator, we can express this as

1

N2
=

sin2 ϑ

2

sin2 ϑ(cosϑ+ 1)2 + 2(cosϑ− 1)2(cosϑ+ 1)2 + (cosϑ− 1)2 sin2 ϑ

(cosϑ− 1)2 sin2 ϑ(cosϑ+ 1)2
, (68)

we can cancel the two factors of sin2 ϑ, and use Equation 64 to write the denominator as sin4 ϑ.
Using the same trick on the middle term, the numerator simplifies to

sin2 ϑ(cos2 ϑ+ 1 + 2 cosϑ) + 2 sin4 ϑ+ (cos2 ϑ+ 1− 2 cos2 ϑ) sin2 ϑ (69)

sin2 ϑ(cos2 ϑ+ 1) + 2 sin4 ϑ+ (cos2 ϑ+ 1) sin2 ϑ (70)

2 sin2 ϑ(cos2 ϑ+ 1) + 2 sin4 ϑ , (71)

which we reinsert to the full expression and find

1

N2
=

1

2

2 sin2 ϑ(cos2 ϑ+ 1) + 2 sin4 ϑ

sin4 =
(cos2 ϑ+ 1) + sin2 ϑ

sin2 ϑ
=

2

sin2 ϑ
, (72)

therefore the normalization constant is N = 1√
2

sinϑ. We now obtain the eigenvector for the mn = ~
state in the mz basis:

|mn = ~〉 =
1√
2

sinϑ

(
−e−iϕ sinϑ√
2(cosϑ− 1)

|mz = −1〉+ |mz = 0〉+
eiϕ sinϑ√

2(cosϑ+ 1)
|mz = 1〉

)
. (73)

The probabilities of an atom with mn = ~ to have a spin mz are given by

P (mz = −1) = |α|2/N2 =
1

2
sin2 ϑ

(
sin2 ϑ

2(cosϑ− 1)2

)
=

1

2
sin2 ϑ

(
1

2
tan2 ϑ

2

)
(74)

P (mz = 0) = |β|2/N2 =
1

2
sin2 ϑ (75)

P (mz = 1) = |γ|2/N2 =
1

2
sin2 ϑ

(
sin2 ϑ

2(cosϑ+ 1)2

)
=

1

2
sin2 ϑ

(
1

2
cot2

ϑ

2

)
. (76)

Since the inhomogeneous magnetic field (in the z direction) splits the incident beam into three
beams based on their mz values, the relative intensity of the three beams is given by the probability
of an incoming atom with a definite mn.
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3 Problem #3: Spin of Electron.

Spin is an observable property of the electron described by a set of three Hermitian operators,
Ŝ ≡ (Ŝx, Ŝy, Ŝz), corresponding to the three orthogonal directions in space. The spin operator
acts on a two-dimensional subspace of the Hilbert space of the states of the electron. Experiment
demonstrates that there are only two possible values, ±~

2 , for the spin Ŝn along any axis n in
space, and two associated states which we denote by |n+〉 corresponding to the value +~

2 and |n−〉
corresponding to the value −~

2 . Experiment shows that if we prepare the electron in a state |n+〉
then measure spin along a different axis m, the probability of measuring the electron with spin +~

2
along m is | 〈m + |n+〉 |2 = cos2 ϑ/2, where m · n = cosϑ.

3.1 Projection Operators to Bz.

Let Bz = {|z+〉 , |z−〉} denote the eigenvectors of Ŝz corresponding to ±~
2 . Construct the projec-

tion operators P̂±z corresponding to these two eigenvectors, and the operator Ŝz in the Bz basis.

Any state that exists in the two-dimensional subspace of Hilbert space the spin operators act on,
can be expressed in the basis Bz as

|m〉 =

(
α
β

)
, (77)

where the basis vectors are the states with spins aligned and anti-aligned with the z-axis:

|z+〉 =

(
1
0

)
|z−〉 =

(
0
1

)
. (78)

Let us define P̂+z as the operator that projects a state onto the |z+〉 basis vector. Operators in
the two dimensional subspace are 2× 2 matrices. Therefore the action of this operator on the basis
vetor is the identity,

P̂+z |z+〉 = |z+〉 , (79)

which can be represented in matrix form as

P̂+z |z+〉 =

[
a b
c d

](
1
0

)
=

(
1
0

)
, (80)

from which we see a = 1 and c = 0. The projection of |z−〉 onto the orthonormal vector |z+〉 is
zero:

P̂+z |z+〉 =

[
1 b
0 d

](
1
0

)
=

(
0
0

)
, (81)

and we see b = d = 0. A similar process can be used to determine P̂−z:

P̂−z |z+〉 =

[
e f
g h

](
1
0

)
=

(
0
0

)
⇒

{
e = 0

g = 0
(82)

P̂−z |z−〉 =

[
0 f
0 h

](
0
1

)
=

(
0
1

)
⇒

{
f = 0

h = 1
(83)

Therefore the operators that project vectors onto the basis vectors are

P̂+z =

[
1 0
0 0

]
P̂−z =

[
0 0
0 1

]
(84)
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Let us now consider the action of the spin operator Ŝz on the basis vectors. Using the eigenvalues
of this operator for the states with spin parallel to the z axis, we see

Ŝz |z+〉 =
~
2
|z+〉 =

~
2
P̂+z |z+〉 , (85)

using the fact that the eigenvalue of the +z projection operator is one for |z+〉. Let Ω̂ be any
arbitrary operator that has an eigenvalue of zero for the vector |z+〉. Then we can express the spin
z-projection operator as Ŝz = (~/2)P̂+z + Ω̂, so its action on the other basis vector is

Ŝz |z+〉 =

(
~
2
P̂+z + Ω̂

)
|z+〉 = −~

2
|z+〉 (86)

0 + Ω̂ |z+〉 = −~
2
P̂−z |z+〉 , (87)

We have only enforced that |z+〉 is not an eigenvector of Ω̂, which does not restrict its action on
|z−〉.Using this, we see

Ŝz =
~
2

(
P̂+z − P̂−z

)
=

~
2

[
1 0
0 −1

]
, (88)

which is the spin projection operator for the z-axis. The eigenvalues of this operator are the
magnitudes of the z component of the state’s total spin angular momentum s = 1

2 .

3.2 Spin Aligned with Perpendicular Axis: x-axis.

For an electron in the state |z+〉 the probability of measuring ±~
2 along the orthogonal x axis is

| 〈x± |z+〉 |2 = 1
2 . Construct the projection operators P̂±x assuming that the projectors are real

(this amounts to a choice of the phases of the matrix elements of the projectors in the basis Bz).

Now consider the states with spin aligned along the x axis: {|x±〉}. We can express these in Bz as

|x+〉 =

(
α
β

)
|x−〉 =

(
γ
δ

)
, (89)

with α, β, γ, δ ∈ R, and we enforce these also form an orthonormal basis that spans the two
dimensional substace of Hilbert space. Using the probability of measurements along perpendicular
axes, we see

1

2
= | 〈x + |z+〉 |2 ⇒ 〈x + |z+〉 = ± 1√

2
, (90)

if we assume the inner product is real (and similarly for |x−〉), additionally we will pick the positive
root becuase an overall sign will not effect the results. We then get

( α β )

(
1
0

)
=

1√
2
⇒ α =

1√
2

(91)

( α β )

(
0
1

)
=

1√
2
⇒ β =

1√
2
, (92)

since the negative z axis is also perpendicular to the positive and negative x axes. To find the state
with the negative eigenvalue of Ŝx, we enforce orthonormality:

〈x− |x+〉 = ( γ δ )

(
1/
√

2

1/
√

2

)
= 0 ⇒ γ + δ = 0 (93)

〈x− |x−〉 = ( γ δ )

(
γ
δ

)
= 1 ⇒ γ2 + δ2 = 1 , (94)
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so γ = −δ = 1/
√

2. So we see, in the basis Bz, the eigenstates of Ŝx are

|x+〉 =
1√
2

(
1
1

)
|x−〉 =

1√
2

(
1
−1

)
. (95)

We now consider the projection operators P̂±x, which project a state onto the indicated basis
vector. We can determine these projectors in Bz, using the same method as the previous section,
noting:

P̂+x |x+〉 = |x+〉 P̂+x |x+〉 = 0 (96)

P̂−x |x+〉 = 0 P̂+x |x−〉 = |x−〉 . (97)

To project onto the state with the positive eigenvalue, we have

P̂+x |x+〉 =

[
a b
c d

](
1
1

)
1√
2

=

(
1
1

)
1√
2
⇒

{
a+ b = 1

c+ d = 1
(98)

P̂+x |x−〉 =

[
a b
c d

](
1
−1

)
1√
2

= 0 ⇒

{
a− b = 0

c− d = 0
, (99)

and to project onto the state with the negative eigenvalue:

P̂−x |x+〉 =

[
e f
g h

](
1
1

)
1√
2

= 0 ⇒

{
e+ f = 0

g + h = 0
(100)

P̂−x |x−〉 =

[
e f
g h

](
1
−1

)
1√
2

=

(
1
−1

)
1√
2
⇒

{
e− f = 1

g − h = −1
. (101)

Using the equations for the matrix elements of P̂±x, we get the results

P̂+x =
1

2

[
1 1
1 1

]
P̂−x =

1

2

[
1 −1
−1 1

]
. (102)

We can then use the same method as the previous section to determine the spin operator Ŝz:

Ŝz |x+〉 =
~
2
|x+〉 =

~
2
P̂+x |x+〉 , (103)

using Equation 96, to insert a projection operator. Again we introduce an operator that obeys
Ω̂ |x+〉 = 0, so that we may write

Ŝx =
~
2
P̂+x + Ω̂ ⇒ Ŝx |x−〉 =

~
2
|x−〉 (104)

~
2
P̂+x |x−〉+ Ω̂ |x−〉 =

~
2
P̂−x |x−〉 (105)

Ω̂ |x−〉 =
~
2
P̂−x |x−〉 , (106)

using Equation 97. We see that if Ω̂ = (~/2)P̂−x, the eigenvalue associated with |x−〉 is indeed
zero, as we required. Therefore, the spin z component projection operator is

Ŝx =
~
2

(
P̂+x − P̂−x

)
=

~
2

[
0 1
1 0

]
. (107)
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3.3 Spin Aligned with Second Perpendicular Axis: y-axis.

From the measured probabilities: | 〈y + |z+〉 |2 = 1
2 and | 〈y + |x+〉 |2 = 1

2 find the projection

operator P̂+y. Eliminate the ambiguity in the matrix elements by choosing the phase angle of
〈z + |P̂+y|z−〉 to lie between 0 and π. Construct the projector for the state |y−〉.

We now consider states that have spins perpendicular to both previous axes: y. Since we are in the
basis Bz , the derivation of these states should be similar to the derivation of the states for the x
direction. Let us assume we can now allow complex projections of the |y±〉 states onto |z±〉. We
can then factor out and overall phase to write the eigenstate of Ŝz with the positive eigenvalue as

|y+〉 =

(
α
βeiφ

)
, (108)

where φ is the relative phase angle of 〈z + |P̂+y|z−〉, and α, β ∈ R. Applying orthonormality, we
enforce α2 + β2 = 1. From the measured probabilities we see

| 〈y + |z+〉 |2 =
1

2
⇒ 1√

2
= 〈y + |z+〉 = ( α β−iφ )

(
1
0

)
= α (109)

so we see α = β = 1/
√

2. We can then write the projection of |y+〉 on |x+〉 in the measured
probability as

1

2
= | 〈y + |x+〉 |2 = | 〈y + |z+〉 〈z + |x+〉+ 〈y + |z−〉 〈z− |x+〉 |2 (110)

by inserting a completeness relation 1 =
∑

i |i〉 〈i|. We can insert the appropriate inner products
to obtain

1

2
=

∣∣∣∣α 1√
2

+ βeiφ
1√
2

∣∣∣∣2 =
1

2
(α+ βeiφ)(α+ βe−iφ) (111)

=
1

2
(α2 + β2 + αβeiφ + αβe−iφ) (112)

=
1

2
(α2 + β2 + 2αβ cosφ) (113)

=
1

2

(
1

2
+

1

2
+ 2

1

2
cosφ

)
(114)

1 = 1 + cosφ , (115)

so we must have that φ = (2n + 1)π2 , where n ∈ Z. However, if we restrict the phase angle to the

domain (0, π), we get φ = π/2. The eigenstate of Ŝz associated with the positive eigenvalue is

|y+〉 =
1√
2

(
1

eiπ/2

)
=

1√
2

(
1
i

)
. (116)

We can now determine the state with the negative eigenvalue: |y−〉 = γ |z+〉+iδ |z−〉 with γ, δ ∈ R,
by enforcing orthonormality:

〈y − |y+〉 = 0 = (γ 〈z+| − iδ 〈z−|)
(

1√
2
|z+〉+ i

1√
2
|z−〉

)
=

1√
2

(
γ − δ(i)2

)
= γ + δ = 0 (117)

〈y − |y−〉 = 1 = γ2 + δ2 , (118)
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from which we see γ = −δ = 1/
√

2. So we can write the eigenvectors of Ŝy in the basis Bz:

|y+〉 =
1√
2

(
1
i

)
|y+〉 =

1√
2

(
1
−i

)
. (119)

Now that the eigenvectors have been determined, we can use the method applied in the previous
two sections to determine the projection operators P̂+x. We use the equivalents of Equations 96
and 97 for the y direction to write, for the state with the positive eigenvalue:

P̂+y |y+〉 =

[
a b
c d

](
1
i

)
1√
2

=

(
1
i

)
1√
2
⇒

{
a+ ib = 1

c+ id = i
(120)

P̂+y |y−〉 =

[
a b
c d

](
1
−i

)
1√
2

= 0 ⇒

{
a− ib = 0

c− id = 0
, (121)

from which we see a = ib and c = id, yielding b = −i/2 and d = 1/2. For the state with the
negative eigenvalue:

P̂−y |y+〉 =

[
e f
g h

](
1
i

)
1√
2

= 0 ⇒

{
e+ if = 0

g + ih = 0
(122)

P̂−y |y−〉 =

[
e f
g h

](
1
−i

)
1√
2

=

(
1
−i

)
1√
2
⇒

{
e− if = 1

g − ih = −i
, (123)

so e = −if and g = −id giving the result f = i/2 and h = 1/2. The projection operators are then

P̂+y =
1

2

[
1 i
−i 1

]
P̂−y =

1

2

[
1 −i
i 1

]
, (124)

from which we can form the spin operator in the exact same fashion as the previous sections. In
the Bz basis this is

Ŝy =
~
2

(P̂+y − P̂−y) =
~
2

[
0 −i
i 0

]
, (125)

with eigenvalues that are the magnitude of the projection of the spin angular momentum onto the
y axis.

3.4 Spin Matrices in Bz.

From the above, construct matrices for the spin operators: Ŝx, Ŝy, Ŝz in the Bz basis.

The method used in section 1.1 to find Ŝz was applied for Ŝx and Ŝy to find the spin operators
expressed in the basis Bz = {|z+〉 , |z−〉}. The general result for an arbitrary axis is

Ŝn =
~
2

(P̂+n − P̂−n) , (126)

so the spin operators are

Ŝx =
~
2

[
0 1
1 0

]
(127)

Ŝy =
~
2

[
0 −i
i 0

]
(128)

Ŝz =
~
2

[
1 0
0 −1

]
. (129)
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4 Problem #4: Hydrogen in Magnetic Field.

Consider the non-relativistic theory of the Hydrogen atom and initially omit the spin of the electron.

4.1 Ground State Energy Shift.

Calculate the shift in the ground state energy for Hydrogen in a uniform magnetic field. Compare
this shift with the relativistic shift of the ground-state energy. At what field strength are they equal?

The Hamiltonian for a charged particle of mass m, charge e, in the Coulomb potential is

Ĥ =
1

2m

[
p̂− e

c
A(r̂)

]2
− e2

r̂
, (130)

where, for a uniform magnetic field, the vector potential can be expressed as A = −1
2 r̂×B, where

B is the magnetic field, which is a constant, and therefore commutes with all observables. Let us
multiply out the kinetic energy term:

[p̂− qA(r̂)]2 = p̂2 +
e2

c2
A2 − e

c
p̂ ·A− e

c
Â · p̂ , (131)

since the momentum operator commutes with the vector potential (just a function of position).
Substituting in the vector potential, we see

[p̂− qA(r̂)]2 = p̂2 +
e2

4c2
(r̂×B)2 +

e

c
[p̂ · (r̂×B) + (r̂×B) · p̂] (132)

= p̂2 +
e2

4c2
(r̂2B2 − (r̂ ·B)2) +

e

c
[B · (p̂× r̂) + (p̂× r̂) ·B] (133)

= p̂2 +
e2

4c2
(r̂2B2 − (r̂ ·B)2) +

e

c
[B · (p̂× r̂)− (r̂× p̂) ·B] (134)

= p̂2 +
e2

4c2
(r̂2B2 − (r̂ ·B)2) +

e

c

[
B · −(L̂)− (L̂) ·B

]
, (135)

we can now define three components of the Hamiltonian:

Ĥ0 =
p̂2

2m
− e2

r̂
(136)

Ĥ1 =
e2B2

8mc2
r̂2⊥ (137)

Ĥ2 = − e

2mc
L̂ ·B = −µB

~
L̂ ·B , (138)

where, µB = e~/2mc is the Bohr magneton. The component of r̂ which is perpendicular to B is
denoted r̂⊥. In the case in which the magnetic field is aligned along the z axis, the perpendicular
component is

r̂2⊥ = x̂2 + ŷ2 = r2 sin2 θ cos2 φ+ r2 sin2 θ sin2 φ = r2 sin2 θ , (139)

which is clearly perpendicular to ẑ2 = r2 cos2 θ.

The wave function for the electron in the ground state of a Hydrogen atom, ignoring spin, is

|100〉 =
1√
πa30

e−r/a0 , (140)
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which has angular momentum quantum numbers l = ml = 0. This wave function does not interact
with the Ĥ2 term in the Hamiltonian, so to find the first-order correction to the energy of the
ground state, we simply calculate

ε
(1)
1 = 〈100| e

2B2

8mc2
r2 sin2 θ|100〉 =

1

πa30

e2B2

8mc2

∫ ∞
0

∫ π

0

∫ 2π

0
r2 sin2 θe−2r/a0r2 sin θdrdθdφ (141)

=
e2B2

4mc2a30

∫ ∞
0

∫ π

0
r2 sin2 θe−2r/a0r2 sin θdrdθ , (142)

after evaluating the azimuthal integral. The radial integral is

Ir =

∫ ∞
0

r4e−2r/a0dr =
4!

(2/a0)5
= a50

(
23(3)

25

)
=

3

4
a50 , (143)

and the polar integral is

Iθ =

∫ π

0
(1−cos2 θ) sin θdθ =

∫ −1
1

(1−x2)(−dx) =

(
x− 1

3
x3
) ∣∣∣∣1
−1

=
2

3
−
(

(−1) +
1

3

)
=

4

3
, (144)

which we can combine for a factor of a50. Therefore, the energy shift of the ground state due to the
presence of a magnetic field B = Bz, is

ε
(1)
1 = a50

e2B2

4mc2a30
=
e2a20B

2

4mc2
=
e2a20α

2

8ε0
B2 =

1

4

(
e2

2ε0

)
a20α

2B2 =
1

4
a30α

2B2 (145)

' (1.97e−30)B2 erg = (1.23e−18)B2 eV , (146)

when B is measured in gauss6, and using the Rydberg constant for Hydrogen, ε0 = 1
2mc

2α2, and
a0 = e2/(2ε0). From the results of problem 6, the energy shift due to the relativistic correction is

|ε(1)R | = ε0α
2

[
2− 3

4

]
=

5

4
ε0α

2 =
5

2

ε20
mc2

' 5

2

13.62

511e3
eV = 1.45e−15 erg = 9e−4 eV . (147)

For these effects to be comparable in magnitude7, it must be that

1 ∼
|ε(1)R |
|ε(1)1 |

=
5
4ε0α

2

1
4a

3
0α

2B2
= 5

ε0
a30

1

B2
' 7.34e14 (G)2

B2
⇒ B =

√
5
ε0
a30
' 2.7e7 G , (148)

which is incredibly large. We note the term ε0/a
3
0 is the expectation value of the energy density: it

is the energy of the unperturbed ground state divided by the mean volume of the Hydrogen atom
in the ground state.

6Dimenionally:[[
e2a20B

2

4mc2

]]
=

(esu)2(cm)2
(

esu
cm2

)2
g(cm/s)2

=
((cm)3/2(g)1/2(s)−1)4

g(cm)4(s)−2
= (cm)2g(s)−2 = erg

[[
1

4
a30α

2B2

]]
= (cm)3

(
esu

(cm)2

)2

=
((cm)3/2(g)1/2(s)−1)2

cm
= (cm)2g(s)−2 = erg

7Dimensionally: [[
ε0
a30

]]
=

erg

(cm)3
=

g(s)−2

cm
=

g(cm)3(s)−2

(cm)4
=

(
esu

(cm)2

)2

= (G)2
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4.2 Hydrogen Atom Magnetic Susceptibility.

Based on the above ground state energy calculate the magnetic susceptibility of the Hydrogen atom
and discuss the implications of your result.

Consider the term Ĥ1 in the Hamiltonian:

Ĥ1 =
e2B2

8mc2
r̂2⊥ =

e2

8mc2
(r2B2 − (r̂ ·B)2) =

e2

8mc2
(
r2BiBi − (riBi)(rjBj)

)
, (149)

using Einstein notation. By introducing the Kronecker delta, we can write the interaction term as

Ĥ1 =
e2

8mc2
(
r2BiBjδij − (riBi)(rjBj)

)
= − e2

8mc2
(
BirirjBj −Bir2δijBj

)
, (150)

which leads to the definition of the magnetic susceptibility,

χ̂ij =
e2

4mc2
(
rirj − r2δij

)
, (151)

so the interaction can be written

Ĥ1 = −1

2
Biχ̂ijBj . (152)

Since we have B pointing along the z axis, the only component that contributes to the interaction
is

χ̂33 =
e2

4mc2
(
z2 − r2

)
=

e2

4mc2
(
r2 cos2 θ − r2

)
= − e2

4mc2
r2 sin2 θ . (153)

The ground state has a magnetic susceptibility given by

χ100 = 〈100|χ̂ij |100〉 = − e2

4mc2
〈100|r2 sin2 θ|100〉 , (154)

the inner product is given by

〈100|r2 sin2 θ|100〉 = − 1

πa30

∫ ∞
0

∫ π

0

∫ 2π

0
(r2 sin2 θ)e−2r/a0(r2 sin θdrdθdφ) (155)

= − 2

a30

∫ ∞
0

r4e−2r/a0dr

∫ π

0
sin3 θdθ =

2

a30

(
3

4
a50

)(
4

3

)
= 2a20 , (156)

and the magnetic susceptibility of the spin-less ground state is then

χ100 = − e2

4mc2
(2a20) = − e2a20

2mc2
= −e

2a20α
2

4ε0
= −(2a0)a

2
0α

2

4
= −1

2
α2a30 = 3.95e−30cm3 , (157)

which because the susceptibility of the ground state is negative, it is diamagnetic. Note we can
alternatively express the susceptibility as

χ100 = −2
ε
(1)
1

B2
. (158)
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4.3 Spin Magnetic Moment.

Now include the spin of the electron. Calculate the mean magnetic moment for the Hydrogen in
its ground state in a field B. Is the ground state paramagnetic or diamagnetic?

If we now include spin, the an additional term is added to the Hamiltonian:

Ĥs = −ge
µB
~

Ŝ ·B = −2
µB
~
BŜz , (159)

because the magnetic field is aligned with the z axis. This contributes a first-order energy shift

ε(1)s = −2
µB
~
B 〈100ms|Ŝz|100ms〉 , (160)

where ms is the spin angular momentum z-projection quantum number (note the total spin angular
momentum quantum number s = 1

2 , so ms = ±1
2). The energy shift is then

ε(1)s = −2
µB
~
B(~ms) = ∓µBB , (161)

which is simply the Bohr magneton times the magnitude of the applied magnetic field. The negative
energy shift corresponds to ms = 1

2 term and the positive shift corresponds to the ms = −1
2 . The

energy of a magnetic dipole moment is given by

Ĥ = −µ ·B , (162)

which if we bra- and -ket with the ground state, we see

〈100|Ĥ|100〉 = 〈100| − µ ·B|100〉 = −〈100|µ|100〉 ·B = −〈µ〉 ·B , (163)

where the term on the left hand side is just the energy shift due to the spin interaction with the
magnetic field plus the correction from the term from section 4.1. Substituting in these two values,
we see

ε(1)s + ε
(1)
1 = ∓µBB +

1

4
a30α

2B2 = −〈µ〉 ·B , (164)

Therefore the mean magnetic moment of Hydrogen in the ground state is

〈µ〉 =

(
±µB +

1

4
a30α

2B

)
z , (165)

where z is a unit vector in the z direction. If the magnetic moment is negative, the energy is greater
than zero, and the moment is anti-aligned with the magnetic field and is therefore diamagnetic.
If it is positive, the energy is less than zero, and the moment is aligned with the magnetic field,
and is paramagnetic. The spin term dominates the expression and the dia-/para- magnetism of
the ground state is determined by the spin of the electron: it is diamagnetic if ms = −1

2 and
paramagnetic if ms = +1

2 . For the spin of the electron not to matter, we have

µB <
1

4
a20α

2B ⇒ B >
4µB
a30α

2
' 2.95e10 G , (166)

which is incredibly large. It is safe to say, that on earth, the dia-/para- magnetism of the ground
state of Hydrogen is determined only by the spin projection quantum number ms.
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4.4 Hydrogen Gas Magnetic Susceptibility.

Consider a gas of atomic Hydrogen at temperature T in a magnetic field of strength B. Calculate
the magnetic susceptibility of the gas including both the first- and second- order field terms in the
Hamiltonian. Note: you need to calculate the equilibrium occupation of each level of the magnetic
doublet. Plot your result as a function of B/T . Comment on the sign and magnitude of your results.

Since the correction due to the magnetic field without spin is much lower than the correction due
to the spin interaction, we can neglect that and say the energy of a state is (from Equation 161)
ε ≡ ∓µBB. Consider an ensemble of N Hydrogen atoms, where N+ of them have electrons with
ms = +1

2 and N− of them have electrons with ms = −1
2 , so N = N+ + N−. The occupancy ratio

for each spin projection is

N+

N
=
e−(−µBB)β

Z

N−
N

=
e−(µBB)β

Z
, (167)

where β = 1/kbT is the inverse temperature, and Z is the partition function, given by

Z =
∑
ε

e−βε = e−µBBβ + eµBBβ = 2 cosh(µBBβ) . (168)

The net magnetization of the ensemble is the net spin projection times the Bohr magneton:

M = (−µB)N+ + (µB)N− = µB
N

Z

(
eµBBβ − e−µBBβ

)
= N

2 sinh(µBBβ)

2 cosh(µBBβ)
(169)

= NµB tanh(µBBβ) = NµB tanh

(
µBB

kBT

)
(170)

note the magnetization is either along the positive or negative z axis (sign determined by above
equation). The magnitude of the result makes sense. Each atom contributes a Bohr magneton to
the total magnetic moment, and the maximum and minimum mangetizations are ±NµB, which
correspond to all the spins aligned, either up or down. For some combination where the spins are
not all aligned, we only get some fraction of this maximum magnetic moment, see the plot of the
magnetization in Figure 2.

Figure 2: The net magnetization of a gas of N Hydrogen atoms, each with magnetic moment ±µB,
where µB is the Bohr magneton.
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5 Shankar ∼15.2.4: Total Angular Momentum of Electron.

Consider an electron moving in the Coulomb field of a proton. The Hamiltonian commutes with
Ŝ2, L̂2, Ĵ2 and Ĵz = L̂z + Ŝz, where Ŝz = ~

2σz. Find the two-component Pauli spinor eigenfunctions
of the form

Ψ̂(r) =

(
ψ1(r)
ψ2(r)

)
, (171)

for this set of commuting observables. For an electron in a state with angular momentum quantum
numbers, (`, j,mj) calculate the possible values of the orbital and spin angular momentum pro-
jections (Lz and Sz), and the probabilities for observing the electron with these spin and orbital
projections. Calculate the mean values of Lz and Sz for an electron in the state |`, j,mj〉.

For an electron, s = 1
2 , so for any value of l, there are only two values of j = l ± 1

2 (since j must
have integer steps between levels). We know the total j states: |j,mj〉 = |l ± 1

2 ,mj〉, but we want
these in terms of states with definite ml and ms: |l,ml; s,ms〉 = |l,ml;

1
2 ,ms〉 ≡ |l,ml;ms〉. For a

given m, there are only two values of ml that can give j = l ± 1
2 :

|l + 1
2 ,mj〉 = α |l,m− 1

2 ; 1
2〉+ β |l,m+ 1

2 ;−1
2〉 ≡ α |α〉+ β |β〉 (172)

|l − 1
2 ,mj〉 = γ |l,m− 1

2 ; 1
2〉+ δ |l,m+ 1

2 ;−1
2〉 ≡ γ |γ〉+ δ |δ〉 . (173)

We can use orthonormality to show

〈l + 1
2 ,mj |l + 1

2 ,mj〉 = 1 = |α|2 + |β|2 (174)

〈l − 1
2 ,mj |l − 1

2 ,mj〉 = 1 = |γ|2 + |δ|2 (175)

〈l + 1
2 ,mj |l − 1

2 ,mj〉 = 0 = α∗γ + β∗δ , (176)

but to uniquely determine the constants α, β, γ, δ we need a fourth constraint. Consider the action
of the total angular momentum operator:

Ĵ2 |j,m〉 = ~2j(j + 1) |j,m〉 ⇒ Ĵ2 |l ± 1
2 ,m〉 = ~2(l ± 1

2)(l + (1± 1
2)) |l ± 1

2 ,m〉 (177)

Ĵ2 |l + 1
2 ,m〉 = ~2(l + 1

2)(l + 3
2) |l + 1

2 ,m〉 (178)

Ĵ2 |l − 1
2 ,m〉 = ~2(l − 1

2)(l + 1
2) |l − 1

2 ,m〉 . (179)

Additionally, if we write Ĵ = L̂ + Ŝ, we can express the total angular momentum operator Ĵ2 as

Ĵ2 = L̂2 + Ŝ2 + 2L̂ · Ŝ = L̂2 + Ŝ2 + 2L̂zŜz + L̂−Ŝ+ + L̂+Ŝ− , (180)

let us act each of the composite operators on the j = l + 1
2 state:

L̂2 |l + 1
2 ,m〉 = ~2l(l + 1)(α |α〉+ β |β〉) (181)

Ŝ2 |l + 1
2 ,m〉 = ~2s(s+ 1) =

3

4
~2(α |α〉+ β |β〉) (182)

2L̂zŜz |l + 1
2 ,m〉 = 2L̂zŜzα |l,m− 1

2 ; 1
2〉+ 2L̂zŜzβ |l,m+ 1

2 ;−1
2〉 (183)

= 2~
(
α(m− 1

2)(12) |l,m− 1
2 ; 1

2〉+ β(−1
2)(m+ 1

2) |l,m+ 1
2 ;−1

2〉
)

(184)

= ~
[
(m− 1

2)α |α〉 − (m+ 1
2)β |β〉

]
(185)

= ~
[
m(α |α〉 − β |β〉)− 1

2 (α |α〉+ β |β〉)
]
. (186)
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It is now useful to note the eigenvalues of spin raising and lowering operators:
Ĵ± =

√
j(j + 1)−m(m± 1), and Ŝ+ |ms = 1

2〉 = 0 = Ŝ− |ms = −1
2〉. Therefore:

L̂−Ŝ+ |l + 1
2 ,m〉 = αL̂−Ŝ+ |l,m− 1

2 ; 1
2〉+ βL̂−Ŝ+ |l,m+ 1

2 ;−1
2〉 (187)

= 0 + β
√

3
4 − (−1

2)(−1
2 + 1)L̂− |l,m+ 1

2 ; +1
2〉 (188)

= β
√
l(l + 1)− (m+ 1

2)(m− 1
2) |l,m− 1

2 ; 1
2〉 (189)

= β
√
l(l + 1)− (m2 − 1

4) |β〉 (190)

L̂+Ŝ− |l + 1
2 ,m〉 = αL̂+Ŝ− |l,m− 1

2 ; 1
2〉+ βL̂+Ŝ− |l,m+ 1

2 ;−1
2〉 (191)

= α
√

3
4 − (12)(12 − 1)L̂+ |l,m− 1

2 ;−1
2〉+ 0 (192)

= β
√
l(l + 1)− (m− 1

2)(m+ 1
2) |l,m− 1

2 ; 1
2〉 (193)

= β
√
l(l + 1)− (m2 − 1

4) |α〉 (194)

Summing these up, we have

Ĵ2(α |α〉+ β |β〉) =

{
~2l(l + 1) +

3

4
~2 + ~

(
m− 1

2

)
+
√
l(l + 1)− (m2 − 1

4)
β

α

}
α |α〉 (195)

+

{
~2l(l + 1) +

3

4
~2 − ~

(
m− 1

2

)
+
√
l(l + 1)− (m2 − 1

4)
α

β

}
β |β〉 , (196)

which simplifies to

Ĵ2(α |α〉+ β |β〉) = ~2l(l + 1)(α |α〉+ β |β〉+
3

4
~2(α |α〉+ β |β〉) (197)
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6 Shankar ∼17.3.4: Hydrogen Fine Structure.

The fine structure of atomic levels is determined by the leading order relativistic correction to the
kinetic energy of the orbital motion of the electron about the nucleus and the spin-orbit interaction
between the intrinsic magnetic moment of the electron (g = 2) and magnetic field in the rest frame
of the electron. For Hydrogen

Ĥ =
p̂2

2m
− e2

r̂
− 1

2mc2

(
p̂2

2m

)2

+ (g − 1)
1

2m2c2

(
e2

r̂3

)
Ŝ · L̂ . (198)

The first two terms are the kinetic and potential energy of Hydrogen in the non-relativistic limit.
The second term is the leading order (in v/c) correction to the kinetic energy, and the third term
is the spin-orbit interaction, also of order v/c. Show that the energy levels of Hydrogen to leading
order in v/c are given by

εnlj = −εn

{
1 +

(α
n

)2( n

j + 1
2

− 3

4

)}
, j = l ± 1

2
, j ≥ 1

2
, and l = 0, 1, . . . , (n− 1) , (199)

with εn = 1
2α

2mc2/n2, where α = e2/~c is the fine structure constant. Specifically evaluate the
relevant radial integrals, sketch the level structure for the the n = 2 shell and label each level with
the quantum numbers n, l, j. What is the wavelength of radiation associated with a 2p 3

2
↔2 p 1

2

transition?

Lettuce begin by defining the the total Hamiltonian as the sum of three components, as follows

Ĥ = Ĥ0 + ĤR + ĤS0 , (200)

where Ĥ0 is the Hamiltonian for an electron a coulomb potential created by a proton, ĤR is the
relativistic correction to the kinetic energy, and ĤSO is the potential energy due to the spin-orbit
interaction of the electron. The eigenvalues of the Hamiltonian, to first-order are then

εnlj = 〈ψ(0)
nlmjmj

|Ĥ0|ψ(0)
nlmjmj

〉+ 〈ψ(0)
nlmjmj

|ĤR|ψ(0)
nlmjmj

〉+ 〈ψ(0)
nlmjmj

|ĤSO|ψ(0)
nlmjmj

〉 , (201)

where |ψ(0)
nlmjmj

〉 are the unperturbed states of Hydrogen. The first matrix element is just the

energies of the Hydrogen spectrum, −εn = −ε0/n2 where ε0 is the Rydberg constant for Hydrogen:
ε0 = 1

2α
2mc2.

6.1 Relativistic Correction.

The relativistic correction to the kinetic energy is given by the third term in Equation 198,

ĤR = − 1

2mc2

(
p̂2

2m

)2

, (202)

which gives (noting that since this correction does not depend on spin we can ignore it and the
quantum numbers (l,m) and (j,mj) are redundant, so we are free to relabel our eigenstates as

|ψ(0)
nlm〉) first order corrections to the energy of

ε
(1)
R = 〈ψ(0)

nlm|ĤR|ψ(0)
nlm〉 = − 1

(2m)3c2
〈ψ(0)

nlm|p̂
4|ψ(0)

nlm〉 , (203)
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but using the unperturbed Hamiltonian Ĥ0, we can write8 the momentum operator as

p̂4 = (2m)2
(
p̂2

2m

)2

= 4m2

(
Ĥ0 +

e2

r

)2

, (204)

so the relativistic correction becomes

ε
(1)
R = − 1

2mc2
〈ψ(0)

nlm|
(
Ĥ0 +

e2

r

)2

|ψ(0)
nlm〉 = − 1

2mc2
〈ψ(0)

nlm|
(
Ĥ0

)2
+ 2Ĥ0

e2

r
+

(
e2

r

)2

|ψ(0)
nlm〉 (205)

after expanding the square. Using the fact that we know the eigenvalues of the unperturbed
Hamiltonian we can write this as

ε
(1)
R = − 1

2mc2

[
(εn)2 + 2εne

2 〈ψ(0)
nlm|r

−1|ψ(0)
nlm〉+ e4 〈ψ(0)

nlm|r
−2|ψ(0)

nlm〉
]
, (206)

which is easily evaluated if the expectation values of r−1 and r−2 are known. The first is easy to
calculate using the viral theorem9, which yields

− 2εn = e2 〈ψ(0)
nlm|r

−1|ψ(0)
nlm〉 , (207)

reducing the first order relativistic correction to

ε
(1)
R = − ε2n

2mc2

[
1− 4 +

e4

ε2n
〈ψ(0)

nlm|r
−2|ψ(0)

nlm〉
]
. (208)

The final expectation value can be calculated by considering a perturbation to the Coulomb Hamil-
tonian of the form λ/r2:

Ĥ ′(λ) = Ĥ0 +
λ

r2
, (209)

which we note has the same r dependence as the centrifugal term in the radial wave function of
Hydrogen10, which means we can express the Hamilton including the perturbation as

Ĥ ′ =

{
d2

dr2
+

2m

~2

[
E +

e2

r
− 1

r2

(
~2l(l + 1)

2m
+ λ

)]}
UEl = 0 , (210)

so the exact eigenstates are those of Hydrogen, but with a modified centrifugal term. For this to be
the case, we must have the coefficient of r−2 in the form (~2/2m)l̃(l̃+ 1), so we have the condition

~2

2m
l̃(l̃ + 1) =

~2

2m

(
l(l + 1) +

2mλ

~2

)
(211)

l̃(l̃ + 1) = l(l + 1) +
2mλ

~2
, (212)

so if we write l̃ as a function of λ, we have the energy spectrum11:

E(λ) = − me4

2~2(k + l̃(λ) + 1)2
= E(0) + E(1) + . . . , (213)

8Following the treatment in Shankar, page 466 to 471.
9Shankar, Principles of Quantum Mechanics, 2 ed. Equation 13.1.34.

10Shankar, Principles of Quantum Mechanics, 2 ed. Equation 13.1.2.
11Using the energy spectrum of Hydrogen, Shankar equation 13.1.14.
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where k is the number of nodes in the eigenfunction, with k, l̃(λ) ∈ Z. The above expression
for energy, is the exact result, be we are only interested in the first order correction due to the
perturbation λ/r2, so we can Taylor expand this around λ = 0, and consider the second term (linear
in λ) 〈

λ

r2

〉
= E(1) = λ

(
∂E(λ)

∂λ

) ∣∣∣∣
λ=0

= λ

(
∂E(λ)

∂l̃

∂l̃

∂λ

)∣∣∣∣
λ=0

(214)

using the chain rule. Let us calculate these derivatives:

∂E(λ)

∂l̃
=

(
−me

4

2~2

)(
(−2)

(k + l̃(λ) + 1)3

)
(215)

2l̃
dl̃

dλ
+

dl̃

dλ
=

2m

~
⇒ dl̃

dλ
=

2m

~2(2l̃(λ) + 1)
, (216)

and we can note that l̃(λ = 0) = l. We can now write〈
λ

r2

〉
= λ

(
me4

~2(k + l + 1)3

)
2m

~2(2l + 1)
= λ

(
2m2e4

~4
1

(k + l + 1)3(2l + 1)

)
, (217)

but we have the principal quantum number n defined as k + l + 1, and define the Bohr radius
a0 = ~2/me2, so we have〈

λ

r2

〉
= λ

(
me4

~2(k + l + 1)3

)
2m

~2(2l + 1)
= λ

(
m2e4

~4
1

n3(l + 1
2)

)
= λa−20

1

n3(l + 1
2)

. (218)

We can now write Equation 208 as

ε
(1)
R = − ε2n

2mc2

[
1− 4 +

e4

ε2n

(
1

a20

1

n3(l + 1
2)

)]
. (219)

An alternate expression of the Rydberg constant for Hydrogen is ε0 = 1
2
e2

a0
, so that e4/a20 =

(21
2e

2/a20)
2 = 4ε20. This makes simplifies the final term to

ε
(1)
R = − ε2n

2mc2

[
−3 +

ε20/n
4

ε2n

(
4n

(l + 1
2)

)]
= − ε2n

2mc2

[
−3 +

4n

(l + 1
2)

]
, (220)

using the fine structure constant, we can write the unperturbed energy levels of Hydrogen as

ε2n =
1

4n2
α4m2c4 , (221)

which we can insert into our result to obtain

ε
(1)
R = −1

2
(mc2)2α4

[
− 3

4n4
+

1

n3(l + 1
2)

]
= −εn

α2

n2

[
n

(l + 1
2)
− 3

4

]
. (222)

Page 23 of 27



Dylan J. Temples Northwestern University, Quantum Mechanics II : Solution Set Four

6.2 Spin-Orbit Correction.

Consider the total angular momentum operator Ĵ = L̂ + Ŝ, the square of this operator is

Ĵ2 = L̂2 + Ŝ2 + 2L̂ · Ŝ , (223)

by noting that L̂ and Ŝ commute. We can write the spin-orbit perturbation as

ĤSO = (2− 1)
1

2m2c2

(
e2

r̂3

)
Ŝ · L̂ =

e2

4m2c2r̂3
[Ĵ2 − L̂2 − Ŝ2] , (224)

and the basis that diagonalizes this perturbation is |n, lsjmj〉, where mj is the total angular mo-
mentum projection onto the z axis, and since we are dealing with an electron, s = 1

2 . We can note

for l = 0 this term vanishes, because the eigenvalue of L̂ = 0, furthermore this means l = 0, and so
j = s, and the term vanishes regardless of the expression chosen. The first order correction to the
energy due to this perturbation is

ε
(1)
SO =

e2

4m2c2
〈n, l, 12 , j,mj |

1

r̂3
[Ĵ2 − L̂2 − Ŝ2]|n, l, 12 , j,mj〉 (225)

=
e2

4m2c2
〈n, l|r−3|n, l〉

(
〈j|Ĵ2|j〉 − 〈l|L̂2|l〉 − 〈12 |Ŝ

2|12〉
)

(226)

=
e2

4m2c2
~2
[
j(j + 1)− l(l + 1)− 1

2(32)
]
〈r−3〉 , (227)

where only the relevant quantum numbers are listen on each inner product. Again since s = 1
2 , we

have j = l ± 1
2 , so, the angular momentum sum becomes

(l ± 1
2)2 + (l ± 1

2)− l2 − l − 3
4 = ±l − (12 ∓

1
2) , (228)

which give the results l, and −(l + 1). These give upper and lower bounds on j, but it can take
any value in between these, in integer steps. In this case, we have that j must be an integer.

Now we must calculate the expectation value of r−3 for a state with arbitrary n, l. First consider
the radial momentum

p̂r = −i~
(
∂

∂r
+

1

r

)
⇒ p̂2r = −~

(
∂2

∂r2
+

1

r2
+

1

r

∂

∂r
− 1

r2
+

1

r

∂

∂r

)
(229)

= −~2
(
∂2

∂r2
+

2

r

∂

∂r

)
, (230)

and if we note
1

r2
∂

∂r
r2
∂

∂r
=

1

r2

(
2r

∂

∂r
+ r2

∂2

∂r2

)
=

∂2

∂r2
+

2

r

∂

∂r
, (231)

we can write the radial kinetic energy as

p̂2r
2m

= − ~2

2m

1

r2
∂

∂r
r2
∂

∂r
. (232)

If we substitute the definition of the total orbital angular momentum operator12 and the radial
kinetic energy into the Schrödinger equation in spherical coordinates13, we find

Ĥ =
p̂2r
2m

+
L̂2

2mr2
− e2

r
, (233)

13Shankar, Principles of Quantum Mechanics, 2 ed. Equation 12.5.36.
13Shankar, Principles of Quantum Mechanics, 2 ed. Equation 12.6.1.
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for the Coulomb potential. We now consider the commutator of the Hamiltonian and the radial
momentum, in the energy eigenstates |nl〉:

〈nl|[Ĥ, p̂r]|nl〉 = 〈nl|Ĥp̂r|nl〉 − 〈nl|p̂rĤ|nl〉 = εn 〈nl|p̂r|nl〉 − 〈nl|p̂r|nl〉 εn = 0 , (234)

so these operators commute in the hydrogen energy eigenbasis. We can now explicitly calculate the
commutator:

[Ĥ, p̂r] =

[
p̂2r
2m

+
L̂2

2mr2
− e2

r
, p̂r

]
∼

[
L̂2

r2
, p̂r

]
−
[

1

r
, p̂r

]
, (235)

where the first commutator is zero, because every operator commutes with itself. Since the angular
momentum operator only depends on angular coordinates and the radial momentum only depends
on the radial coordinate, [L̂2, p̂r] = 0, so we just need to know the commutator,

[r−n, p̂r] = r−np̂r − p̂rr−n , (236)

we can compare this to [f(x), p̂x], where f(x) is an arbitrary function. The canonical commutation
relation tells us [f(x), p̂x] = i~∂f∂x , so

[r−n, p̂r] = i~
∂

∂r

(
r−n

)
= −i~nr−(n+1) . (237)

With this information, Equation 235 becomes

[Ĥ, p̂r] =
L̂2

2m
(−2i~r−3)− e2(−i~−2) = −i~

(
1

m

L̂2

r3
− e2 1

r2

)
, (238)

which we know in the energy eigenbasis is zero, so

0 = −i~ 〈nl| 1
m

L̂2

r3
− e2 1

r2
|nl〉 =

1

m
〈nl| L̂

2

r3
|nl〉 − e2 〈nl| 1

r2
|nl〉 (239)

e2 〈nl|r−2|nl〉 =
~2l(l + 1)

m
〈nl|r−3|nl〉 , (240)

which if we substitute in Equation 218, we see

〈r−3〉 =
me2

~2
〈r−2〉
l(l + 1)

=
1

a0l(l + 1)

1

a20n
3(l + 1

2)
=

1

a30n
3

1

l(l + 1)(l + 1
2)

. (241)

We can insert this to Equation 227 to obtain the result

ε
(1)
SO =

e2~2

4m2c2
1

a30n
3

j(j + 1)− l(l + 1)− 3
4

l(l + 1)(l + 1
2)

, (242)

we can express the constants as follows:

e2~2

4m2c2
1

a30n
3

=
1

n3
e2~2

4m2c2a20

(
me2

~2

)
=

n

n4
e4

a20

1

mc2
=
nε2n
mc2

=
1

4
α4mc2

1

n3
. (243)

If we choose the expression in terms of the Hydrogen energy levels, we find the first-order energy
correction due to the spin orbit interaction is

ε
(1)
SO = ε2n

n

mc2
j(j + 1)− l(l + 1)− 3

4

l(l + 1)(l + 1
2)

=
1

2
εn
α2

n

j(j + 1)− l(l + 1)− 3
4

l(l + 1)(l + 1
2)

(244)
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6.3 Total First-Order Energy.

The total energy for a state |nlj〉, to first-order, is given by the sum of the three contributions

εnlj = −εn + ε
(1)
R + ε

(1)
SO , (245)

which, gathering our results is

εnlj = εn − εn
α2

n2

[
n

(l + 1
2)
− 3

4

]
+

1

2
εn
α2

n

j(j + 1)− l(l + 1)− 3
4

l(l + 1)(l + 1
2)

, (246)

which we can evaluate for the upper and lower bounds j = l ± 1
2 .

6.3.1 Electron with j = l + 1
2

For j = l+ 1
2 , the numerator in the spin orbit term is simply l, but we have l = j− 1

2 , so Equation 246
becomes

εnlj = −εn − εn
α2

n2

[
n

j
− 3

4

]
+

1

2
εn
α2

n

j − 1
2

j(j2 − 1
4)

(247)

= −εn

{
1 +

α2

n

([
1

j
− 3

4n

]
− 1

2

j − 1
2

j(j2 − 1
4)

)}
(248)

= −εn

{
1 +

α2

n

(
1

j + 1
2

− 3

4n

)}
, (249)

which is the expected result, from Equation 199 (just pull out a facgtor of 1/n from the inner
parenthesis). Note Mathematica was used only for simplification in the final step, because I have
more of this assignment to finish, and algebra is a waste of my time.

6.3.2 Electron with j = l + 1
2

For j = l− 1
2 , the numerator in the spin orbit term is −(l+1), but we have l = j+ 1

2 , so Equation 246
becomes

εnlj = −εn − εn
α2

n2

[
n

j + 1
− 3

4

]
+

1

2
εn
α2

n

−(j + 3
2)

(j + 1
2)(j + 3

2)(j + 1)
(250)

= −εn

{
1 +

α2

n

([
1

j + 1
− 3

4n

]
− 1

2

−(j + 3
2)

j3 + 3j2 + 11j
4 + 3

4

)}
(251)

= −εn

{
1 +

α2

n

(
1

j + 1
2

− 3

4n

)}
, (252)

which is the expected result, from Equation 199.

6.4 First Excited State.

For the n = 2 shell, the first excited state, we have, for both j = l ± 1
2

ε2lj = −ε0
4

{
1 +

α2

4

(
1

j + 1
2

− 3

16

)}
, (253)
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with l = 0, 1, we see the possible energies for this level are

ε
20

1
2

= ε
21

1
2

= −ε0
4

{
1 +

α2

2

(
1

1
2 + 1

2

− 3

8

)}
= −ε0

4

(
5α2

16
+ 1

)
(254)

ε
21

3
2

= −ε0
4

{
1 +

α2

2

(
1

3
2 + 1

2

− 3

8

)}
= −ε0

4

(
α2

16
+ 1

)
, (255)

so we see both states are shifted down. These shifts are plotted in Figure 3. The difference in
energy between these states is

∆ε = ε
21

3
2
− ε

21
1
2

=
α2ε0
16

. (256)

A photon with this energy will mediate a transition between the 2p 3
2

and 2p1/2 states. Using the

relationship between wavelength and energy, we have

λ =
hc

|∆ε|
= 16

hc

α2ε0
= 16

(6.626e−27erg·s)(3e10cm · s−1)(1372)

(13.6)eV
(257)

= 16
(6.626e−27erg·s)(3e10cm · s−1)(1372)

(2.18e−11erg)
(258)

= 2.73cm , (259)

which is in the microwave regime.

Figure 3: Energy splitting diagram of the n = 2 states of the Hydrogen atom, due to fine struc-
ture. E0 is the Rydberg constant for Hydrogen (-13.6 eV). The eigenstates of the unperturbed
Hamiltonian are denoted |n = 2, l, j〉.
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