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1 Quantization of Free Radiation Field.

Canonical quantization of the free radiation field a la Dirac leads to Einstein and Planck’s quan-
tization of the energy of the radiation field in terms of the fundamental quantum of energy,
εk = ~ωk = ~c|k|, where h = 2π~ is Planck’s constant and c is the speed of light. This procedure
also shows that each quantum of the radiation field carries momentum ~k and angular momentum
±~ for the two helicity states, ek±, and thus to the particle interpretation of the quanta as photons
carrying momentum, energy and spin angular momentum. The multi-mode Fock states,

|{nk}〉 =
∏
k

(a†k)
nk

√
nk!
|0〉 , (1)

are energy eigenstates for pure radiation. Note that I use the short-hand notation, k = (k, λ).
Consider the pure radiation field in thermal equilibrium with an external heat bath held at fixed
temperature, T . Since photon number in any mode is not a conserved quantity, thermal equilibrium
of the radiation at temperature T is described by the density matrix for the Canonical ensemble,

ρc =
1

Z
e−βH =

∏
k

1

Zk
e−βHk , (2)

where β = 1/kBT and kB is Boltzmann’s constant. The factorization of the density matrix
occurs because there are no interactions between photons and the Hamiltonian is simply, H =∑

k εk(a
†
kak + 1

2). Note that the single mode partition function is given by Zk = Tr
{
e−βHk

}
.

1.1 Single-Mode Partition Function.

Express the single-mode partition function as a sum over the number of photons in the Fock states.

The single mode partition function is given by

Zk =

∞∑
nk=0

〈nk|e
−β~ωk

(
â†kâk+ 1

2

)
|nk〉 = e−β~ωk/2

∞∑
nk=0

〈nk|e−β~ωkN̂k |nk〉 , (3)

where N̂k = â†kâk is the occupation number operator for mode k. If we expand the exponential

into an infinite sum, we see we have terms with N̂m
k where m is an integer, which when acting on

the state |nk〉 simply returns the occupation number nk to the same power. This infinite series
representing the exponential can then be written as the exponential with the operator replaced
with its eigenvalue. Therefore the single mode partition function is

Zk = e−β~ωk/2
∞∑

nk=0

e−β~ωknk = e−β~ωk/2

(
eβ~ωk

eβ~ωk − 1

)
, (4)

which if we multiply and divide by e−β~ωk , we obtain

Zk = e−β~ωk/2

(
1

1− e−β~ωk

)
=

1

2
csch

(
βω~

2

)
. (5)
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1.2 Mean Number of Photons per Mode.

Evaluate the mean number of photons for mode of k in equilibrium with a heat bath at temperature
T ,

n̄k =
1

Zk
Tr
{
e−βHka†kak

}
, (6)

in terms of kB, T , ~, c and |k|. Note: You need only evaluate the sum over photon occupation for
the partition function in order to compute n̄k.

The trace of the indicated operator is given by

∞∑
nk=0

〈nk|e−βHka†kak|nk〉 =
∞∑

nk=0

〈nk|e−β~ωk(N̂k+ 1
2

)N̂k|nk〉 = e−β~ωk/2
∞∑

nk=0

nke
−β~ωknk , (7)

using the same reasoning as the previous section to deal with the exponential. The form of this
sum is well-known, and thus the average occupation number per mode is given by

n̄k =
1

Zk
e−β~ωk/2

e−β~ωk

(1− e−β~ωk)
2 , (8)

after we divide by the single-mode partition function (using the first expression in Equation 5) we
obtain

n̄k =
e−β~ωk

1− e−β~ωk
, (9)

which if we multiply and divide by an exponential of the same argument, only positive, we obtain

n̄k =
1

eβ~ωk − 1
, (10)

which is the Bose-Einstein distribution, which we expect for photons.

1.3 Frequency Distribution.

The mean energy density of radiation in thermal equilibrium can be expressed as an integral over
the spectral energy density, ρω,

ε̄(T ) =

∫ ∞
0

dωρω . (11)

Derive the formula for the distribution ρω by summing the mean energy in each mode over all
modes k and photon polarization states, λ.

The average energy per mode is given by

ε̄k =
1

Zk
Tr
{
e−βHkHk

}
=

1

Zk
Tr

{
e−β~ωk(N̂k+ 1

2)~ωk
(
N̂k +

1

2

)}
, (12)

using the Fock basis to evaluate the trace, we have

ε̄k =
1

Zk

∞∑
nk=0

〈nk|e
−β~ωk

(
N̂k+

1
2

)
~ωk

(
N̂k + 1

2

)
|nk〉 =

e−β~ωk/2

Zk

∞∑
nk=0

e−β~ωknk~ωk
(
nk + 1

2

)
. (13)
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We can separate this sum into two terms: the energy due to the radiation ε̄rad and the energy of
the vacuum ε0:

ε̄k = ε̄rad(k) + ε0 , (14)

and so the average radiation energy is simply

ε̄rad(k) =
e−β~ωk/2

Zk

∞∑
nk=0

e−β~ωknk~ωknk . (15)

If we compare this with Equation 7, we see the average radiation energy of a single mode is given
by

ε̄rad(k) = ~ωkn̄k , (16)

and so the average radiation energy over all modes is

ε̄rad =
∑
k,λ

~ωkn̄k , (17)

which we may approximate as an integral if the spacing in |k| is small enough:

ε̄rad = 2

∫
1

(2π)3
d3k~ωkn̄k =

2

(2π)3

∫ ∞
0

k2dk~ωkn̄k
∫

dΩk̂

dΩ , (18)

where we acquired a factor of two by carrying out the sum over both polarization states λ. The
angular integration simply gives a factor of 4π, and using the dispersion relation ω = ck, we can
write this as an integral over the frequency

ε̄rad =
8π

(2π)3
~
∫ ∞

0

ω2dω

c3
ωn̄k =

~
π2c3

∫ ∞
0

ω3dω

eβ~ω − 1
, (19)

after substituting in Equation 10. If we compare this to the given definition of the spectral energy
density, we find

ρω =
~ω3

π2c3

1

eβ~ω − 1
. (20)

1.4 Radiant Energy Density.

Show that the total radiant energy density at temperature T scales as

ε̄(T ) = σT p . (21)

Determine the power p, and evaluate the Stefan-Boltzmann constant, σ, in units of J ·m−3 ·K−p.
Hint: Once you obtain the scaling law for ε̄(T ), σ will be determined by fundamental constants
and a dimensionless integral, S , which can be expressed as an infinite series of the form,

S =

∞∑
m=1

∫ ∞
0

xp−1e−mxdx , p > 1 . (22)

Use the properties of the Gamma and Riemann Zeta functions to calculate S 1.

1M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1970.
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Let us begin from Equation 19, defining x = β~ω, giving the radiant energy density to be

ε̄rad =
~

π2c3

∫ ∞
0

(
x
β~

)3
dx
β~

ex − 1
=

1

π2(~c)3

1

β4

∫ ∞
0

x3dx

ex − 1
. (23)

If we note the inverse temperature can be written 1/β = kBT , where kB is the Boltzmann constant,
the radiant energy density as a function of temperature is

ε̄rad =

[
k4
B

π2(~c)3

∫ ∞
0

x3dx

ex − 1

]
T 4 , (24)

and since everything but the temperature is a constant, we may define the Stefan-Boltzmann
constant as

σ =
k4
B

π2(~c)3

∫ ∞
0

x3dx

ex − 1
. (25)

Let us turn our attention to evaluating the dimensionless integral - we can maneuver it into the
given form (Equation 22) by showing

x3dx

ex − 1
= x(4−1)

∞∑
m=1

e−mx . (26)

Start by considering the following sum:

∞∑
m=0

e−mx =
ex

ex − 1
=

1

1− e−x
, (27)

but the sum can also be written

∞∑
m=0

e−mx = 1 +
∞∑
m=1

e−mx , (28)

so combining the two we see

∞∑
m=1

e−mx =
1

1− e−x
− 1 =

1− (1− e−x)

1− e−x
=

e−x

1− e−x
=

1

ex − 1
, (29)

so in fact, Equation 26 holds true. Now the integral can be written∫ ∞
0

x3dx

ex − 1
=
∞∑
m=1

∫ ∞
0

x(4−1)e−mxdx , (30)

let us evaluate this making a substitution u = mx:

∞∑
m=1

∫ ∞
0

( u
m

)3
e−u

du

m
=

∞∑
m=1

1

m4

∫ ∞
0

u3e−udu =

∞∑
m=1

Γ(4)

m4
= Γ(4)ζ(4) , (31)

where ζ(q) is the Riemann zeta function. The Stefan-Boltzmann constant is then

σ =
k4
B

π2(~c)3
Γ(4)ζ(4) =

k4
B

π2(~c)3

(
3!π4

90

)
=

k4
Bπ

2

15(~c)3
= 7.5657× 10−16 J ·m−3 ·K−4 . (32)
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2 Selection Rules for Transitions of Hydrogenic Atoms.

Derive the selection rules for electric dipole (E1), magnetic dipole (M1) and electric quadrupole (E2)
transitions for Hydrogenic atoms. Show that the spontaneous decay of the 2s state of hydrogen by
one-photon emission is strictly forbidden in the non-relativistic limit.

The atomic Hamiltonian of an electron in a Hydrogenic atom is given by

Ĥatom =
p̂2

2m
+ V̂ (r̂) , (33)

where V̂ (r̂) is the Coulomb potential due to the nuclear charge Ze. This atom couples to the
free radiation field denoted by the vector potential operator Â(r̂, t), using the Coulomb gauge
(∇ · Â = 0), which replaces the momentum operator p̂ with the kinetic momentum operator
Π̂ = p̂− (e/c)Â. The system Hamiltonian becomes

Ĥ =
1

2m

(
p̂− (e/c)Â

)2
+ V̂ (r̂) + Ĥrad , (34)

where the radiation Hamiltonian is given by

Ĥrad =

∫
dV

1

8π


∣∣∣∣∣−1

c

∂Â

∂t

∣∣∣∣∣
2

+
∣∣∣∇× Â

∣∣∣2
 . (35)

We may now focus on the interaction Hamiltonian, found by expanding the kinetic term in the
atomic Hamiltonian:

Ĥint = − e

2c

{
p̂

m
· Â + Â · p̂

m

}
+

e2

2mc2
|Â|2 , (36)

note the pure momentum term is not included in the interaction Hamiltonian (it is part of the
original atomic Hamiltonian). It has been shown previously that [p̂, Â] = 0, so the first term
simplifies. The system Hamiltonian can now be expressed as

Ĥ = Ĥatom + Ĥrad + Ĥint . (37)

The quantized free radiation field operator Â of a single mode k ≡ (k, λ) is given by

Âk(r̂, t) =

√
2π~c2

V ωk

{
âkeke

i(k·r−ωt) + â†ke
∗
ke
−i(k·r−ωt)

}
, (38)

which implies the second term (modulus square of this operator) in the interaction Hamiltonian
involves terms that only have products of two creation or annihilation operators. Therefore this
term corresponds to two-photon processes, which we are not concerned with, and may be neglected,
allowing the interaction Hamiltonian to be written as

Ĥint = −e
c

{
Â · p̂

m

}
= −e

c

∑
k,λ

{
Âk ·

p̂

m

}
(39)

= − e

mc

∑
k,λ

√
2π~c2

V ωk

{
âk(ek · p̂)ei(k·r̂−ωt) + â†k(e

∗
k · p̂)e−i(k·r̂−ωt)

}
. (40)
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Using Fermi’s Golden rule, the interaction rate for an individual mode is given by

Γn→n′(k) =
2π

~

∣∣∣〈n′;Nk + 1|Ĥint|n;Nk〉
∣∣∣2 δ[(En′ + (Nk + 1)~ωk)− (En +Nk~ωk)] . (41)

Let us examine the matrix element

〈n′;Nk + 1|Ĥint|n;Nk〉 =

− e

mc

√
2π~c2

V ωk
〈n′;Nk + 1|âk(ek · p̂)ei(k·r̂−ωt) + â†k(e

∗
k · p̂)e−i(k·r̂−ωt)|n;Nk〉 , (42)

note that we can act the creation or annihilation operator to the left:

〈Nk + 1|âk|Nk〉 =
[
â†k |Nk + 1〉

]†
|Nk〉 =

√
Nk + 2 〈Nk + 2|Nk〉 = 0 (43)

〈Nk + 1|â†k|Nk〉 = [âk |Nk + 1〉]† |Nk〉 =
√
Nk + 1 〈Nk|Nk〉 =

√
Nk + 1 , (44)

and see that the first term in Equation 39 does not contribute. Using this result, the matrix element
becomes

〈n′;Nk + 1|Ĥint|n;Nk〉 = −e
c

√
2π~c2

V ωk

√
Nk + 1 〈n′|(e∗k ·

p̂

m
)e−i(k·r̂−ωt)|n〉 , (45)

and thus the rate for a single mode is

Γn→n′(k) =
2π

~

∣∣∣∣∣∣−ec
√

2π~c2

V ωk

√
Nk + 1 〈n′|(e∗k ·

p̂

m
)e−i(k·r̂−ωt)|n〉

∣∣∣∣∣∣
2

δ[~ω − ~ωk] (46)

=
2π

~

(e
c

)2 2π~c2

V ωk
(Nk + 1)

∣∣∣∣〈n′|e∗k · p̂

m
e−i(k·r̂−ωt)|n〉

∣∣∣∣2 δ[~ω − ~ωk] , (47)

upon further simplification, we obtain

Γn→n′(k) =
4π2e2

V ωk
(Nk + 1)

∣∣∣∣〈n′|ek · p̂

m
eik·r̂|n〉

∣∣∣∣2 δ[~ωk − ~ω] , (48)

noting that the time components of the exponential cancel in the modulus squared, which also
allows us to replace the constants in the operator with their complex conjugates. Note the above
form is for a transition that emits a photon, whereas for a transition that absorbs a photon, we
have that Nk + 1 → Nk, but the functional form remains the same. To find the total rate, we
integrate over all k and pick up a factor of two for the polarization sum:

Γn→n′ =

∫
d3k

(2π)3

8πe2

ωk
(Nk + 1)

∣∣∣∣〈n′|ek · p̂

m
eik·r̂|n〉

∣∣∣∣2 δ(k − ω/c) 1

~c
. (49)

All of the physics of the transition is contained in the matrix element, which we will define as

Mnn′ = 〈n′|ek ·
p̂

m
eik·r̂|n〉 = 〈n′|ek ·

p̂

m
|n〉+ 〈n′|ek ·

p̂

m
(ik · r̂)|n〉 , (50)
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after expanding the exponential and retaining the first two terms. Using Einstein notation, the
second term can be written

i

m
〈n′|(ek)αp̂αkβ r̂β)|n〉 =

ieαkk
β

m
〈n′|p̂αr̂β|n〉 , (51)

and rewriting the remaining operator yields

p̂αr̂β =
1

2
(p̂αr̂β − p̂β r̂α) +

1

2
(p̂αr̂β + p̂β r̂α) . (52)

We may then write the matrix element from the Golden rule as

Mnn′ = 〈n′|ek ·
p̂

m
|n〉+

ieαkk
β

2m
〈n′|p̂αr̂β − p̂β r̂α|n〉+

ieαkk
β

2m
〈n′|p̂αr̂β + p̂β r̂α|n〉 (53)

Mnn′ =M(E1)
nn′ +M(M1)

nn′ +M(E2)
nn′ , (54)

and we may identify the terms as the electric dipole transition (E1), the magnetic dipole transition
(M1), and the electric quadrupole transition (E2), respectively.

2.1 Electric Dipole.

It may not be obvious the first matrix element corresponds to an electric dipole operator. However,
consider the commutator of the position operator and the atomic Hamiltonian:

[r̂, Ĥatom] = [r̂, p̂2/2m] + [r̂, V̂ (r̂)] = i~
p̂

m
+ [r̂, V̂ (r̂)] , (55)

but since the potential only depends on the position operator, their commutator is zero. We are
left with the relation

p̂

m
=

1

i~
[r̂, Ĥatom] =

1

i~

(
r̂Ĥatom − Ĥatomr̂

)
, (56)

which makes the matrix element

M(E1)
nn′ =

1

i~
〈n′|ek ·

p̂

m
|n〉 =

1

i~
〈n′|r̂Ĥatom · ek|n〉 −

1

i~
〈n′|Ĥatomr̂ · ek|n〉 (57)

=
1

i~
〈n′|(r̂ · ek)Ĥatom|n〉 −

1

i~
〈n′|Ĥatom(r̂ · ek)|n〉 =

En − En′

i~
〈n′|r̂ · ek|n〉 , (58)

which is clearly the electric dipole operator. Transitions are allowed when this matrix element
is nonzero (as long as there are no degenerate energy levels). In Hydrogenic atoms, there is the
principal quantum number n, the total angular momentum `, and the projection of the angular
momentum onto the z axis, m, so the states2 |n〉 → |n`m〉. We are therefore interested in the
behavior3 of the matrix element

〈n′`′m′|r̂ · ek|n`m〉 =

∫
(r2drdΩr̂)R

∗
n′`′(r)Y

∗
`′m′(θ, φ)(r · ek)Rn`(r)Y`m(θ, φ) , (59)

2A state |n`m〉 can be represented in the coordinate basis as Rn`(r)Y`m(θ, φ) - denoting the radial and angular
parts separately, and is properly normalized.

3Only interested in cases in which the matrix element is zero, specific values of the matrix element for each state
|n`m〉 are different and do not affect the selection rules.
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which in general will depend on the coordinate operators x̂, ŷ, ẑ. But it is easily shown that the
coordinates are related to spherical harmonics by

z ∼ Y1,0(θ, φ) (60)

x± iy ∼ Y1,±1(θ, φ) , (61)

therefore these relations can be elevated to the quantum mechanical operators in the same way.
We may then represent the scalar product of the electron position and the polarization direction as
a generic ` = 1 spherical harmonic, Y1t(θ, φ). If we insert this into the integral shown above, and
separate into radial and angular components, we see

M(E1)
nn′ ∝

∫
r2dr(r)R∗n′`′(r)Rn`(r)

∫
dΩr̂Y

∗
`′m′(θ, φ)Y1t(θ, φ)Y`m(θ, φ) , (62)

with t ∈ {−1, 0, 1}. In general, there is a sum over t due to the fact the polarization vector may have
components in all three Cartesian directions. The radial integral does not provide information on
selection rules because there is no orthonormality condition, as there is with the spherical harmonics.
Therefore, we can conclude that all selection rules for electric dipole transitions in a Hydrogenic
atom are due to the angular integral implicit in the corresponding matrix element. The integral of
three spherical harmonics over the unit sphere is given4 by√

(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
0 0 0

)(
`1 `2 `3
m1 m2 m3

)
, (63)

where the 6-element objects are Wigner 3j-symbols. These symbols are nonzero if the following
four conditions are satisfied:

1. m1 ∈ {−|`1|, . . . , |`1|}, m2 ∈ {−|`2|, . . . , |`2|}, and m3 ∈ {−|`3|, . . . , |`3|}

2. m1 +m2 = −m3

3. |`1 − `2| ≤ `3 ≤ `1 + `2

4. `1 + `2 + `3 ∈ Z
For the product in Equation 62, the angular integral becomes√

(2`′ + 1)(3)(2`+ 1)

4π

(
`′ 1 `
0 0 0

)(
`′ 1 `
m′ t m

)
, (64)

due to the integral nature of orbital spin quantum numbers, condition (4) is automatically satisfied,
and (1) is satisfied by the relation of the total angular momentum quantum number and the angular
momentum projection quantum number. Thus we are only concerned with the conditions (2) and
(3). Using (2) we get that m = t + m′ bu t ∈ {0,±1}, so we obtain the selection rule for the
projection quantum number:

∆m = {0,±1} . (65)

Using (3) in a similar manner we get that ∆` = {0,±1}, but we know Y1t(θ, φ) is odd under parity
(` → −`) for all [allowed] t. If we have ∆` = 0, the initial and final states’ spherical harmonics
are either both odd or even, so their product is even, which is then multiplied by the odd Y1t, and
integrated over all space (see Equation 62), resulting in an overall odd integrand. The integral over
all space of odd functions is zero, so ∆` = 0 is forbidden. Thus, we are left with the selection rule
for the total orbital angular momentum quantum numbers for electric dipole transitions:

∆` = ±1 . (66)
4Weisstein, Eric W. ”Spherical Harmonic.” From MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/SphericalHarmonic.html
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2.2 Magnetic Dipole.

The magnetic dipole transitions are dependent on the matrix element

M(M1)
nn′ =

ieαkk
β

2m
〈n′|p̂αr̂β − p̂β r̂α|n〉 = −iek × k

2m
〈n′|L̂|n〉 , (67)

wherre L̂ is the orbital angular momentum operator. We can identify this as the magnetic dipole
operator by noting that the magnetic moment of the elctron is given by

µ̂ =
e

2mc
L̂ , (68)

and the magnetic field is in the direction ek × k. We see the matrix element is proportional to

M(M1)
nn′ ∝ 〈n′|(ek × k) · L̂|n〉 , (69)

and in general the result of the cross product may have components in all the Cartesian coordinates.
We see the z component would result in an operator proportional to L̂z, while we may define the
coordinates x± iy for the two orthogonal directions, which result in operators proportional to L̂±.
We are then interested in the matrix elements of the form

〈n′`′m′|L̂z|n`m〉 (70)

〈n′`′m′|L̂±|n`m〉 , (71)

which will determine the selection rules for the magnetic dipole transition. The states |n`m〉 are
eigenstates of the angular momentum projection operator, so the first matrix element (for L̂z) is
nonzero for n = n′, ` = `′, and m = m′. The angular momentum projection raising or lowering
operators have the following actions on the eigenstates:

L̂− |n`,m〉 ∝ |n`,m− 1〉 (72)

L̂+ |n`,m〉 ∝ |n`,m+ 1〉 , (73)

and thus require that n = n′, ` = `′, and m = m′± 1 for each element to be nonzero (otherwise the
matrix element results in the inner product of two orthogonal states). The total matrix element for

the magnetic dipole transitionM(M1)
nn′ is a linear combination of the three matrix elements indicated

above. For the entire element to be nonzero, we must have the following conditions be satisfied

|∆n| = 0 |∆`| = 0 |∆m| = {0,±1} , (74)

which are the selection rules for magnetic dipole transitions.

2.3 Electric Quadrupole.

The electric quadrupole transitions are dependent on the matrix element

M(E2)
nn′ =

ieαkk
β

2m
〈n′|p̂αr̂β + p̂β r̂α|n〉 , (75)

which if we employ a similar trick as Equation 55 we can write this as

M(E2)
nn′ =

ieαkk
β

2m
〈n′| m

2i~

[
r̂αr̂β + r̂β r̂α, Ĥatom

]
|n〉 =

eαkk
β

4~
(~ω) 〈n′|r̂αr̂β + r̂β r̂α|n〉 , (76)
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where ~ω is the difference in energy between state |n〉 and |n′〉, and corresponds to a single photon
with frequency ω. We should note that since ek ‖ k we have eαkk

β = 0 for β = α, and so there are
no diagonal terms, which allow us to add a term with a Kronecker delta with no effect:

M(E2)
nn′ =

eαkk
β

4~
(~ω) 〈n′|r̂αr̂β + r̂β r̂α − 2

3
r̂2δαβ|n〉 . (77)

We may now define the operator

Q̂αβ = e

(
r̂αr̂β + r̂β r̂α − 2

3
r̂2δαβ

)
, (78)

which we note is traceless and symmetric, so there are only five independent components. If we
note that for a state with a given n and ` there are 5 independent basis vectors m ∈ {0,±1,±2},
which implies that the operator Q̂αβ is the tensor representation of an ` = 2 operator. Using this
operator, the electric quadrupole transition matrix element is

M(E2)
nn′ = ω

eαkk
β

4e
〈n′|Q̂αβ|n〉 . (79)

We see the terms in this matrix element with α = β are zero, so we are left with terms that look
like

〈n′|x̂ŷ|n〉 , (80)

and other permutations of {x̂, ŷ, ẑ}. Since all of these position operators can be represented as a
linear combinations of ` = 1 spherical harmonics, the matrix element has, in general, terms which
are of the form

〈n′`′m′|Y1sY1t|n`m〉 , (81)

and due to the way spherical harmonics multiply (addition of angular momentum rules) this product
results in a linear combination of, in general, all of the spherical harmonics for ` = 0, 1, 2. However,
since the operator Q̂αβ is traceless, we cannot have the Y00 spherical harmonic. Any matrix can be
written as a linear combination of terms proportional to the identity matrix and terms proportional
to traceless matrices. However, if the matrix we are interested in is itself traceless, all the coefficients
of the identity matrix must be zero. Since the first spherical harmonic is a constant and thus
proportional to the identity operator, these terms do not contribute to the total matrix element.
Furthermore, since each term in the operator is proportional to the product of two ` = 1 spherical
harmonics, this operator is even under parity (` → −`). Since the ` = 1 spherical harmonics are
odd under parity, there can also be no terms proportional to these spherical harmonics. We then
see that the operator Q̂ is a linear combination of only ` = 2 spherical harmonics. The terms in
this operator are each proportional to: ∫

dΩY ∗`′m′Y2uY`m , (82)

with u ∈ {0,±1,±2}. We can immediately see, by parity, that ∆` = ±1 is not allowed. The inner
and outer spherical harmonics, for ∆` = ±1, will always be opposite parity, so their product is odd,
and the ` = 2 spherical harmonic is even under parity, so the product is still odd. We then integrate
an odd function over all space, which is identically zero. Therefore using the rules multiplication
of spherical harmonics (the resulting ` value can range from |` − 2| to ` + 2, and with m taking
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integer values between the positive and negative of the resulting ` value), and excluding ∆` = ±1,
the product results in integrals proportional to∫

dΩY ∗`′m′Y(`±2),{m±2,m±1,m} (83)∫
dΩY ∗`′m′Y`,m , (84)

we can immediately read off the selection rules

∆m = {±2,±1, 0} ∆` = {±2, 0} , (85)

for electric quadrupole transitions.

2.4 Spontaneous Decay of 2s state of Hydrogen.

The 2s state has quantum numbers n = 2, ` = 0,m = 0, and the only state it could decay to
is the 1s state which has quantum numbers n = 1, ` = 0,m = 0. This transition has |∆`| = 0
and |∆m| = 0, which excludes electric dipole (|∆`| = 1). The magnetic dipole interaction, which
depends on the orientation of the magnetic field, allows ∆` = 0, but no change in principal quantum
number so it is forbidden. This leaves only (to first order) the electric quadrupole channel. If we
compare this to Equation 82 with `′ = ` = 0, we see∫

dΩY ∗00Y2uY00 ∝
∫

dΩY ∗00Y2u , (86)

using the addition of angular momentum properties to multiply the spherical harmonics. It is clear
to see that due to the orthonormality of spherical harmonics, that this integral is identically zero.
Therefore the 2s0 → 1s0 decay is strictly forbidden through all transition channels (to first order).
Furthermore, we can show that `′ = 0→ ` = 0 transitions are forbidden by all electric multipoles.
In the general case, the nth multipole is a spin n operator, and therefore is proportional to Yna.
Using Equation 82, we see the matrix element for higher order electric multipoles is proportional
to ∫

dΩY ∗00YnaY00 ∝
∫

dΩY ∗00Yna , (87)

which is zero by orthonormality.
This condition enforces for all transition channels there can be no `′ = 0→ ` = 0 transitions.
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3 Transitions of Hydrogenic Atoms.

Consider the spontaneous decay of a Hydrogenic atom with nuclear charge Z from a 2p level to the
ground state.

3.1 Wavelength of Emitted Photon.

For the 2p→ 1s transition of He+ what is the wavelength of the radiation that is produced?

The energy levels of a Hydrogenic atom are given by

εn =
Z2

n2

mc2α2

2
=
Z2

n2
ε0 , (88)

where n ∈ N (excluding zero) and ε0 is the Rydberg constant -13.6 eV. The energy of the emitted
photon in the decay of the He+ (Z = 2) state to the ground state is

∆ε = Z2

(
1

22
− 1

12

)
ε0 = −3ε0 , (89)

note ε0 < 0. The corresponding wavelength of a photon with this energy is given by

λ =
2π~c
|∆ε|

=
2

3
π
~c
ε0

=
2

3
π(14.50326)nm = 30.376 nm , (90)

which is in the ultraviolet regime.

3.2 Fermi’s Golden Rule: Ionized Helium.

Write down the Golden rule formula and relevant matrix element for the transition rate for the
spontaneous decay of a 2p level of a Hydrogenic ion to the 1s state via one photon emission. Here
you can neglect spin and spin-orbit coupling. Specify the dominant multipole of the radiation field
that determines the rate.

The 2p states can be denoted |n`m〉 = |21m〉 and the 1s state as |100〉. This transition has |∆`| = 1
and |∆m| = {0,±1}, so by the selection rules derived in problem two, the dominant multiple is the
electric dipole. Fermi’s rule gives the rate for the spontaneous decay of the 2s state to the ground
state to be

Γ2p→1s =
2π

~

∣∣∣〈1s;Nk + 1|Ĥ|2p;Nk〉
∣∣∣2 δ((E1s + ~ω)− E2p) , (91)

where Ĥ = (e/mc)Â · p̂ is the interaction Hamiltonian between the electron and the free radiation
field (given by Equation 36, and ω is the frequency of the emitted photon. After evaluating
the action of the interaction Hamiltonian and the states of the radiation field, we are left with
Equation 49. For this specific transition, the rate, by Fermi’s Golden rule is

Γ2p→1s =

∫
d3k

(2π)3

∑
λ

4πe2

ωk
(Nk + 1)

∣∣∣∣〈100|ek ·
p̂

m
eik·r̂|21m〉

∣∣∣∣2 δ((E1s + ~ω)− E2p) . (92)

where m ∈ {−1, 0, 1}. We have shown in class that the lifetimes for all 2p states are the same. The
states 2p{−1,0,1} only differ by orientation, and thus the lifetimes must be the same. For simplicity,
we may only consider the 2p0 state, with no loss of information. We have previously stated that
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this decay proceeds through the electric dipole transition so we can use the method in section 2.1
to write the rate as

Γ2p→1s =

∫
d3k

(2π)3

∑
λ

4πe2

ωk
(Nk + 1)

∣∣∣∣E210 − E100

i~
〈100|r̂ · ek|210〉

∣∣∣∣2 δ((E1s + ~ω)− E2p) . (93)

3.3 Lifetime of 2p0 State of He+.

Given that the same transition for hydrogen has a lifetime of 1.6 × 10−9 seconds calculate the
lifetime for the 2p→ 1s transition for He+.

The energy difference squared in Equation 93 becomes

|∆E|2 =

∣∣∣∣Z2

(
1

22
− 1

12

)
ε0

∣∣∣∣2 =
9

16
Z4ε2

0 , (94)

where Z is the atomic number, in this case 2. The rate to a single final state for Hydrogen is given
by Shankar equation 18.5.88 (Principles of Quantum Mechanics, 2 ed. Page 519). This expression
must be modified such that the Bohr radius a0 → a0/Z, and we obtain

Γ2p→1s(k) =
2π

~

(
e2

mc

)2 ~c2

4π2
m2ω

215

311

a2
0

Z2
δ((E1s + ~ω)− E2p) (95)

where we have yet to integrate over all photon momenta k and polarization λ. If we integrate the
delta function over k and pick up a factor of two for the polarization we see

2

∫ ∞
0

k2dkdΩk̂δ((E1s + ~ω)− E2p) = 2
4πk2

~c
. (96)

Using the dispersion relation, k = ω/c, and noting that ~ω is the energy of the emitted photon,
equivalent to |∆E|2. We see that ~ck = ω, so the total rate is

Γ2p→1s =
2π

~

(
e2

mc

)2 ~c2

4π2
m2(~ck)

216

311

a2
0

Z2

4πk2

~c
= e4 217

311

a2
0

Z2
k3 = e4 217

311

a2
0

Z2

(
3
4Z

2ε0

~c

)3

. (97)

Thus we see
Γ2p→1s ∝ Z4 , (98)

and the rate for He+ is

τHe+ =
1

ΓHe+
2p→1s

=
1

24ΓH
2p→1s

=
τH

16
, (99)

so given that the lifetime for the 2p state of Hydrogen is 1.6 × 10−9 seconds, the lifetime of the
same state in singly ionized Helium is 10−10 seconds.

3.4 Likelihood of Transition changing Spin Projection.

The interaction of the radiation field with an atom also occurs via the magnetic moment of the
electron. For Hydrogenic atoms this interaction is

Ĥint = − e~
2mc

σ · B̂ , (100)
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where B̂ is the magnetic field operator for the photon field and σ is the Pauli spin operator for the
electron, −e and m are the charge and mass of the electron, respectively. Consider the 2p → 1s
transition with a spin-flip, e.g., |2p0,ms〉 → |1s0,m

′
s〉. Calculate (up to a prefactor of order unity)

the ratio Γ2p↑→1s↓/Γ2p↑→1s↑.

First let us note we may ignore factors of Z for they will exactly cancel when we take the ratios of
the rates. The total interaction Hamiltonian is

Ĥint = −e
c

(
Â · p̂

m

)
− e~

2mc

(
σ · B̂

)
, (101)

and the initial and final states are given by

|i〉 = |21m`〉 ⊗ |ms〉 ⊗ |0k〉 ≡ |21m`;ms; 0k〉 (102)

|f〉 = |100〉 ⊗ |m′s〉 ⊗ |1k〉 ≡ |100;m′s; 1k〉 . (103)

The matrix element relevant to Fermi’s Golden rule is 〈f |Ĥint|i〉, which separates into two terms:

− e

c
〈100;m′s; 1k|Â ·

p̂

m
|21m`;ms; 0k〉 −

e~
2mc

〈100;m′s; 1k|σ · B̂|21m`;ms; 0k〉 , (104)

we will refer to the first as term 1 and the second as term 2. First we consider 2 which interacts
with the spin state, the spatial state, and the field:

〈100;m′s; 1k|σ · B̂|21m`;ms; 0k〉 , (105)

where the magnetic field operator is given by

B̂ =
∑
k,λ

i

√
2π~c2

V ωk

(
âk(k× ek)e

i(k·r̂−ωt) − â†k(k× e∗k)e
−i(k·r̂−ωt)

)
, (106)

and we see the first term will produce an orthogonal state when we insert it into the matrix element.
We will take this to be normalized over volume and set V to unity. Additionally because only one
mode interacts in the transition, we can consider the operator B̂ as one mode. Since we will be
taking the modulus squared of this matrix element, the exponential factor in time will become
unity. The matrix element in 2 can be expressed as

2

~
〈100;m′s|Ŝ · (k× e∗k) e

−ik·r̂|21m`;ms〉 ⊗ 〈1k|â†k|0k〉 , (107)

where Ŝ is the spin operator vector. The matrix element of field states is simply unity. Let us
define a vector along the direction of the magnetic field h = k× e∗k, so that the dot product with
the spin operator yields the linear combination

hxŜx + hyŜy + hzŜz = h+Ŝ+ + h−Ŝ− + hzŜz , (108)

if we use the coordinates z and x± iy. It is evident that h± = 1
2(hx ∓ ihy). Using this, the matrix

element becomes
〈100;m′s|

(
h+Ŝ+ + h−Ŝ− + hzŜz

)
e−ik·r̂|21m`;ms〉 , (109)

and we are free to expand the exponential to first order, yielding the sum of the matrix elements

0th order : 〈m′s|h+Ŝ+ + h−Ŝ− + hzŜz|ms〉 ⊗ 〈100|1|21m`〉 (110)

1st order : 〈m′s|h+Ŝ+ + h−Ŝ− + hzŜz|ms〉 ⊗ 〈100| − ik · r̂|21m`〉 . (111)
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Obviously the electric dipole term vanishes because the operator is the identity to the spatial states,
and thus we see the term 2 can be written as

e~
2mc

√
2π~c2

ω

2

~
〈m′s|h+Ŝ+ + h−Ŝ− + hzŜz|ms〉 ⊗ 〈100|k · r̂|21m`〉 (112)

Let us now define the components of the wave vector that are parallel with the components of the
“magnetic field” vector h. Clearly ki = k · x̂i, where i are the Cartesian components. We then have
that

k± = ∓ 1√
2

(kx ± ky) , (113)

so we have a matrix element equivalent to the electric dipole term. Let us consider the spatial
matrix element in Equation 112:

〈100|k · r̂|21m`〉 =

∫
d3r ψ∗100(k · r̂)ψ21m`

, (114)

for which we turn to Shankar (section 18.5) to evaluate the integral:√
4π

3

∫
R10rR21r

2dr

∫
Y ∗00 (−k+Y1,−1 + kzY1,0 − k+Y1,1)Y1m`

dΩ

=

(
3

2

)1/2 28

35

a0

31/2
(k+δm,1 + kzδm, 0 + k+δm,−1) , (115)

where the δa,b represent the Kronecker delta (see Shankar equation 18.5.86). In a simmilar fashion
to Shankar, we take the modulus squared of this quantity and then average over the possible m`

values (1,0,-1), the integral reduces to

215

310

k2
+ + k2

− + k2
z

3
=

215

311
a2

0k
2 , (116)

where k is the magnitude of the wave vector. Let us now return to the spin matrix element, which
is a linear combination of the three relevant spin operators:

hz 〈m′s|Ŝz|ms〉+ h+ 〈m′s|Ŝ+|ms〉+ h− 〈m′s|Ŝ−|ms〉 , (117)

We see the first term contributes when there is no spin-flip, the second contributes when the initial
state has spin projection −1

2 and the initial has spin projection +1
2 , and finally the third contributes

when initial state has spin projection +1
2 and the initial has spin projection −1

2 . We are interested
in the transition 2p↑ → 1s↓, so only the final term contributes to the rate. We may evaluate the
spin matrix element using

Ŝ± |s,ms〉 = ~
√
s(s+ 1)−m(m± 1) |s,ms ± 1〉 , (118)

in this case we have s = 1/2 and ms = 1/2, so

Ŝ− |+1
2〉 = ~

√
3
4 −

1
2(−1

2) |−1
2〉 = ~ |−1

2〉 , (119)

so the matrix element 〈−1
2 |Ŝ−|+

1
2〉 is ~. Therefore the modulus squared (ignoring the factor of ~)

of the spin component is simply

|h−|2 =

∣∣∣∣12(hx + ihy)

∣∣∣∣2 =
1

4
(h2
x + h2

y) =
1

4

(
|h|2 − h2

z

)
, (120)
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and the magnitude of the “magnetic field” vector is

|h| = |k× e∗k| = k , (121)

because the polarization basis vector has unit magnitude. We may take the projection of this vector
onto the z axis by introducing the polar angle θ:

hz = |h| cos θ = k cos θ , (122)

and so Equation 120 becomes

|h−|2 =
1

4
(k2 − k2 cos2 θ) =

(
k

2

)2

(1− cos2 θ) . (123)

We now collect all the results and write the modulus squared of the matrix element relevant in the
Golden rule as(

e~
2mc

)2 ∣∣∣〈f |σ̂ · B̂|i〉∣∣∣2 =

(
~2

(
k

2

)2

(1− cos2 θ)

)(
215

311
a2

0k
2

)(
e~

2mc

√
2π~c2

ω

2

~

)2

(124)

=
k4

ω
(1− cos2 θ)

(
214

311

)
a2

0

~3e2π

m2
= k3(1− cos2 θ)

(
214

311

)
a2

0

~3e2π

m2c
, (125)

after using the dispersion relation ω = ck. From Fermi’s Golden rule, the rate to a single final state
is given by

Γ(k) =
2π

~

{
k3(1− cos2 θ)

(
214

311

)
a2

0

~3e2π

m2c

}
δ((E1s + ~ck)− E2p) , (126)

which we must integrate over all possible final k and sum over polarization states λ. We will
integrate in spherical coordinates such that d3k = k2dkdφd(cos θ), but we also pick up a factor of
(2π)−3 for integrating in k space, yielding

Γ2p↑→1s↓ = (2)2π

∫ ∞
0

k2dk

(2π)3

2π

~

{
k3

(
214

311

)
a2

0

~3e2π

m2c

}
δ((E1s + ~ck)−E2p)

∫ 1

−1
d(cos θ)(1− cos2 θ) ,

where the prefactor of 2 comes from summing over the polarization states. Some simplification,
and evaluating the angular integral yields

Γ2p↑→1s↓ =

{(
214

311

)
a2

0

~2e2

m2c

}∫ ∞
0

k5dkδ((E1s + ~ck)− E2p)

(
4

3

)
, (127)

so performing the k integral yields∫ ∞
0

k5dkδ((E1s + ~ck)− E2p) =
k5

~c
. (128)

We then obtain the result

Γ2p↑→1s↓ =

{(
214

311

)
a2

0

~2e2

m2c

}
k5

~c

(
4

3

)
=

(
216

312

)
a2

0

~e2

m2c2
k5 =

216

312
a2

0

~2

m2c
αk5 . (129)
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Now we consider 1, and we see the operator does not interact with the spin vector space, so it may
be written as

− e

c
〈100; 1k|Â ·

p̂

m
|21m`; 0k〉 ⊗ 〈m′s|1|ms〉 , (130)

so we see this term only contributes when there is no spin-flip. For transitions without a spin-flip,
this matrix element can be evaluated as in problem #2. Following the procedure there, we expand
the resulting exponential to first order, but keep only the zeroth order term because the first order
term is zero for the 2p→ 1s transition (i.e., expand the exponetnial as e−ik·r̂ = 1− ik · r̂ + . . . and
only the unity term contributes because |∆`| = 1 so it is M1 and E2 forbidden). Let us consider
a transition withoit a spin flip, so the spin matrix element is one, and the total matrix element is
nonzero, then from Equation 58 we have

− e

c
〈100;m′s; 1k|Â ·

p̂

m
|21m`;ms; 0k〉 = −e

c

3
4Z

2ε0

i~
〈210|r̂ · ek|100〉 =

3Z2e

4i~c
|ε0| 〈210|r̂|100〉 . (131)

If we are interested in the rate for a transition with no spiin-flip, then we must take the modulus
squared of the sum of terms 1 and 2. However, if we note that in order to get nonzero matrix
elements for the spin interaction (see Equation 110) we have to expand the exponential to first
order, we see this interaction is supressed by a factor of α2 (magnetic dipole and electric quadrupole
relative strengths). Therefore, term 2 is negligible compared to term 1 for transitions withouut a
spin-flip, and so the rate is simply

Γ2p↑→1s↑ =
2π

~

∣∣∣∣−ec 〈100;m′s; 1k|Â ·
p̂

m
|21m`;ms; 0k〉

∣∣∣∣2 δ((E1s + ~ω)− E2p) , (132)

and using the result from Shankar5 (also section 3.3) we see

Γ2p↑→1s↑ =
216

311
αck3a2

0 =

(
2

3

)8

α5mc
2

~
. (133)

Note that there is an energy shift due to the alignment of the electron spin with the magnetic field.
However, for this case, with no spin-flip, the energies of both final and initial states are shifted by
the same amount, so the result from Shankar remains valid.

Let us take the ratio of Equation 129 to Equation 133. It is important to note that the k values
are different for both the rates due to the fact there is an energy shift due to the alignment of the
spin in the transition 2p ↑→ 1s ↓, this effect is negligible, so we see an approximate ratio is

216

312
a2

0
~2
m2c

αk5

216

311
αck3a2

0

=
216

312

311

216

~2

m2c
k2 =

~2

3m2c2
k2 . (134)

The energy of the emitted photon from the non spin-flip transition is ~ω = 3
4ε0, and thus

k =
~ω
~c

=
3

4

ε0

~c
=

3e2

8a0~c
, (135)

and the ratio of the rates is therefore

~2

3m2c2

(
3e2

8a0~c

)2

=
3

64

e4

m2
(

~2
me2

)2
c4

=
3

64

(
e2

hc

)4

=
3α

64
= 1.33× 10−10 . (136)

5Shankar, Principles of Quantum Mechanics, 2 ed. Page 520.
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4 Lifetime of Excited Hyperfine State.

The excited hyperfine levels of interstellar hydrogen are believed to be populated via binary colli-
sion scattering. As a result microwave radiation corresponding to transitions between the hyperfine
levels is observed. Calculate the lifetime of the excited hyperfine level via single photon emission.
Hint: check selection rules and identify the relevant radiation channel, i.e., E1, M1, E2, etc.

Let the total magnetic moment of the electron-proton system be µ, which is the sum of the magnetic
moments of the electron and proton:

µ = µe + µp = −ge
µB
~

S + gp
µN
~

I , (137)

where ge ' 2 and gp ' 5.86 are the Landé g-factors for the electron and proton, µB and µN are
the Bohr and nuclear magnetons, and S and I are the spin of the electron and proton, respectively.
This overall magnetic moment interacts with the magnetic field of the free radiation field as µ ·B,
and thus if we elevate these to quantum mechanical opertors, the rate is given by Fermi’s Golden
rule:

Γ =
2π

~

∣∣∣〈f |µ̂ · B̂|i〉∣∣∣2 δ(Ef − Ei) , (138)

where {|f〉 , Ef} and {|i〉 , Ei} are the final and initial states, and their energies, respectively. Note
that we do not need to consider the interaction Hamiltonian of the kinetic momentum because, as
shown in section 3.4, when the spin state changes, the matrix element 〈f |Â · p̂|i〉 vanishes6. The
state vectors are the direct products of a spatial state, a spin state, and a field state:

|t〉 = |n`m`〉 ⊗ |F,M〉 ⊗ |{Nk}〉 , (139)

where {n, `,m`} are the principal, orbital angular momentum, and orbital projection quantum
numbers. The quantum numbers F,M define the hyperfine state, where F is the total spin of the
electron-proton system, and F is its projection onto the z axis. Finally, {Nk} represents the field
configuration, i.e., the occupancy number of each field mode k. Consider a Hydrogen atom in an
arbitrary spatial state, for a transition from the excited hyperfine state to the ground state, through
one photon emission, the initial and final states are

|i〉 = |n`m`〉 ⊗ |1,M〉 ⊗ |Nk〉 (140)

|f〉 = |n`m`〉 ⊗ |0, 0〉 ⊗ |Nk + 1〉 , (141)

where we only consider one mode k (the mode of the emitted photon) because all other modes are
spectators to this decay. However, for simplicity we will consider only the 1s state, so there is no
orbital coupling to the magnetic field, and no spin-orbit interaction. Note that there is no change
in the spatial state of the atom, so the energy of the emitted photon ~ω is simply the energy
splitting between the excited hyperfine state and the ground hyperfine state. Since none of the
spatial quantum numbers are changed this is forbidden by electric dipole, but allowed by magnetic
dipole. Additionally, if the atom is not in an s state (` = 0), then this transition is allowed by
electric quadrupole as well. Let us now consider the hyperfine spin state vectors |MF 〉, which are

6The kinetic momentum operator is the identity to spin states:

〈f |Â · p̂|i〉 = 〈n`m|Â · p̂|n′`′m′〉 ⊗ 〈1M |1|00〉 = 0
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linear combinations of the individual spins of the proton and electron. There is the symmetric
triplet, with total spin F = 1:

|1, 1〉 = |↑〉p ⊗ |↑〉e (142)

|1, 0〉 =
1√
2

{
|↑〉p ⊗ |↓〉e + |↓〉p ⊗ |↑〉e

}
(143)

|1,−1〉 = |↓〉p ⊗ |↓〉e , (144)

and the antisymmetric singlet, with total spin F = 0:

|0, 0〉 =
1√
2

{
|↑〉p ⊗ |↓〉e − |↓〉p ⊗ |↑〉e

}
. (145)

We are using the notation that |↑〉 is a projection state with eigenvalue +~/2 and |↓〉 is a projection
state with eigenvalue −~/2.

We are only concerned with the mode that participates in the decay, k, and the magnetic field
operator for this mode is

i

√
2π~c2

V ω

(
âk(k× ek)e

i(k·r̂−ωt) − â†k(k× e∗k)e
−i(k·r̂−ωt)

)
, (146)

where ω is the frequency of the photon in this mode. We may normalize this with respect to volume,
and set V to unity. Thus, the matrix element from Fermi’s Golden rule is

i

√
2π~c2

ω
〈100; 0, 0;Nk + 1|µ̂ ·

(
âk(k× ek)e

i(k·r̂−ωt) − â†k(k× e∗k)e
−i(k·r̂−ωt)

)
|100; 1,M ;Nk〉

but we can immediateely take evaluate the field component:

〈Nk + 1|âk|Nk〉 − 〈Nk + 1|â†k|Nk〉 = 0−
√
Nk + 1 〈Nk + 1|nk + 1〉 = −

√
Nk + 1 . (147)

Knowing that we will be taking the modulus squared of the resulting matrix element, we may
discard the factor of i out front, and the negative due to subtraction. Additionally, the eiωt term
is effectively a constant regarding the matrix element, so it may be factored out, now when it’s
modulus is squared, we acquire a factor of unity. The resulting matrix element, including relevant
prefactors is √

2π~c2

ω

√
Nk + 1 〈100; 0, 0|µ̂ · (k× ek)e

ik·r̂|100; 1,M〉 , (148)

where we have taken the complex conjugate of the operator, knowing that we will be taking the
square of its modulus. Let us define a direction h such that

h = k× ek , (149)

which has magnitude k (unless it is zero, which is uninteresting because the matrix element will be
zero). For simplicity, we will take the case where there were no photons in the mode of the emitted
photon before the decay. Additionally, the magnitude of the wave vector is simply ω/c and so we
can write the matrix element as√

2π~c2

ω
〈100; 0, 0|(µ̂ · h)eik·r̂|100; 1,M〉 . (150)
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To zero order, we may consider the spin of the proton fixed, and therefore neglect it, so that

µ→ µe = −ge
µB
~

S , (151)

we may also expand the exponential to zero order, in which case, the spin operator will be the
identity to the spatial states. As such, the matrix element from the Golden rule is

ge
µB
~

√
2π~c2

ω
〈0, 0|(Ŝ · h)|1,M〉 ⊗ 〈100|1|100〉 , (152)

where again we have dropped the negative sign because all relevant quantities depend only on the
square of the matrix element. In a similar fashion to Equation 110, we have

ge
µB
~

√
2π~c2

ω
〈0, 0|h+Ŝ+ + h−Ŝ− + hzŜz|1,M〉 , (153)

so the three possible matrix elements are

ge
µB
~

√
2π~c2

ω

[
1√
2
{〈↑↓| − 〈↓↑|}

]
(h+Ŝ+ + h−Ŝ− + hzŜz) [|↑↑〉] (154)

ge
µB
~

√
2π~c2

ω

[
1√
2
{〈↑↓| − 〈↓↑|}

]
(h+Ŝ+ + h−Ŝ− + hzŜz)

[
1√
2
{|↑↓〉+ |↓↑〉}

]
(155)

ge
µB
~

√
2π~c2

ω

[
1√
2
{〈↑↓| − 〈↓↑|}

]
(h+Ŝ+ + h−Ŝ− + hzŜz) [|↓↓〉] , (156)

where the first arrow denotes the projection of the proton spin and the second denotes the electron
spin. Noting the action of the spin operators this becomes

ge
µB
~

√
2π~c2

ω

[
1√
2
{〈↑↓| − 〈↓↑|}

]
h−Ŝ− [|↑↑〉] = ge

µB
~

√
2π~c2

ω
h−

~√
2

(157)

ge
µB
~

√
2π~c2

ω

[
1√
2
{〈↑↓| − 〈↓↑|}

]
hzŜz

[
1√
2
{|↑↓〉+ |↓↑〉}

]
= ge

µB
~

√
2π~c2

ω

hz
2

(−~) (158)

ge
µB
~

√
2π~c2

ω

[
1√
2
{〈↑↓| − 〈↓↑|}

]
h+Ŝ+ [|↓↓〉] = −ge

µB
~

√
2π~c2

ω
h+

~√
2
. (159)

We will label the results s++, s±, s−−, and we see

s++ = 2µB

√
π~c2

ω
h− s± = −

√
2µB

√
π~c2

ω
hz s−− = −2µB

√
π~c2

ω
h+ . (160)

If we take the modulus squared of each, add them and average (divide by three), we obtain the
expression

2µ2
B

π~c2

3ω

(
2h2
− + h2

z + 2h2
+

)
= 2

e2~2

12m2c2

π~c2

ω

(
2h2
− + h2

z + 2h2
+

)
=
πe2~3

3m2ω

(
h2
− +

1

2
h2
z + h2

+

)
.

The magnitudes of each of the h components squared must add to k, and we know hz = k cos θ, we
therefore see the above expression simplifies to

πe2~3

3m2ω

(∣∣∣∣12(hx + ihy)

∣∣∣∣2 +

∣∣∣∣12(hx − ihy)
∣∣∣∣2 +

h2
z

2

)
=
πe2~3

3m2ω

(
1

4

(
2h2

x + 2h2
y

)
+
h2
z

2

)
, (161)
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simplifying to
πe2~3

6m2ω

(
h2
x + h2

y + h2
z

)
=
πe2~3

6m2ω
k2 =

πe2~3

6m2c
k . (162)

We may now apply Fermi’s Golden rule to obtain the rate to a single final state

Γ(k) =
2π

~
πe2~3

6m2c
kδ((E0 + ~ck)− E1) , (163)

where E1 is the energy for F = 1 and E0 is the answer for F = 0. We may now integrate over all
final k, and pick up a factor of two for the sum over polarizations

Γ =
4π

~
πe2~3

6m2c

∫
d3k

(2π)3
kδ((E0 + ~ck)− E1) , (164)

using spherical coordinates and immediately integrating over the azimuthal and polar angles, we
have

Γ = (4π)
4π

~
πe2~3

6m2c

∫ ∞
0

k2dk

(2π)3
kδ((E0 + ~ck)− E1) =

e2~2

3m2c

∫ ∞
0

k3dkδ((E0 + ~ck)− E1) . (165)

As we have evaluated before, the k integral is∫ ∞
0

k3dkδ((E0 + ~ck)− E1) =
k3

~c
, (166)

where k = |∆Ehf|/~c. Alternatively, knowing the hyperfine transition results in a 21 cm emission,
we have

k =
2π

λ
' 0.3 cm−1. (167)

The total rate is then

Γ =
e2~2

3m2c

k3

~c
=

e2~
3m2c2

k3 , (168)

and the lifetime is then

τ =
3m2c2

e2~k3
. (169)
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