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1 Electron in Short Range Potential.

Consider an electron bound to an attractive short-ranged potential that can be approximated by a
delta function with a strength given by V (x) = −e2δ(x), where e is the electron charge.

1.1 Estimation of Ground State Energy.

Obtain a best estimate for the ground state energy assuming a variational wave function of the
form, ψµ(x) = ψ0e

−µx2/2. Express your result in units of the Rydberg, RH .

For ψµ to be properly normalized, we enforce

1 =

∫
|ψµ(x)|2dx = |ψ0|2

∫ ∞
−∞

e−µx
2
dx =

(
π

µ

)1/2

, (1)

which gives |ψ0| = (µ/π)1/4. The variational energy is given by

E(µ) = 〈ψµ|Ĥ|ψµ〉 = −~2 〈ψµ|p̂2|ψµ〉 − e2 〈ψµ|V̂ |ψµ〉 . (2)

The kinetic energy term can be expressed in the coordinate basis as

− ~2 〈ψµ|p̂2|ψµ〉 = − ~2

2m
|ψ0|2

∫ ∞
−∞

e−µx
2/2 ∂

2

∂x2

(
e−µx

2/2
)

dx . (3)

The second derivative is

∂2

∂x2

(
e−µx

2/2
)

= −µ ∂

∂x

(
xe−µx

2/2
)

= µ2x2e−µx
2/2 − µe−µx2/2 = µ

(
µx2 − 1

)
e−µx

2/2 , (4)

so the integral in the kinetic energy term is

µ

∫ ∞
−∞

(
µx2 − 1

)
e−µx

2
dx = −1

2

√
πµ , (5)

so the kinetic term contributes

〈ψ0|T̂ |ψ0〉 = − ~2

2m

(µ
π

)1/2(
−1

2

√
πµ

)
=

~2µ
4m

. (6)

The contribution to the energy from the potential term is

− e2 〈ψµ|V̂ |ψµ〉 = −e2|ψ0|2
∫ ∞
−∞

e−µx
2
δ(x)dx = −e2

(µ
π

)1/2
. (7)

Inserting the results into Equataion 2 yields

E(µ) =
µ~2

4m
− e2

√
µ

π
, (8)

which for the ground state is minimized with respect to the variational parameter µ:

0 =
∂

∂µ

(
µ~2

4m
− e2

√
µ

π

)
=

~2

4m
− e2

2
√
πµ

, (9)
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so the value of µ which minimizes the ground state energy is

µ =

(
e2

2
√
π

4m

~2

)2

=
4

π

(
me2

~2

)2

=
4

π

1

a20
, (10)

where a0 = ~2/me2 is the Bohr radius. Inserting this into the variational energy, we obtain

E0 =
~2

4m

4

πa20
− e2√

π

√
4

πa20
=

1

π

e2

a0
− 2

π

e2

a0
, (11)

using the definition of the Rydberg, RH = e2/2a0 = me4/2~2, we have

E0 =
2

2π

e2

a0
(1− 2) = − 2

π
RH = −0.636RH . (12)

1.2 Exact Ground State Energy.

Solve the Schrödinger equation for the ground state wave function and calculate the exact result
for the ground state energy in terms of the Rydberg.

The exact ground state energy E0 can be found using the Schrödinger equation:

− ~2

2m

∂2

∂x2
ψ0(x)− e2δ(x)ψ0(x) = E0ψ0(x) ⇒ ψ′′ = −2m

~2
(
E0 − e2δ(x)

)
ψ , (13)

where primes denote derivatives with respect to the coordinate x. At every point excluding x = 0,
the term with the delta function vanishes, and if we define κ =

√
−2mE0/~2 (which is positive

because for bound states E0 < 0), we are left with the differential equation

ψ′′ = κ2ψ x 6= 0 , (14)

which has solutions

ψ(x) =

{
Ae−κx x > 0

Aeκx x < 0
, (15)

where we have enforced continuity at x = 0 by using same the coefficient A for the wave functions
in both regions. Normalization gives us |A|2 = ±2κ, we can select the positive value, so that A ∈ R.
Due to the presence of the delta function, there is a discontinuity in the first derivative at x − 0.
Consider integrating the Schrödinger equation over an infinitesimal region around thhe origin:∫ +ε

−ε

∂2ψ

∂x2
= −2m

~2

∫ +ε

−ε

(
e2δ(x) + E0

)
ψ . (16)

In the limit ε0, the integral of the regular quantity κ2ψ must vanish because the range of integration
is infinitesimal. This is not the case for the delta function, which is “infinite” at the origin. Carrying
out the integration of the second derivative on the right-hand side, and taking the limit ε→ 0, we
obtain

∂ψ

∂x

∣∣∣∣
x=0+

− ∂ψ

∂x

∣∣∣∣
x=0−

= −2m

~2

∫ +ε

−ε
e2δ(x)ψ = −2m

~2
e2ψ(0) . (17)
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Therefore, the condition on the continuity of the first derivative at x = 0 gives

−Aκe−kx
∣∣∣∣
x=0+

−Aκekx
∣∣∣∣
x=0−

− 2m

~2
e2ψ(0) (18)

−2κ = −2m

~2
e2 , (19)

using ψ(0) = A, we obtain the relation κ = me2/~2. Setting this equivalent to the definition of κ2,
we obtain (

me2

~2

)2

= −2mE0
~2

⇒ E0 = − ~2

2m

m2e4

~4
= −me

4

2h2
= −RH . (20)
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2 Two Electron Atoms: Coulomb Repulsion.

Two identical particles of spin s = 1/2 are confined to a cubical box whose sides are d = 10−8

cm in length. The particles are attracted to one another via a potential of strength V0 = 10−3 eV
whenever they are within a distance of a = 10−10 cm of one another. Calculate the ground state
energy and wave function of the particles assuming they each have a mass, m, equal to that of the
electron. Express your result for the ground state energy in terms of ~,m, V0, a, d. Does the ground
state have a definite total spin? If so what is the total spin? If not what are the probabilities of
measuring the allowed values of total spin S in the two-particle ground state? Hint: pay attention
at the beginning to the length scales involved in this problem.

The length scale of the interaction is two orders of magnitude smaller than the length scale which
defines the volume. Therefore the volume in which the fermions can interact is a factor of 106

smaller than the total volume they occupy1. For this reason, the potential

V̂ = V0Θ {a− |r1 − r2|} , (21)

where Θ(x) is the Heaviside theta function, can be approximated as

V̂ = V0Vδ3 {r1 − r2} =
4π

3
a3V0δ

3 {r1 − r2} , (22)

where we have picked up a factor of the volume for approximating the Heaviside function as a
delta function (really the three dimensional delta is three one dimensional deltas each with a factor
of the length scale on which the Heaviside is nonzero). This is needed because the Heaviside is
dimensionless and the delta function has dimensions which are the inverse of its argument. We
have selected the length scale a because this determines the volume on which the interaction
occurs (where the Heaviside function is nonzero) so the strength of the perturbation will depend
on the scale of the interaction. Additionally, the amplitude of the potential is small, and due
to the relative size of the interaction volume compared to the total volume, the particles have
a much lower probability of being within a of each other than being separated by a distance
greater than a. For these reasons we may treat the potential as a perturbation. The unperturbed
wave function for a single particle is simply that of a infinite cubic well, with the conditions that
ψ(xi = 0) = ψ(xi = d) = 0, where xi are the Cartesian coordinates, with the origin at one corner
of the box. The solutions to the Schrödinger equation are harmonic, but we may ignore the cosine
term because it does not satisfy the boundary conditions, so

ψnmp(r) =

(
2

d

)3/2

sin
(nπ
d
x
)

sin
(mπ
d
y
)

sin
(pπ
d
z
)
, (23)

with energies

Enmp =
~2π2

2md2
(n2 +m2 + z2) ≡ ~2π2

2md2
N2 , (24)

which is 1
2(N + 1)(N + 2) fold degenerate. If the box now has two electrons, the wave function can

be represented as a product of a two-fermion spatial state |φ〉 and a two-fermion spin state |χ〉:

|Ψ〉 = |φ〉 ⊗ |χ〉 =
1√
2

(
|nmp〉1 ⊗ |n

′m′p′〉2 − P12(S) |nmp〉2 ⊗ |n
′m′p′〉1

)
⊗ |S,MS〉 , (25)

1The total volume is (10−8)3 cm3 = 10−24 cm3, while the interaction volume is (10−10)3 cm3 = 10−30 cm3, and
thus the ratio is Vint/Vtot = 10−6.
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where the subscripts denote the particle index, P12(S) is the parity exchange operator, defined by

P12(S) =

{
+1 S = 1

−1 S = 0
, (26)

and |S,MS〉 denotes the two-fermion spin states:

triplet:


|1, 1〉 = |↑〉1 ⊗ |↑〉2
|1, 0〉 = 1√

2
(|↑〉1 ⊗ |↓〉2 + |↓〉1 ⊗ |↑〉2)

|1,−1〉 = |↓〉1 ⊗ |↓〉2

(27)

singlet:
{
|0, 0〉 = 1√

2
(|↑〉1 ⊗ |↓〉2 − |↓〉1 ⊗ |↑〉2) (28)

Note the symmetry requirements imposed by the spin states: if the fermions are in the singlet
state (S = 0), which is antisymmetric, the spatial wave function must be symmetric to ensure
total antisymmetry of the wave function, which is ensured by the definition of the parity exchange
operator. Conversely, when the spin state is symmetric (triplet, S = 1) the spatial part of the
wave function is antisymmetric due to the parity exchange operator. The product states |Ψ〉 are
eigenstates of the Hamiltonian, with an energy spectrum

Enmpn′m′p′ =
~2π2

2md2
(n2 +m2 + z2) +

~2π2

2md2
((n′)2 + (m′)2 + (p′)2) =

~2π2

2md2
(N2 + (N ′)2) , (29)

with N2 = n2 + m2 + p2 and N ′ = (n′)2 + (m′)2 + (p′)2 (note that N and N ′ are not necessarily
integers). The ground state of the single-fermion system is simply E111 because for any index
{n,m, p} = 0, the wave function is zero due to it being a product of sines. Similarly, we see
that the lowest energy state, for which the wave function is nonzero, of the two-fermion system is
|nmp〉 = |n′m′p′〉 = |111〉. This state is allowed only for S = 0 due to parity, and as such we may
write the ground state |Ψ0〉 of the two-fermion system as

|Ψ〉 =
1√
2

(|111〉1 ⊗ |111〉2 − (−1) |111〉2 ⊗ |111〉1)⊗ |0, 0〉 (30)

=
2√
2
|111〉1 ⊗ |111〉2 ⊗

1√
2

(|↑〉1 ⊗ |↓〉2 − |↓〉1 ⊗ |↑〉2) (31)

≡
{
|111〉1 ⊗ |111〉2

}
⊗ (|↑↓〉 − |↓↑〉) . (32)

In the coordinate basis this is

〈r1r2|Ψ0〉 =
{
〈r1|111〉 ⊗ 〈r2|111〉

}
⊗ (|↑↓〉 − |↓↑〉) (33)

Ψ0(r1, r2) =

(
2

d

)3

sin
(π
d
x1

)
sin
(π
d
y1

)
sin
(π
d
z1

)
sin
(π
d
x2

)
sin
(π
d
y2

)
sin
(π
d
z2

)
⊗ |0, 0〉 . (34)

The energy of the unperturbed ground state has N2 = (N ′)2 = 3, and therefore

E
(0)
0 = 3

~2π2

md2
. (35)

The first-order correction to the energy of the ground state due to the perturbation V̂ is

∆E
(1)
0 /V = 〈Ψ0|V̂ /V|Ψ0〉 = V0 〈Ψ0|δ3(r1 − r2)|Ψ0〉 = V0 〈φ0|δ3(r1 − r2)|φ0〉 · 〈0, 0|1|0, 0〉 , (36)
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and the inner product of the spin states does not contribute to the energy shift. In the coordinate
basis, this matrix element is

∆E
(1)
0 /V = V0 〈φ0|δ3(r1 − r2)|φ0〉

= a3V0

(
2

d

)6 ∫
d3r1

∫
d3r2δ

3(r1 − r2) sin2 (x̄1) sin2 (ȳ1) sin2 (z̄1) sin2 (x̄2) sin2 (ȳ2) sin2 (z̄2) ,

where x̄i = πxi/2, and likewise for y and z. Performing the first integral over r2 just selects the
value of the function at r2 = r1 ≡ r:

∆E
(1)
0

a3V0
=

(
2

d

)6 ∫
d3r1 sin2 (x̄1) sin2 (ȳ1) sin2 (z̄1)

∫
d3r2δ

3(r1 − r2) sin2 (x̄2) sin2 (ȳ2) sin2 (z̄2)

=

(
2

d

)6 ∫
d3r1 sin2 (x̄1) sin2 (ȳ1) sin2 (z̄1) sin2 (x̄1) sin2 (ȳ1) sin2 (z̄1)

=

(
2

d

)6 ∫ d

0
dx

∫ d

0
dy

∫ d

0
dz sin4

(nπ
d
x
)

sin4
(nπ
d
y
)

sin4
(nπ
d
z
)

=

(
2

d

)6{∫ d

0
dx sin4

(nπ
d
x
)}3

=

(
2

d

)6(3d

8

)3

=
27

8d3
.

The ground state energy of the two-fermion system, to first-order, is

E
(1)
0 = E

(0)
0 + ∆E

(1)
0 = 3

~2π2

md2
+

27

8
V0

4π

3

(a
d

)3
(37)

The numeric value of the first-order energy shift due to perturbation is

∆E
(1)
0 =

27

8
V0

4π

3

(a
d

)3
=

27

8
10−3

4π

3

(
10−2

)3
eV =

9π

2× 109
eV = 1.41× 10−8 eV . (38)

The unperturbed ground state energy is

E
(0)
0 = 3

~2π2

md2
=

194.885

m

eV2 · s2

cm2
, (39)

where m is measured in grams. If we measure m in eV, the unperturbed ground state energy is

E
(0)
0 =

1.216× 1014

m
eV2 , (40)

inserting the electron mass yields

E
(0)
0 =

1.216× 1014

511× 103
eV = 2.38× 108 eV . (41)

Page 7 of 14



Dylan J. Temples Northwestern University, Quantum Mechanics III : Solution Set Three

3 Excited States of Helium.

Consider excited states of Helium with the configuration [1s 2s] and [1s 2p], in which one electron
is in the (1s) single-electron orbital and the other electron is in an excited (2s) or (2p) orbital. The
energy calculated in first-order perturbation theory in the electron-electron interaction of such a
state can be written as

E(2, `,m`;S) = −5RH + ∆d(2, `,m`)− P12(S)∆ex(2, `,m`), (42)

where RH = e2/2a0 = 13.6 eV is the Rydberg, S is the total spin and P12(S = {1, 0}) = {+1,−1}.

Technical Hint.
To calculate the direct and exchange terms in Eq. 42 express the the direct contribution to the
Coulomb energy in terms of the Fourier transforms of the probability densities for 1s and 2s Hy-
drogenic states of the electron,

ρ1s(q) =

∫
d3re−iq·r |ψ1s(r)|2 (43)

ρ2s(q) =

∫
d3re−iq·r |ψ2s(r)|2 , (44)

and the Fourier transform of the Coulomb interaction,∫
d3re−iq·r

e2

|r|
=

4πe2

q2
. (45)

For the exchange term you need the Fourier transform of the “overlap”

ρex =

∫
d3re−iq·rψ1s(r)ψ2s(r). (46)

Scale the Coulomb and exchange energies in units of e2/a, where a = a0/Z. The coefficient is now
a dimensionless integral. Use the results of Exercise 1 to evaluate the resulting direct and exchange
contributions for the matrix elements of the Coulomb interaction.

3.1 Direct and Exchange Energy Integrals.

Write down the direct and exchange integrals, ∆d and ∆ex, for the [1s 2s] and [1s 2p] states.

The first-order energy shift is given by

∆E(n, `,m`;S) = 〈NLML;S|V̂ee|NLML;S〉 = ∆d(n, `,m`)− P12(S)∆ex(n, `,m`), (47)

where V̂ee is the Coulomb potential between the two electrons, and the state vectors are defined to
be

|NLML;S〉 =
1√
2

(
|1s〉 ⊗ |n`m`〉 − P̂12(S) |n`m`〉 ⊗ |1s〉

)
, (48)

which is a linear combination of the two electrons in each possible state (the ground state 1s, and
an excited state) which obeys the necessary symmetry requirement determined by the total spin
state of the two-electron system. The matrix element in Equation 47 results in terms of the form

1

2
〈1s;n`m`|V̂ee|1s;n`m`〉+

1

2
〈n`m`; 1s|V̂ee|n`m`; 1s〉 (49)

1

2
〈1s;n`m`|V̂ee|n`m`; 1s〉+

1

2
〈n`m`; 1s|V̂ee|1s;n`m`〉 , (50)
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which are the direct and exchange contributions, respectively. In the coordinate basis, these matrix
elements can be expressed as the integrals:

∆d(n, `,m`) =

∫
d3r1

∫
d3r2|ψ100(r1)|2

e2

|r1 − r2|
|ψn`m`

(r2)|2 (51)

∆ex(n, `,m`) =

∫
d3r1

∫
d3r2 <

{
ψ∗100(r1)ψn`m`

(r2)
e2

|r1 − r2|
ψ∗n`m`

(r1)ψ100(r2)

}
, (52)

where ψn`m`
(r) are the single-electron wave functions for Hydrogenic atoms:

|1s〉 = |100〉 = ψ100(r) =

√
Z3

πa30
e−Zr/a0 (53)

|2s〉 = |200〉 = ψ200(r) =

√
Z3

32πa30
e−Zr/2a0

(
2− Zr

a0

)
(54)

|2p0〉 = |210〉 = ψ210(r) =

√
Z3

32πa30
e−Zr/2a0

Zr

a0
cos θ (55)

|2p±1〉 = |21± 1〉 = ψ21±1(r) =
2√
2

√
Z3

32πa30
e−Zr/2a0

Zr

a0
sin θe±iφ , (56)

for helium, we have Z = 2. Using the technical hint and Equations 51 and 52 we can write the
direct and exchange integrals in Fourier q-space2:

∆d(n, `,m`) =

∫
d3q

(2π)3
ρ100(q)

4πe2

q2
ρn`m`

(q) (57)

∆ex(n, `,m`) =

∫
d3q

(2π)3
|ρex(q)|2 4πe2

q2
, (58)

with

ρex(q) =

∫
d3re−iq·rψ100(r)ψn`m`

(r). (59)

For the [1s 2s] state we have |n`m`〉 → |200〉 and for [1s 2p] we have |n`m`〉 → |21m`〉 .

3.2 Electron-Electron Interaction Energies.

Calculate to first-order in the electron-electron interaction the energies of the “ortho” (spin-triplet,
23S) and “para” (spin-singlet, 21S) excited [1s 2s] states of Helium. Compare the perturbation
theory results with the experimentally determined level structure of Helium. See for example tab-
ulations by the NIST at the URL:
http://physics.nist.gov/PhysRefData/Handbook/Tables/heliumtable5.htm.

To determine the first order energy shifts of the [1s 2s] state, we must calculate ρ100(q), ρ200(q),
and

ρex(q) =

∫
d3re−iq·rψ100(r)ψ200(r). (60)

2Note that for the [1s 2s] state, both wave functions are entirely real, so taking the real part in the exchange
integral leaves the integrand unchanged.
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The first Fourier density is

ρ1s(q) =

∫
d3re−iq·r |ψ1s(r)|2 =

∫
d3re−iq·r

∣∣∣∣∣
√
Z3

πa30
e−Zr/a0

∣∣∣∣∣
2

(61)

=
Z3

πa30

∫
d3re−iq·re−2Zr/a0 =

Z3

πa30

∫ 2π

0
dφ

∫ 1

−1
d(cos θ)

∫ ∞
0

r2dre−iqr cos θe−2Zr/a0 (62)

=
2Z3

a30

∫ ∞
0

r2dre−2Zr/a0
∫ 1

−1
d(cos θ)e−iqr cos θ =

2Z3

a30

∫ ∞
0

r2dre−2Zr/a0
2 sin(qr)

qr
(63)

=
4Z3

qa30

∫ ∞
0

r sin(qr)e−2Zr/a0dr =
4Z3

qa30

(
4a30qZ(

a20q
2 + 4Z2

)2
)

(64)

=
16Z4

(a20q
2 + 4Z2)2

=
Z4

(
a20q

2

4 + Z2)2
=

Z4[
Z2 +

(a0q
2

)2]2 , (65)

and the second is3.

ρ2s(q) =

∫
d3re−iq·r |ψ2s(r)|2 =

∫
d3re−iq·r

∣∣∣∣∣
√

Z3

32πa30
e−Zr/2a0

(
2− Zr

a0

)∣∣∣∣∣
2

(66)

=
Z3

32πa30

∫
d3re−iq·re−Zr/a0

(
2− Zr

a0

)2

(67)

=
Z3

32πa30

∫ 2π

0
dφ

∫ 1

−1
d(cos θ)

∫ ∞
0

r2dre−iqr cos θe−Zr/a0
(

2− Zr

a0

)2

(68)

=
Z3

16a30

∫ ∞
0

r2dre−Zr/a0
(

2− Zr

a0

)2 ∫ 1

−1
d(cos θ)e−iqr cos θ (69)

=
Z3

16a30

∫ ∞
0

r2dre−Zr/a0
(

2− Zr

a0

)2 2 sin(qr)

qr
(70)

=
Z3

8qa30

∫ ∞
0

r sin(qr)e−Zr/a0
(

2− Zr

a0

)2

dr (71)

=
Z3

8qa30

∫ ∞
0

r sin(qr)e−Zr/a0
(
Z2r2

a20
− 4

Zr

a0
+ 4

)
dr . (72)

3Some useful identities: ∫ 1

−1

e−iqrxdx =
2sin(qr)

qr
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This spits into three integrals:∫ ∞
0

r sin(qr)e−Zr/a0
(
Z2r2

a20

)
dr =

Z2

a20

∫ ∞
0

r3 sin(qr)e−Zr/a0dr (73)

=
Z2

a20

(
24a50qZ

(
Z2 − a20q2

)(
a20q

2 + Z2
)4

)
(74)∫ ∞

0
r sin(qr)e−Zr/a0

(
−4

Zr

a0

)
dr = −4

Z

a0

∫ ∞
0

r2 sin(qr)e−Zr/a0dr (75)

= −4
Z

a0

(
−

2a40q
(
a20q

2 − 3Z2
)(

a20q
2 + Z2

)3
)

(76)∫ ∞
0

r sin(qr)e−Zr/a0 (4) dr = 4

∫ ∞
0

r sin(qr)e−Zr/a0dr (77)

= 4
2a30qZ(

a20q
2 + Z2

)2 . (78)

Summing these, we find

ρ2s(q) =
Z3

8qa30

{(
24a30qZ

3
(
Z2 − a20q2

)(
a20q

2 + Z2
)4

)
+

(
8a30qZ

(
a20q

2 − 3Z2
)(

a20q
2 + Z2

)3
)

+
8a30qZ(

a20q
2 + Z2

)2
}

(79)

=
3Z6

(
Z2 − a20q2

)(
a20q

2 + Z2
)4 +

Z4
(
a20q

2 − 3Z2
)(

a20q
2 + Z2

)3 +
Z4(

a20q
2 + Z2

)2 (80)

=
3Z6

(
Z2 − a20q2

)(
a20q

2 + Z2
)4 +

Z4
(
a20q

2 − 3Z2
) (
a20q

2 + Z2
)(

a20q
2 + Z2

)4 +
Z4
(
a20q

2 + Z2
)2(

a20q
2 + Z2

)4 (81)

=
2a40q

4Z4 − 3a20q
2Z6 + Z8(

a20q
2 + Z2

)4 =
Z4(a20q

2 − Z2)
(
2a20q

2 − Z2
)(

a20q
2 + Z2

)4 . (82)

The exchange density is given by

ρex =

∫
d3re−iq·rψ1s(r)ψ2s(r) =

∫
d3re−iq·r

√
Z3

πa30
e−Zr/a0

√
Z3

32πa30
e−Zr/2a0

(
2− Zr

a0

)
(83)

=
Z3

√
32πa30

∫
d3re−iq·re

− Z
a0

(r+ r
2
)
(

2− Zr

a0

)
, (84)

again moving to spherical coordinates, we have

ρex =
Z3

√
32πa30

∫ 2π

0
dφ

∫ 1

−1
d(cos θ)

∫ ∞
0

r2dre−iqr cos θe−3Zr/2a0
(

2− Zr

a0

)
(85)

=
2Z3

√
32a30

∫ ∞
0

r2dre−3Zr/2a0
(

2− Zr

a0

)∫ 1

−1
d(cos θ)e−iqr cos θ (86)

=
2Z3

√
32a30

∫ ∞
0

r2dre−3Zr/2a0
(

2− Zr

a0

)
2 sin(qr)

qr
(87)

=
4Z3

4
√

2a30q

∫ ∞
0

r sin(qr)e−3Zr/2a0
(

2− Zr

a0

)
dr . (88)
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Separating the integrals yields

ρex =
Z3

√
2a30q

(
2

∫ ∞
0

r sin(qr)e−3Zr/2a0 − Z

a0

∫ ∞
0

r2 sin(qr)e−3Zr/2a0dr

)
(89)

=
Z3

√
2a30q

(
2

[
48a3qZ

(4a2q2 + 9Z2)2

]
− Z

a0

[
−

32a4q
(
4a2q2 − 27Z2

)
(4a2q2 + 9Z2)3

])
(90)

=
2Z4

√
2

(
48

(4a2q2 + 9Z2)2
+

16
(
4a2q2 − 27Z2

)
(4a2q2 + 9Z2)3

)
(91)

=
√

2Z4

(
48
(
4a2q2 + 9Z2

)
+ 16

(
4a2q2 − 27Z2

)
(4a2q2 + 9Z2)3

)
(92)

=
√

2Z4

(
256a20q

2

(4a2q2 + 9Z2)3

)
(93)

(94)

Using these results, we have

∆d(2, 0, 0) =

∫
d3q

(2π)3

 Z4[
Z2 +

(a0q
2

)2]2
 4πe2

q2

(
Z4(a20q

2 − Z2)
(
2a20q

2 − Z2
)(

a20q
2 + Z2

)4
)

(95)

∆ex(2, 0, 0) =

∫
d3q

(2π)3

∣∣∣∣√2Z4

(
256a20q

2

(4a2q2 + 9Z2)3

)∣∣∣∣2 4πe2

q2
, (96)

with first order energy shifts ∆E(1) given by

∆E(1) = ∆d(2, 0, 0)− P12(S)∆ex(2, 0, 0) , (97)

where P12(S = 0) is −1 for the spin singlet (21S) state and P12(S = 1) is +1 for the spin triplet
(23S). Note that the direct and exchange integrals are over three components of q but, there is no
angular dependence, so when we switch to spherical coordinates, we can immediately integrate over
the polar and azimuthal angles, yielding a factor of 4π:

∆d(2, 0, 0) = Z8 (4π)2

(2π)3

∫ ∞
0

(q2dq)
e2

q2

 (a20q
2 − Z2)

(
2a20q

2 − Z2
)

(
a20q

2 + Z2
)4 (

Z2 +
(a0q

2

)2)2
 (98)

∆ex(2, 0, 0) = Z8 (4π)2

(2π)3

∫ ∞
0

(q2dq)
(2e2q2)216a40

(4a2q2 + 9Z2)6
, (99)

and note that (4π)2/(2π)3 = 2/π. The integrals simplify to

a

e2
∆d(2, 0, 0) = Z8 2a0

π

∫ ∞
0

(a20q
2 − Z2)

(
2a20q

2 − Z2
)

(
a20q

2 + Z2
)4 (

Z2 +
(a0q

2

)2)2dq (100)

a

e2
∆ex(2, 0, 0) = Z8 218a0

π

∫ ∞
0

a40q
4

(4a2q2 + 9Z2)6
dq , (101)
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and if we define x = qa0, the integrals become

a

e2
∆d(2, 0, 0) = Z8 2a0

π

∫ ∞
0

(x2 − Z2)
(
2x2 − Z2

)
(x2 + Z2)4

(
Z2 + 1

4x
2
)2 dx

a0
(102)

=
2Z8

π

∫ ∞
0

(x2 − Z2)
(
2x2 − Z2

)
(x2 + Z2)4

(
Z2 + 1

4x
2
)2dx (103)

a

e2
∆ex(2, 0, 0) = Z8 218a0

π

∫ ∞
0

x4

(4x2 + 9Z2)6
dx

a0
=

218Z8

π

∫ ∞
0

x4

(4x2 + 9Z2)6
dx . (104)

Letting Mathematica handle the integrals:∫ ∞
0

(x2 − Z2)
(
2x2 − Z2

)
(x2 + Z2)4

(
Z2 + 1

4x
2
)2dx =

17π

162Z7
(105)∫ ∞

0

x4

(4x2 + 9Z2)6
dx =

π

11943936Z7
, (106)

yields the result

2a

e2
∆d(2, 0, 0) =

22Z8

π

17π

162Z7
=

34

81
Z (107)

2a

e2
∆ex(2, 0, 0) =

219Z8

π

π

11943936Z7
=

219

11943936
Z =

32

729
Z . (108)

Using the definition of the Rydberg RH = e2/2a0, we have

∆d(2, 0, 0) =
34

81
ZRH (109)

∆ex(2, 0, 0) =
32

729
ZRH , (110)

and for Helium, we have

∆d(2, 0, 0) =
68

81
RH = 11.4173 eV (111)

∆ex(2, 0, 0) =
64

729
RH = 1.194 eV . (112)

The energy of the [1s 2s] states are

E(2s;S) =

(
−5 +

68

81
− P12(S)

64

729

)
RH , (113)

so for the “ortho” (spin-triplet, 23S) state, we have

E(2s; 1) =

(
−5 +

68

81
− 64

729

)
RH =

(
−5 +

548

729

)
RH = −57.7767 eV, (114)

and for the “para” (spin-singlet, 21S) state, we have

E(2s; 0) =

(
−5 +

676

729

)
RH = −55.3888 eV, (115)
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and we see the symmetric spin states have lower energies (are more tightly bound to the nucleus).
The ground state of neutral helium, ignoring the repulsion of the electrons is E[1s 1s] = −8RH =
−108.8 eV, and the unperturbed first excited state is E[1s 2s] = −5RH = −68 eV. Including the
Coulomb repulsion, the energies of the “ortho” and “para” states, are given above. NIST gives the
values of the [1s 2s] states of helium to be

ENIST
21s = 166277.4403 cm−1 = 20.6161 eV (116)

ENIST
23s = 159855.9745 cm−1 = 19.8199 eV. (117)

using the conversion factor 1 cm−1 = 0.000123986 eV. These are measured relative to the ground
state, which is −8RH = −108.8 eV, (note this is the estimate for neglecting the electrons’ mutual
repulsion, the correct ground state energy is4−78.98 eV) so the energy of these states relative to
the continuum is

para : ENIST
21s = 20.6161− 78.98 eV = −59.3639 eV (118)

ortho : ENIST
23s = 19.8199− 78.98 eV = −60.1601 eV, (119)

so the first-order perturbation theory results have errors of 6.69% and 3.96% for the [1s 2s] para
and ortho states, respectively.

4Richard Fitzpatrick, “Helium Atom”, http://farside.ph.utexas.edu/teaching/qmech/Quantum/node128.html.
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