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1 Problem #1: Charged Particle Scattering from Neutral Hydro-
gen.

Consider the scattering of a particle (neither an electron nor a proton) of mass M , charge Ze and
momentum ~k from neutral Hydrogen. Assume the electrostatic potential energy in which the
incident particle travels is

V (r) = Ze

(
|e|
r
−
∫

d3r′
|e|n(r′)

|r− r′|

)
→ Ze

(
|e|
r
−
∫

d3s
|e|n(s)

|r− s|

)
(1)

where n(r) is the electron probability density in the ground state of Hydrogen and |e|(−|e|) is
the charge of the proton (electron). Calculate the differential cross-section for elastic scattering
of the charged particle from neutral Hydrogen in the Born approximation. Express your result in
terms of the form factor of the electron probability distribution defined by F (q) = 1

Z

∫
d3reiq·rn(r).

Give explicit forms for dσ/dΩ0 in the limits qa � 1 and qa � 1, where a is the Bohr radius and
q = k′−k is the momentum transfer. Explain how small-angle scattering can be used to determine
the rms radius of the electron distribution. Express your results in terms of Z, a, k,M, c, e, ~ and
the relevant scattering parameters.

Using the first Born approximation, we assume the outgoing wave is a plane wave denoted |k′〉,
which by energy conservation is |k′| = |k|. In the coordinate basis this wave function can be
represented as

〈r′|k′〉 =
eik
′·r′

(2π)3/2
, (2)

and so the scattering amplitude is1

− fk′,k =
1

4π

2m

~2

∫
d3r′

(
eik
′·r′
)∗
V (r′)eik·r

′
=

1

4π

2m

~2

∫
d3r′eiq·r

′
V (r′) =

1

4π

2m

~2
〈k′|V (r′)|k〉 ,

(3)
which is simply the three-dimensional Fourier transform of the potential with respect to q. If we
insert the given potential, the scattering amplitude becomes the sum of two integrals:

I1 =

∫
d3r′eiq·r

′ 1

|r′|
(Ze|e|) (4)

I2 =

∫
d3r′eiq·r

′
∫

d3s
n(s)

|r′ − s|
(−Ze|e|) , (5)

and let us define ζ ≡ Ze|e|. The first integral is a well-known Fourier transform:

I1(q) =
4πζ

q2
, (6)

while the integrals in the second can swap positions:

I2(q) = −ζ
∫

d3s n(s)

∫
d3r′

eiq·r
′

|r′ − s|
, (7)

and we now identify the inner integral as the Fourier transform of the Green’s function. Let us now
only consider this Fourier transform:∫

d3r′
eiq·r

′

|r′ − s|
= eiq·s

∫
d3r′

eiq·r
′
e−iq·s

|r′ − s|
= eiq·s

∫
d3r′

eiq·(r
′−s)

|r′ − s|
= eiq·s

4π

q2
. (8)

1Sakurai, Modern Quantum Mechanics, Rev ed. Sect 7.2, equation 2.
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Note this is the same Fourier transform as the first integral, but instead of integrating over a sphere
around the origin, we are integrating over a sphere centered at s. Alternatively we can see this
by defining a vector R = r′ − s, and so d3R = d3r′ − d3s, but since s is a constant integral (for
the purpose of this integration) it’s differential element is zero, and we see this as just the three-
dimensional Fourier transform of 1/|R|. This result makes the second integral from the matrix
element into

I2(q) = −ζ
∫

d3s n(s)eiq·s
4π

q2
= −4πζZ

q2
F (q) . (9)

The form factor of the electron probability distribution can be found using the electron probability
density in the ground state of Hydrogen:

n(r) = |ψ100(r)|2 =
1

πa3
e−2r/a , (10)

and as such

F (q) =
1

Zπa3

∫
d3reiq·re−2r/a =

2π

Zπa3

∫ ∞
0

dr r2e−2r/a
∫ 1

−1
d(cos θ)eiqr cos θ , (11)

where the azimuthal integration was carried out. The polar integration yields

F (q) =
2π

Zπa3

∫ ∞
0

dr r2e−2r/a
2 sin(qr)

qr
=

4

Za3q

∫ ∞
0

dr re−2r/a sin(qr) , (12)

and letting Mathematica handle the radial integral, we see

F (q) =
4

Za3q

(
4a3q

(a2q2 + 4)2

)
=

16

Z

1

(a2q2 + 4)2
, (13)

with

q = |q| = |k− k′| =
√
|k|2 + |k′|2 − 2|k||k′| cos θ = k

√
2(1− cos θ) = 2k

√
1− cos θ

2
. (14)

Using the half-angle formula, we find

q = 2k sin

(
θ

2

)
, (15)

so the form factor is then

F (q) =
16

Z

1

(4a2k2 sin2(θ/2) + 4)2
=

1

Z

1

(a2k2 sin2(θ/2) + 1)2
=

4Z−1

(2 + a2k2 − a2k2 cos(θ))2
, (16)

where θ is the angle between the incoming and outgoing momenta. Combining the integrals I1 and
I2, we have

−fk′,k =
1

4π

2m

~2
(I1 + I2) =

1

4π

2m

~2

(
4πζ

q2
− 4πζZ

q2
F (q)

)
=

2mζ

(~q)2
(1− ZF (q)) (17)

fk′,k =
2mζ

(~q)2
(ZF (q)− 1) = Ze|e| 2m

(~q)2

(
16

(a2q2 + 4)2
− 1

)
. (18)
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Using this, we see the differential cross section is given by

∂σ

∂Ω
= |fk′,k|2 = 4Z2m2

(
e

~q

)4
(

1

(1 + a2q2

4 )2
− 1

)2

. (19)

Let us Taylor expand ZF (q) for small qa:

ZF (q) =

(
1 +

a2q2

4

)−2
' 1− a2q2

2
, (20)

so in the limit qa� 1, we see

∂σ

∂Ω
= |fk′,k|2 ' 4Z2m2

(
e

~q

)4(
−a

2q2

2

)2

= Z2m2
(ea
~

)4
. (21)

For large qa, the form factor takes the form

ZF (q) =

(
1 +

a2q2

4

)−2
'
(
a2q2

4

)−2
=

16

a4q4
, (22)

so in the limit qa� 1:

∂σ

∂Ω
= |fk′,k|2 ' 4Z2m2

(
e

~q

)4( 16

a4q4
− 1

)2

' 4Z2m2

(
e

~q

)4

, (23)

in terms of the fine structure constant, this is

∂σ

∂Ω
= 4Z2m2

(
e2

~c

)2(
c√
~cq

)4

= (2Zmα)2
( c
~

)2 1

q4
. (24)

We are considering elastic scattering so k = k′, and thus small angle scattering refers to small
momentum-transfer (q), see Equation 15. In this limit, the differential cross-section is a constant
(Equation 21), so the distribution of scattered particles should be uniform in 4π, regardless of
momentum transfer. The electron distribution of the ground state of neutral hydrogen has an
rms radius related to the Bohr radius a. The remaining factors in Equation 21, are fundamental
constants, so a measurement of the differential cross-section is essentially a measure of the Bohr
radius, which is a metric for the rms radius of the electron distribution of the ground state of
neutral hydrogen.

Page 4 of 16



Dylan J. Temples Northwestern University, Quantum Mechanics III : Solution Set Four

2 Problem #2: Quantum Hard Sphere Scattering.

Consider elastic scattering of a spinless particle of mass m from a “hard sphere” potential, V (r)→
∞ for r < a and otherwise V (r) = 0.

2.1 Energy Eigenstates.

Solve Schrödinger’s equation for the energy eigenstates states. Show that for any energy eigen-
state with orbital angular momentum quantum number ` the radial wave-function is “free-particle-
like”, but with a phase shift δ`(k), i.e., Rk`(r) ∼ sin(kr−`π/2+δ`)

kr for r > a and kr � 1, where

k ≡
√

2mE/~2.

In the region r > a, the Schrödinger equation is(
∇2
{r,θ,ϕ} + k2

)
ψ(r, θ, ϕ) = 0 , (25)

with k =
√

2mE/~2. However, since the potential is spherically symmetric, neither the incoming or
outgoing wave functions depend on the azimuthal angle ϕ about k, so only the radial coordinate r
and the polar angle θ (between the incoming momentum k and the scattered momentum k′. Since
these have no dependence on the azimuth, neither will the scattering amplitude, and thus it can be
ignored for the remainder of this problem. Inserting the Laplacian in spherical coordinates yields

0 =

(
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ k2

)
ψ(r, θ) (26)

=

(
r2
∂2

∂r2
+ 2r

∂

∂r
+ k2r2

)
ψ(r, θ) +

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

))
ψ(r, θ) . (27)

If we assume a separable solution of the form ψ(r, θ) = R(r)Y (θ), the Schrödinger equation becomes

0 = Y (θ)

(
r2
∂2

∂r2
+ 2r

∂

∂r
+ k2r2

)
R(r) +R(r)

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

))
Y (θ) .

Dividing both sides by the solution ψ(r, θ) allows us to write

λ =
1

R

(
r2
∂2

∂r2
+ 2r

∂

∂r
+ k2r2

)
R = − 1

Y

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

))
Y , (28)

where λ is a constant. This yields the two separated equations:

0 =

(
r2
∂2

∂r2
+ 2r

∂

∂r
+ k2r2 − λ

)
R(r) (29)

−λY (θ, ϕ) =

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

))
Y (θ, ϕ) (30)

which are the radial and angular equations, respectively. The angular solutions are Legendre
polynomials, and we have the constraint λ = `(` + 1), with ` ∈ Z. Therefore, the solution to the
Schrödinger equation is

ψ(r, θ) =
∞∑
l=0

Rk`(r)P`(cos θ) , (31)
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where Rk`(r) satisfies the radial equation, which after dividing by r2, yields

0 =

(
∂2

∂r2
+

2

r

∂

∂r
− `(`+ 1)

r2
+ k2

)
Rk`(r) . (32)

This wave function is solved by the spherical Bessel functions of the first and second kind, denoted
by j`(kr) and y`(kr), respectively. Therefore, the radial solution can be expressed as

Rk` = A`j`(kr) +B`y`(kr) , (33)

since the solution we found is only defined for r > a, both kinds of spherical Bessel functions are
allowed. In the far-field, the asymptotic behavior of these functions are

j`(kr) −−−→
r→∞

sin(kr − `π/2)

kr
(34)

y`(kr) −−−→
r→∞

−cos(kr − `π/2)

kr
. (35)

We can write the far-field solution as a linear combination of these as

Rk` −−−→
r→∞

sin(kr − `π/2 + δ`)

kr
, (36)

where δ` is a constant denoting the phase shift of the `th mode of the wave. Therefore, in the
far-field, the total wave function can be expressed as

ψ(r, θ) −−−→
r→∞

∞∑
`=0

i`(2`+ 1)C`
sin(kr − `π/2 + δ`)

kr
P`(cos θ) , (37)

where the factor of i`(2` + 1) is included to make normalization simpler, see below, and C` is a
normalization constant.

Consider the wave function of the incoming plane wave (normalized to unit volume):

ψ0(r, θ) = eik·r = eikr cos θ , (38)

which can be written as an expansion in Legendre polynomials:

eikr cos θ =
∑
`

a`j`(kr)P`(cos θ) , (39)

where a` are undetermined constants, we are not including the spherical Bessel function of the sec-
ond kind, due to its divergence at the origin. Exploiting the orthogonality of Legendre polynomials,
we can write∫ 1

−1
d(cos θ)Pm(cos θ)eikr cos θ =

∑
`

a`j`(kr)

∫ 1

−1
d(cos θ)Pm(cos θ)P`(cos θ) (40)

=
∑
`

a`j`(kr)δ`m
2

(2`+ 1)
= amjm(kr)

2

2m+ 1
, (41)

similarly the spherical Bessel function of the first kind can be expanded in terms of exponentials2:

j`(kr) =
(−i)`

2

∫ 1

−1
eikr cos θP`(cos θ)d(cos θ) . (42)

2Sakurai, Modern Quantum Mechanics, Rev ed. Sect 7.5, equation 19.
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Isolating the integral in the above expression, and inserting this into the left-hand side of Equa-
tion 40, yields the relation

2

(−i)`
j`(kr) = a`j`(kr)

2

2`+ 1
, (43)

and thus a` = i`(2`+ 1). Therefore the incident particle has the the wave function

ψ0(r, θ) = eikr cos θ =
∑
`

i`(2`+ 1)j`(kr)P`(cos θ) , (44)

and the scattered wave function is

ψ(r, θ) = ψ0(r, θ) + f(θ)
eikr

r
, (45)

which is also a solution to the free-particle Schrödinger equation for r > a.

2.2 Phase Shifts.

Calculate the phase shifts, δ`(k) from the exact solution to the radial wave equation.

The exact solution to the radial wave equation is

Rk`(r) = [A`j`(kr) +B`y`(kr)] , (46)

so the total wave function, outside the scattering region (r > a) is

ψ(r, θ) =
∞∑
`=0

[A`j`(kr) +B`y`(kr)]P`(cos θ) . (47)

If we consider the far-field asymptotic behavior of this solution, we may write this as

ψ(r, θ) −−−→
r→∞

∞∑
`=0

C`
sin(kr − `π/2 + δ`)

kr
P`(cos θ) , (48)

with A` = C` cos δ` and B` = −C` sin δ`. If we expand the sine, we may write this as

ψ(r, θ) −−−→
r→∞

∞∑
`=0

C`
ei(kr−`π/2+δ`) − e−i(kr−`π/2+δ`)

2ikr
P`(cos θ) , (49)

which is the solution for the total wave function, and must include outgoing spherical waves and
the incoming wave, ψ0. In the far-field, we may write the incident wave function, from Equation 44
as

ψ0(r, θ) = eikr cos θ =
∑
`

i`(2`+ 1)
ei(kr−`π/2) − e−i(kr−`π/2)

2ikr
P`(cos θ) . (50)

Using the definition of the scattered wave, we see

f(θ)
eikr

r
= ψ − ψ0 , (51)

where there are only outgoing spherical waves on the left-hand side, and thus the coefficients of the
incoming waves (e−ikr) in ψ and ψ0 must be the same. Factoring out the δ` from Equation 49, and
using the fact stated previously, we see

i`(2`+ 1) = C`(e
−iδ`) , (52)
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and so C` = eiδ`i−`(2`+ 1) = (2`+ 1)ei(`π/2+δ`). Using this result, we see the exact wave equation
may be written

ψ(r, θ) =
∞∑
`=0

eiδ`i−`(2`+ 1) [cos(δ`)j`(kr)− sin(δ`)y`(kr)]P`(cos θ) , (53)

and we consider the exact solution to the radial wave function as

Rk`(r) = eiδ` [cos(δ`)j`(kr)− sin(δ`)y`(kr)] . (54)

For the hard-sphere potential, the radial wave function must vanish at the surface of the infinite
potential:

Rk`(a) = 0 = eiδ` [cos(δ`)j`(ka)− sin(δ`)y`(ka)] , (55)

yielding the condition

cos(δ`)j`(ka) = sin(δ`)y`(ka) ⇒ tan(δ`) =
j`(ka)

y`(ka)
, (56)

which is an exact result3.

2.3 Low-Energy Differential Cross-Section.

Calculate the differential cross-section to next-to-leading order in the ka � 1. Sketch the angular
dependence of the probability distribution of the scattered particles.

The limit ka � 1 is low-energy scattering, in this limit, the asymptotic behavior of the spherical
Bessel functions4 is

j`(ka) −−−→
ka�1

(ka)`

(2`+ 1)!!
(57)

y`(ka) −−−→
ka�1

−(2`− 1)!!

(ka)l+1
, (58)

and so, we have

tan(δ`) =
(ka)`

(2`+ 1)!!

(
− (ka)l+1

(2`− 1)!!

)
=

−(ka)2`+1

(2`+ 1) [(2`− 1)!!]2
, (59)

which quickly vanishes for ` > 0. For ` = 0, we have

tan(δ0) =
j0(ka)

y0(ka)
=

sin(ka)

ka

(
− ka

cos(ka)

)
= − tan(ka) , (60)

so δ0 = −ka. For ` = 1, in the low-energy limit, we have

tan(δ1) =
j1(ka)

y1(ka)
' ka

3!!

(
−(ka)2

(1)!!

)
= −(ka)3

3
, (61)

3There were no approximations made when solving for the phase shift. However, it may seem that an approxi-
mation was made when we solved for the relations of A`, B`, and C`. We investigated the far-field behavior of the
radial wave function to determine these relations and then applied them to the exact result.

4Sakurai, Modern Quantum Mechanics, Rev ed. Sect 7.6, equation 46.
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so δ1 = arctan(−(ka)3/3). If we Taylor expand the arctangent for small values of ka, we see

δ1 = −(ka)3/3! +
(ka)9/(3)3

3
, (62)

or approximately, δ1 = −(ka)3/3.

The differential cross-section, to next-to-leading order, is given5 by

dσ

dΩ
= |f(θ)|2 =

∣∣∣∣∣1k
1∑
`=0

(2`+ 1)eiδ` sin δ`P`(cos θ)

∣∣∣∣∣
2

=
1

k2

∣∣∣eiδ0 sin δ0 + 3eiδ1 sin(δ1) cos θ
∣∣∣2 (63)

=
1

k2

(
eiδ0 sin δ0 + 3eiδ1 sin(δ1) cos θ

)(
e−iδ0 sin δ0 + 3e−iδ1 sin(δ1) cos θ

)
(64)

=
1

k2

(
sin2 δ0 + 9 sin2 δ1 cos2 θ + 3 sin δ0 sin δ1 cos θ

[
ei(δ0−δ1) + ei(δ1−δ0)

])
(65)

=
1

k2
(
sin2 δ0 + 9 sin2 δ1 cos2 θ + 6 sin δ0 sin δ1 cos θ cos(δ0 − δ1)

)
. (66)

In the low-energy limit sin(δ`) ∼ δ` (since δ0 ∝ k and δ1 ∝ k3) and cos δ` ∼ 1, as such, we have

dσ

dΩ
=

1

k2
{

(δ0)
2 + 9(δ1)

2 cos2 θ + 6δ0δ1 cos θ
}

(67)

=
1

k2

{
(−ka)2 + 9

(
−(ka)3

3

)2

cos2 θ + 6(−ka)

(
−(ka)3

3

)
cos θ

}
(68)

= a2
{

1 + 2(ka)2 cos θ + (ka)4 cos2 θ
}
. (69)

If we retain only the leading and next-to-leading terms, this is

dσ

dΩ
= a2

{
1 + 2(ka)2 cos θ

}
, (70)

which is plotted for ka = 0.5 in Figure 1.

2.4 Low-Energy Total Cross-Section.

Calculate the total cross-section in the limit k → 0.

In the limit k → 0, the ` = 1 phase shift is increasingly negligible to the ` = 0 phase shift, and
therefore, we can approximate the total cross-section as

σ =

∫
dΩ|f(θ)|2 =

∫
dΩ

1

k2

∣∣∣eiδ0 sin δ0

∣∣∣2 =

∫
dΩ

sin2(−ka)

k2
. (71)

Furthermore, in this limit sin(ka)→ ka, so the total cross section is

σ =

∫
dΩ

(ka)2

k2
= 4πa2 , (72)

5Sakurai, Modern Quantum Mechanics, Rev ed. Sect 7.6, equation 17.
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which is four times the area we would expect classically (geometric cross-section of a sphere is πa2).
Alternatively, we may start from Equation 70, taking k → 0, so that

σ = a2
∫

dΩ = 4πa2 , (73)

and we obtain the same result.

Figure 1: Differential cross-section, measured in units of the potential range squared (a2), as a
function of scattering angle.

Page 10 of 16



Dylan J. Temples Northwestern University, Quantum Mechanics III : Solution Set Four

3 Problem #3: The Deuteron.

The deuteron is a bound state of a neutron and proton. The nuclear potential is modeled as a
short-ranged spherically symmetric potential well of radius a = 2fm and depth V0 = −36MeV.
The potential is sufficiently weak that there is only one ‘shallow’ bound state with binding energy
E0 ' −2.2MeV, i.e., |E0| � |V0|. A monochromatic beam of linearly polarized gamma ray photons,
with energy ~ωγ near the ionization threshold of the deuteron, is incident on the deuteron (at rest).

3.1 Ground State Wave Function.

Calculate the ground state wave function of the deuteron. What is the range of the ground state
wave function?

The potential is spherically symmetric, and thus all that matters is the separation of the neutron
and proton r. Therefore, we work in the center-of-mass frame and we may consider only the radial
wave-function: {

− ~2

2µ

1

r2
d

dr

(
r2dr

)
+ V (r)

}
ψ(r) = −E0ψ(r) , (74)

where µ is the reduced mass of the proton-neutron system, which is, to a good approximation,
M/2, where M is the mass of the nucleon. If we define a function u(r) such that

ψ(r) ≡ u(r)

r
, (75)

the Schrödinger equation in the region r ≥ a becomes

d2u

dr2
− κ2u = 0 , (76)

where κ2 = 2µE0/~2. This equation has solutions of the form

u(r) = Ae−κr , (77)

where A is a constant to be determined, note we have discarded the exponentially growing solution
because it is unphysical (wave function must be normalizable). In the region r ≤ a, the Schrödinger
equation is

∂2u

∂r2
+ q2u = 0 , (78)

with q2 = 2µ(V0 − E0)/~2. This has solutions

u(r) = B sin(qr) + C cos(qr) , (79)

with the constants B and C determined by normalization. The wave function can not diverge at the
origin for it to be normalizable, so it must be that u(0) = 0, so the wave function is well-behaved
at the origin. Consider expanding the wave function for small argument:

ψr≤a(r) ' Bq +
C

r
, (80)

which is only well-behaved at the origin if we must set C = 0, and thus we have

ψr≤a(r) = B
sin(qr)

r
. (81)
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Continuity of the wave-function and its first derivative dictates6
ψr≥a

∣∣
r=a

= ψr≤a
∣∣
r=a

dψr≥a
dr

∣∣∣∣
r=a

=
dψr≤a

dr

∣∣∣∣
r=a

⇒


ur≥a

∣∣
r=a

= ur≤a
∣∣
r=a

dur≥a
dr

∣∣∣∣
r=a

=
dur≤a

dr

∣∣∣∣
r=a

(82)

This gives the conditions

Ae−κa = B sin(qa) (83)

−κAe−κa = qB cos(qa) , (84)

which if we divide the first by the second yields

tan(qa) = − q
κ

= − qa
κa

. (85)

The wave function for the Deuteron is

ψ(r) =

{
A e−κr

r r ≥ a
B sin qr

r r ≤ a ,
(86)

where κ and q are related by Equation 85, and A or B are normalization constants. The majority
of the wave function is outside the interaction range a (the exponential tail), so if we normalize
this function over all space, it is a good approximation to normalizing the entire wave function

1 = |A|2
∫
e−2κr

r2
d3r = |A|2

∫ ∞
0

r2dr
e−2κr

r2

∫
dΩ =

4π|A|2

2κ
, (87)

and so A =
√
κ/2π. Therefore, in the region r ≥ a, the wave function is

ψr≥a(r) =

√
κ

2π
e−κr , (88)

which has a range of r0 = 1/κ.

3.2 Constraints on Gamma Ray Energy.

Assume the photon wavelength is long compared to the typical diameter of the deuteron. What
constraint does this place on the gamma ray energy?

Consider a photon with wave number k, which has wavelength 2π/k. In the long-wavelength limit,
the range of the wave function is negligible compared to the wavelength of the photon so (excluding
factors of π), we have

r0 � k−1 ⇒ kr0 � 1 . (89)

Using the fact that r0 = 1/κ, we have the condition k � κ. The energy of a photon with
wavenumber k is

Ek = ~ck , (90)

6The condition on the derivative of the wave function is not obvious:

∂rψ1 = ∂rψ2 → ∂r(u1/r) = ∂r(u2/r)→ (∂ru1)/r − u1/r
2 = (∂ru2)/r − u2/r

2 ,

and since u1 = u2, and the r factors cancel, and we obtain ∂ru1 = ∂ru2.
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so k = Ek/~c, and so
Ek
~c
� κ . (91)

Therefore the energy constraint on the photon is such that

Ek � κ~c = ~c
√

2µE0

~2
=
√

2µc2E0 '
√
Mc2E0 '

√
938(2.2) MeV = 45.43 MeV , (92)

so the energy of the incoming photon must be small compared to the square root of the product of
the nucleon rest mass and the energy of the bound state, for the long wavelength approximation
to be valid.

3.3 Photo-Ionization Cross-Section.

Calculate the photo-ionization cross-section of the deuteron as a function of photon energy, ~ωγ .
Work out the general formula for the differential cross-section in terms of a matrix element of the
initial and final state radial wave functions, then evaluate the formula to reasonable accuracy for the
weakly bound ground state. Express your result in sensible units: e2/~c, relevant length squared,
~ωγ/|E0|. Hint: Express the final state wave function in terms of scattering phase shifts and use
your knowledge of the scaling of the phase shifts, δ`(kfas), with kfas where ~kf is the relative
momentum of the final state neutron and proton, and as is the scattering length for neutron-proton
scattering.

The initial state has the Deuteron in its ground state and Nk photons in mode k. after photo-
ionization, the final state is Nk − 1 photons in mode k and two particles moving with relative
momentum ~kf . This is a single photon process, so we may neglect the |Â|2 term in the interaction
Hamiltonian, so we consider only

Ĥint = −e
∗

c

(
p̂

µ
· Â
)
, (93)

where e∗ is the effective charge of the Deuteron, and Â is the free-radiation field operator,

Â =

√
2π~c2
V

∑
k,λ

1
√
ωk

[
âk,λek,λe

i(k·r−ωkt) + â†k,λe
∗
k,λe

−i(k·r−ωkt)
]
, (94)

with âk,λ (â†k,λ) representing the photon annihilation (creation) operator for the mode k, λ, with
λ representing the polarization state of radiation. The incoming radiation is linearly polarized, so
we have ek,λ = e∗k,λ, and we may factor it out. Using this, we see the matrix element relevant to
Fermi’s Golden rule is

M = 〈kf ;Nk − 1| − e∗

c

(
p̂

µ
· Â
)
|0;Nk〉 (95)

= − e
∗

µc

√
2π~c2
V ωk

〈kf ;Nk − 1|
(
p̂ · ek,λ

[
âk,λe

ik·r + â†k,λe
−ik·r

])
|0;Nk〉 , (96)

if we note that the final state has one less photon than the initial state, the term with the creation
operator vanishes, and we are left with the matrix element

M = −e
∗

µ

√
2π~
V ωk

〈kf |p̂ · ek,λeik·r|0〉 · 〈Nk − 1|âk,λ|Nk〉 , (97)
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so the radiation factor contributes
√
Nk. Using this result, Fermi’s Golden rule gives

Γk,λ =
2π

~
|M |2 =

2π

~

(
e∗

µ

)2 2π~
V ωk

Nk

∣∣∣〈kf |p̂ · ek,λeik·r|0〉∣∣∣2 δ(Ef + E0 − ~ωk) . (98)

We are now interested in the matrix element

M = 〈kf |p̂ · ek,λeik·r|0〉 , (99)

but we are in the long-wavelength limit, which leads to the electric dipole approximation. Therefore
we approximate the exponential by retaining only the first term in the expansion for small arguments
of the exponential, so eik·r → 1, so

M = 〈kf |p̂ · ek,λ|0〉 , (100)

which can be expressed in the coordinate basis as

M = −~
i

∫
d3r ψ∗kf (r) (ek,λ ·∇ψ0(r)) . (101)

The ground state of Deuteron is isotropic, which leads to

M = −~
i

∫
d3r ψ∗kf (r)(r̂ · ek,λ)

∂ψ0(r)

∂r
, (102)

where r̂ denotes a unit vector in the direction of r. The scattered wave function can be written as
an expansion over partial waves:

ψkf (r) =
1√

(2π)3V

∑
`≥0

i`(2`+ 1)R`(kfr)P`(k̂f · r̂) , (103)

where P`(x) is the `th Legendre polynomial, and k̂f is a unit vector in the direction of the relative
momentum of the neutron and proton. We previously stated that the ground state wave function
is isotropic (` = 0), and so by the selection rules of electric dipole transitions, the final state must
have ` = 1. We can therefore write the scattered wave function as an ` = 1 wave:

ψkf (r) =
3√

(2π)3V
iR1(kfr)(k̂f · r̂) , (104)

and from the far-field scattering solution (for a constant radial potential) in Equation 105, we see
the radial wave function for p-waves is

R1(r) = eiδ1 [cos(δ1)j1(kfr)− sin(δ1)y1(kfr)] , (105)

where the phase shift δ1 is given by Equation 62, in the low-energy limit:

δ1 = −(ka)3/3 , (106)

but since ka� 1 in this limit, we may approximate the radial wave function for ` = 1 as

R1(r) ∼ e−i(ka)
3/3

[
j1(kfr)−

(ka)3

3
y1(kfr)

]
' j1(kfr) =

kfr

3
(107)
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in the far-field, see Equation 57, so the wave function is

ψkf (r) =
3√

(2π)3V
i
kfr

3
(k̂f · r̂) , (108)

Using this, the matrix element becomes

M =
−(3i)√
(2π)3V

~
i

∫
d3r R∗1(kfr)(k̂f · r̂)(r̂ · ek,λ)

∂ψ0(r)

∂r
, (109)

and the angular integrals can be evaluated immediately. Consider the integral of two unit vectors
over all solid angle: ∫

dΩr̂

4π
r̂ir̂j , (110)

the result of which is a rank two tensor, which must be invariant (rotations of the vectors will not
change the outcome because they are isotropic and are integrated over the unit sphere surface).
Therefore it is proportional to the Kronecker delta; if we contract over the indices r̂ir̂j = 1 so
the integral is unity, while the contraction of the Kronecker delta (in 3 dimensional space) is 3.
Therefore the proportionality constant must be 1/3. If we now perform the indicated contraction
(two dot products), we see

(k̂f · r̂)(r̂ · ek,λ) =
4π

3
(k̂f · ek,λ) , (111)

which is independent of r, and can then be factored out of the integral. The sum over polarizations
is due to the radiation field operator having a sum over wave vector and polarization, so considering
only one k does not do the sum over λ. The matrix element simplifies to√

(2π)3VM = −4π~
∑
λ

(k̂f · ek,λ)

∫ ∞
0

(r2dr) R∗1(kfr)
∂ψ0(r)

∂r
, (112)

where the integral is∫ ∞
0

(r2dr) R∗1(kfr)
∂ψ0(r)

∂r
=

∫ ∞
0

(r2dr)
kfr

3

d

dr

√
κ

2π

e−κr

r
(113)

=
kf
3

√
κ

2π

∫ ∞
0

(r3dr)

(
−e
−κr

r2
− κe−κr

r

)
(114)

= −
kf
3

√
κ

2π

∫ ∞
0

dr
(
re−κr + r2κe−κr

)
(115)

= −
kf
3

√
κ

2π

(
3

κ2

)
= −

kf√
2πκ3

. (116)

So Fermi’s Golden rule (Equation 98) becomes

Γk,λ =

(
e∗

µ

)2 (2π)2

V ωk
Nk |M|2 δ(Ef + E0 − ~ωk) , (117)

and the kinematics (delta function) give the condition ~ωk −E0 = ~k2f/2µ. Inserting the result for
M gives

Γkf =

(
e∗

µ

)2 (2π)2

V ωk
Nk(4π~)2

k2f
2πκ3

∣∣∣∣∣∑
λ

(k̂f · ek,λ)

∣∣∣∣∣
2(

1√
(2π)3V

)2

δ(Ef + E0 − ~ωk) (118)

= Σ

(
e∗

µ

)2 4(2π)3~2k2f
V ωkκ3

Nk
1

(2π)3V
δ(Ef + E0 − ~ωk) = Σ

(
e∗

µ

)2 4~2k2f
V 2ωkκ3

Nkδ(∆E) , (119)

Page 15 of 16



Dylan J. Temples Northwestern University, Quantum Mechanics III : Solution Set Four

where ∆E = Ef +E0 − ~ωk and Σ =
∣∣∣∑λ(k̂f · ek,λ)

∣∣∣2. To find the total rate, we sum this over all

possible final states kf , which we can approximate as a three-dimensional integral:

Γ =
V

8π3

∫ ∞
0

k2fdkf

∫
dΩk̂f

Γkf (120)

=
V

8π3

(
e∗

µ

)2 4~2

V 2ωkκ3
Nk

∫ ∞
0

(k2fdkf )k2fδ(Ef − E0 − ~ωk)
∫

dΩk̂f

∣∣∣∣∣∑
λ

(k̂f · ek,λ)

∣∣∣∣∣
2

. (121)

Consider only the angular integral:

I{θ,φ} =

∫
dΩk̂f

∣∣∣∣∣∑
λ

(k̂f · ek,λ)

∣∣∣∣∣
2

=

∫
dΩk̂f

∑
λ

[
(k̂
i

fe
i
k,λ)(k̂

j

fe
j
k,λ)
]

=

∫
dΩk̂f

∑
λ

[
(eik,λ)(ejk,λ)

]
k̂
i

f k̂
j

f =

∫
dΩk̂f

[
eik,+1e

j
k,+1 + eik,−1e

j
k,−1

]
k̂
i

f k̂
j

f

=

∫
dΩk̂f

[
δij − k̂

i
k̂
j
]
k̂
i

f k̂
j

f =

∫
dΩk̂

[
k̂
i

f k̂
j

f − k̂
i
k̂
j
k̂
i

f k̂
j

f

]
=

∫
dΩk̂

[
1− (k̂ · k̂f )2

]
.

We now define the scattering angle θ which is the angle between the incoming photon momentum
k and the scattered relative momentum kf , so

I{θ,φ} =

∫
dΩk̂

[
1− cos2 θ

]
= 4π sin2 θ , (122)

because k̂ has no dependence on the scattering angle. The radial integral is

Ir =

∫ ∞
0

(k2fdkf )k2fδ

(
~2k2f
2µ
− E0 − ~ωk

)
, (123)

the Dirac delta is satisfied if k2f = (2µ/~2)(E0 + ~ωk), where ωk = ck. The integral is simply

Ir = (k2f )2
∣∣
k2f=(2µ/~2)(E0+~ωk)

=
4µ2

~4
(E0 + ~ck)2 . (124)

Collecting all the results, the rate is given by

Γ =
V

8π3

(
e∗

µ

)2 4~2

V 2ωkκ3
Nk

4µ2

~4
(E0 + ~ck)24π sin2 θ =

Nk

V

(
43(e∗)2

23π2~2ωkκ3

)
(E0 + ~ck)2 sin2 θ .

(125)

The scattering rate is related to the differential cross section by the flux of incident particles
J = (N/V )c, by

dσ

dΩ
=

Γ

J
=

(
8(e∗)2

π2c~2ωkκ3

)
(E0 + ~ck)2 sin2 θ =

(
8(e∗)2

π2c~2ωkκ3

)
(E0 + ~ck)2 sin2 θ . (126)

3.4 Energy and Angular Dependence of Outgoing Protons.

Sketch both the energy and angular dependences of the outgoing protons for gamma rays near
threshold.

The angular dependence of the differential cross section is proportional to sin2 θ while the en-
ergy dependence is proportional to (E0 + ~ck)2, but since the photon is near threshold, we may
approximate this as 4E2

0 . The plots are shown on the back of this page.
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