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1 Shankar 1.8.8.

1.1 Part 1.

The Hermitian matrices M1,M2,M3,M4 obey

M iM j +M jM i = 2δijI , (1)

for i, j = 1, 2, 3, 4. In the eigenbasis of M i, M i is diagonal, and there exist eigenvectors, |mi〉, such
that,

M i |mi〉 = λi |mi〉 , (2)

where λi is the eigenvalue. When i = j, Equation 1 simplifies to 2M iM i = 2I, which when acting
on a eigenvector gives,

2M iM i |mi〉 = 2 |mi〉 ⇒ 2M iλi |mi〉 = 2 |mi〉 ⇒ λ2
i |mi〉 = |mi〉 . (3)

Hermitian operators must have real eigenvalue because they are observables, so λi = ±1.

1.2 Part 2.

Using the relationship of the Hermitian operators M i given in Equation 1, when i 6= j,

M iM j = −M jM i . (4)

From the same identity when i = j, M iM i = I. Therefore acting on the left with another M i gives,

M iM iM j = −M iM jM i ⇒ IM j = −M iM jM i , (5)

and taking the trace of both sides yields,

Tr[M j ] = −Tr[M iM jM i] , (6)

which after noting Tr[ABC] = Tr[CBA], becomes

Tr[M j ] = −Tr[M iM iM j ]⇒ Tr[M j ] = −Tr[M j ] , (7)

and the only way that is possible is if Tr[M j ] = 0.

1.3 Part 3.

In any basis, the trace of M i is the same, which can be shown by again noting the trace is cyclic.
Using a unitary operator U to change the basis of M i, and taking the trace

Tr[U †M iU ] = −Tr[UU †M i] = Tr[M i] . (8)

The trace of M i in the eigenbasis is zero, and therefore is zero in any basis. In the eigenbasis,
the trace is the sum of the eigenvalues, ±1. In order for this to be zero, there must be an even
number of eigenvalues, which in a diagonal matrix corresponds to the dimensionality of the matrix.
Therefore M i must be even-dimensional.
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2 Shankar 1.8.9.

A collection of masses ma, located at ra, is rotating around a common axis with angular velocity
vector ω. Their total angular momentum is given by

l =
∑
a

ma(ra×va) =
∑
a

mara×(ω×ra) =
∑
a

ma[ω(ra·ra)−ra(ω·ra)] =
∑
a

ma[(ra)2ω−ra(ω·ra)] ,

(9)
using the identity for the vector triple product. To find the ith Cartesian coordinate of angular
momentum the vectors ω and ra are reduced to their ith components, ωi and (ri)a. The ith

component of angular momentum becomes

li =
∑
a

ma

[
(ra)2ωi − (ri)a

3∑
j=1

ωj(rj)a

]

=
∑
a

ma

[
(ra)2

3∑
j=1

[ωjδij ]− (ri)a

3∑
j=1

[ωj(rj)a]

]
,

(10)

where (ra)2 is the squared norm of the displacement vector, ra · ra. The sum over j on the first line
was introduced to replace the dot product. The Kronecker Delta was introduced on the bottom
line in order to change the index of ω, allowing the first term to be written as a sum over the index
j. This allows the sum over a of two sums of j to be written as a sum over j of a two-term sum
over a. Now the ith component of angular momentum is given by,

li =
3∑

j=1

[
ωj

∑
a

ma[(ra)2δij − (ri)a(rj)a]

]
=
∑
j

Mijωj , (11)

where Mij =
∑

ama[(ra)2δij − (ri)a(rj)a], which in Dirac notation is |l〉 = M |ω〉.

2.1 Part 1.

In order for the angular momentum and angular velocities to always be parallel the ith component
of angular momentum must be only a scaling factor of the ith component of angular velocity,
therefore all M matrices must be diagonal. Otherwise the ith component of l will couple with other
components of ω. By looking at Equation 11, and noting that for off-diagonal entries i 6= j, it can
be shown the off-diagonal entries are of the form,

Mij =
∑
a

ma[−(ri)a(rj)a] . (12)

A mass distribution can be chosen such that this quantity will be nonzero, which implies the angular
momentum and angular velocities will not be parallel.

2.2 Part 2.

If the matrix M is Hermitian, then M † = M . This requires Mij = M∗ji, but since M is real,
M∗ji = Mji, so if Mij = Mji, then M is Hermitian. The matrix element Mji is calculated,

Mji =
∑
a

ma[(ra)2δji − (rj)a(ri)a]

=
∑
a

ma[(ra)2δij − (ri)a(rj)a]

= Mij .

(13)
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The facts that multiplication is commutative, and the Kronecker Delta is a function of dummy
indeces, which can be swapped, makes the first two lines of Equation 30 equal. Therefore the
moment of inertia matrix M is Hermititan.

2.3 Part 3.

By noting M is Hermitian, there exisits a basis {|ei〉} that will diagonalize this matrix. The angular
momentum, |ω〉, can be represented in this basis as

∑
i ωi |ei〉. In this basis, because M is diagonal,

the angular momentum can be expressed as

|l〉 = M
∑
i

ωi |ei〉 =
∑
i

ωiM |ei〉 =
∑
i

ωimi |ei〉 , (14)

where mi is the eigenvalue on the ith basis vector. Since M is the moment of inertia matrix in
three-dimensional Cartesian space, it is a 3× 3 matrix, which has 3 bases and 3 eigenvalues. If the
angular velocity points directly along one of these bases, such that |ω〉 = ωi |ei〉, it will be parallel
with angular momentum. This gives three directions for which |l〉 || |w〉, these correspond to the
eigenvectors of M .

2.4 Part 4.

Due to the complete symmetry of a sphere, the moment of inertia matrix, M , must be diagonal.
Any direction is an eigendirection for rotation, which means the eigenvalues are triply degenerate.
This says the form of M for a sphere is

M = mI3 , (15)

where m is the triply degenerate eigenvalue, and I3 is the three dimensional identity matrix.
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3 Shankar 1.8.10.

The two Hermitian matrices,

Ω =

1 0 1
0 0 0
1 0 1

 , Λ =

2 1 1
1 0 −1
1 −1 2

 , (16)

can be diagonalized simultaneously if their commutator is zero. In this case the commutator,

[Ω,Λ] = ΩΛ− ΛΩ =

1 0 1
0 0 0
1 0 1

2 1 1
1 0 −1
1 −1 2

−
2 1 1

1 0 −1
1 −1 2

1 0 1
0 0 0
1 0 1

 (17)

=

3 0 3
0 0 0
3 0 3

−
3 0 3

0 0 0
3 0 3

 = 0 (18)

is zero, which confirms Ω and Λ can be diagonalized simultaneously. In order to diagonalize both
matrices with a unitary transformation, a basis must be chosen. Ω is degenerate in its eigenvalues
while Λ is not, so the eigenvectors of Λ will create a good basis. Solving the characteristic equation
of Λ,

0 =

∣∣∣∣∣∣
2− ω 1 1

1 −ω −1
1 −1 2− ω

∣∣∣∣∣∣ (19)

for ω will return the three non-degenerate eigenvalues of Λ.Using Mathematica to calculate the
determinant and solve the characteristic equation yields ω = 3, 2,−1. Using these values of ω, the
eigenvectors can be found by solving the equation,

Λ |vi〉 = ωi |vi〉 , (20)

where |vi〉 is one eigenvector. Starting with an arbitrary eigenvector, |v〉 = (x, y, z), Eqaution 20
results in a system of three equations which can be solved for x, y, z to obtain the three eigenvectors.
This system of equations is

2x+ y + z = ωx (21)

x− z = ωy (22)

x− y + 2z = ωz (23)

The solutions to these equations for each choice of ω are,

ω = 3 :

{
x = z

y = 0
ω = 2 :

{
x = y

z = −y
ω = −1 :

{
y = −2x

z = −x
. (24)

From these solutions eigenvectors can be found. These eigenvectors create the basis that diagonal-
izes both matrices. The unitary matrix required to transform these matrices into this basis has
these normalized eigenvectors as its columns. The normalized eigenvectors are,

ω1 = 3 , |v1〉 =

√
1

2

1
0
1

 ω2 = 2 , |v2〉 =

√
1

3

−1
−1
1

 ω3 = −1 , |v3〉 =

√
1

6

−1
2
1

 , (25)
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from which the unitary operator required for the transformation to the eigenbasis can be determined
to be

U =


√

1
2 −

√
1
3 −

√
1
6

0 −
√

1
3

√
2
6√

1
2

√
1
3

√
1
6

 . (26)

To verify this diagonalizes both Λ and Ω, the quantities U †ΛU and U †ΩU are calculated,

DΛ = U †ΛU =

3 0 0
0 2 0
0 0 −1

 DΩ = U †ΩU =

2 0 0
0 0 0
0 0 0

 , (27)

which are diagonal matrices with the eigenvalues of Λ and Ω down the diagonals, respectively.
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4 Shankar 1.10.4.

A string fixed at endpoints x = 0 and x = L has initial the initial condition,

Ψ(x, t = 0) =

{
2h
L x, 0 ≤ x ≤ L

2
2h
L (L− x), L

2 ≤ x ≤ L
. (28)

Before taking the time evolution into account, the string is subject to the same boundary conditions
as the string in Shankar Example 1.10.1, which gives the time evolution of a string with fixed
endpoints (Shankar Equation 1.10.59) to be

Ψ(x, t) =
∞∑

m=1

√
2

L
sin

(
mπx

L

)
cos(ωmt) 〈m|ψ(0)〉 , (29)

where m is an integer and the matrix inner product is given by the integral

〈m|ψ(0)〉 =

√
2

L

∫ L

0
sin

(
mπx

L

)
Ψ(x, 0)dx . (30)

For the given Ψ(x, 0), Equation 30 becomes

〈m|ψ(0)〉 =

√
2

L

[ ∫ L/2

0

(
2h

L

)
x sin

(
mπx

L

)
dx+

∫ L

L/2

(
2h

L

)
(L− x) sin

(
mπx

L

)
dx

]
=

√
2

L

[ ∫ L/2

0

(
2h

L

)
x sin

(
mπx

L

)
dx+

∫ L

L/2

(
2h

L

)
L sin

(
mπx

L

)
dx−

∫ L

L/2

(
2h

L

)
x sin

(
mπx

L

)
dx

]
=

√
2

L

[
4hL

m2π2
sin

(
mπ

2

)
− 2hL

m2π2
cos

(
mπ

2

)]
=

√
2

L

4hL

m2π2
sin

(
mπ

2

)
.

(31)

The above integrals were evaluated using Mathematica. Since m is an integer, the cosine term is
identically zero in the second to last step above. Substituting this value into Equation 32, yields
the final result,

Ψ(x, t) =

∞∑
m=1

√
2

L
sin

(
mπx

L

)
cos(ωmt)

√
2

L

4hL

m2π2
sin

(
mπ

2

)

=

∞∑
m=1

(
8h

m2π2

)
sin

(
mπx

L

)
cos(ωmt) sin

(
mπ

2

)
.

(32)

Page 7 of 9



Dylan J. Temples Shankar : Solution Set One

5 Problem #5: Hermitian Matrices.

In order to find the commutator and anti-commutator for each pair of the matrices

H =

[
A† 0
0 A

]
, Q =

[
0 0
A 0

]
, Q† =

[
0 A†

0 0

]
,

the products of each pair were found, shown below.

HQ =

[
0 0
A2 0

]
(33)

QH =

[
0 0

AA† 0

]
(34)

HQ† =

[
0 (A†)2

0 0

]
(35)

Q†H =

[
0 A†A
0 0

]
(36)

QQ† =

[
0 0
0 AA†

]
(37)

Q†Q =

[
A†A 0

0 0

]
(38)

HH =

[
(A†)2 0

0 A2

]
(39)

QQ = Q†Q† =

[
0 0
0 0

]
(40)

Using these products, the commutator, [A,B] = AB − BA, and the anti-commutator, {A,B} =
AB + BA can be found directly. It is unnecessary to calculate the commutator of a matrix and
itself because it is zero by definition, while this is untrue for the anti-commutator.

[H,Q] =

[
0 0

A2 −AA† 0

]
= −[Q,H] (41)

[H,Q†] =

[
0 (A†)2 −A†A
0 0

]
= −[Q†, H] (42)

[Q,Q†] = −[Q†, Q] =

[
−A†A 0

0 AA†

]
(43)

{Q,Q†} = {Q†, Q} =

[
A†A 0

0 AA†

]
(44)

{Q,Q} = {Q†, Q†} =

[
0 0
0 0

]
(45)
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{H,Q} = {Q,H} =

[
0 0

A2 +AA† 0

]
(46)

{H,Q†} = {Q†, H} =

[
0 (A†)2 +A†A
0 0

]
(47)

{H,H} = {H,H} =

[
2(A†)2 0

0 2A2

]
(48)
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