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1 Shankar 7.3.6.

Consider a particle of mass m in a potential

V (x) =

{
1
2mω

2x2, x > 0

∞, x ≤ 0
(1)

The boundary condition on the wave function is such that ψ(x = 0) = 0. The derivative does
not need to be continuous because the potential is discontinuous and jumps to infinity at x = 0.
The solutions to the whole harmonic oscillator are Gaussians multiplied by a polynomial in x. The
normalization factor of any energy eigenfunction is completely determined by two numbers, c0 for
even-n states and c1 for odd-n states. It is important to note that the Hermite polynomials for
odd-n are odd functions and for even-n, they are even functions. For odd-n states the boundary
condition is always satisfied because odd functions are zero at x = 0. However, for even-n states,
the value of ψ(x = 0) is completely determined by the normalization constant c0. This must be zero
for the wave function to satisfy the boundary condition. If the first even coefficient is zero, then
due to the recursion relation all subsequent even eigenstates must be zero as well. This implies
that the half harmonic oscillator can only have odd-n states. For these states, the form of the
eigenfunction is the same, but the normalization factor must be adjusted to reflect normalization
over 0 < x <∞ instead of all x-space. The normalization condition is

1 =

∫ ∞
−∞
|ψHO|2dx = 2

∫ ∞
0
|ψHO|2dx , (2)

because the integrand is not negative anywhere in all space. The new wave function must only differ
from the harmonic oscillator wave function ψHO by a constant, so the normalization condition for
the half-harmonic oscillator is

1 =

∫ ∞
0
|ψHHO|2dx =

∫ ∞
0
|a|2|ψHO|2dx , (3)

substituting in the normalization condition for the full harmonic oscillator yields

2

∫ ∞
0
|ψHO|2dx = |a|2

∫ ∞
0
|ψHO|2dx , (4)

so that a =
√

2 and ψHHO =
√

2ψHO. The eigenfunctions for the half harmonic oscillator are then

ψHHO =
√

2

[
mω

π~22n(n!)2

]1/4
exp

[
−mωx

2

2~

]
Hn

[(mω
~

)1/2
x

]
n = 1, 3, 5, . . . (5)

The new factor attached to the eigenfunction will cancel when plugged into the Schŕ’odinger equa-
tion, so the energy spectrum (eigenvalues) will not change. It is the same as the full harmonic
oscillator with only odd-n allowed,

En = (n+
1

2
)~ω . (6)
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2 Shankar 7.5.4.

The Boltzman formula
P (i) = e−βE(i)/Z , (7)

where
Z =

∑
i

e−βE(i) (8)

gives the probability of finding a system in a state i with energy E(i), when it is in thermal
equilibrium with a reservoir of absolute temperature T = 1/βk, with k = 1.4× 10−6 ergs/K; being
Boltzman’s constant. (The ”probability” referred to above is in relation to a classical ensemble of
similar systems and has nothing to do with quantum mechanics.)

2.1 Thermal Average of System’s Energy.

The thermal average of the systems energy is given by

Ē = − ∂

∂β
lnZ . (9)

Plugging in the partition function yields

Ē = − ∂

∂β
ln

[∑
i

e−βE(i)

]
, (10)

using the chain rule to get the derivative gives

Ē = − 1∑
i e
−βE(i)

[−E(i)]e−βE(i) = E(i)
e−βE(i)

Z
= E(i)P (i) . (11)

2.2 Classical Oscillator.

Let the system be a classical oscillator. The index i is now continuous and corresponds to the
variables x and p describing the state of the oscillator, i.e., i→ x, p, and

∑
i →

∫ ∫
dxdp, and

E(i)→ E(x, p) =
p2

2m
+

1

2
mω2x2 . (12)

With these transformations, the partition function becomes

Zcl =

∫ ∞
−∞

∫ ∞
−∞

dx dp e−βE(x,p) =

∫ ∞
−∞

∫ ∞
−∞

dx dp exp

[
−β p

2

2m
− β 1

2
mω2x2

]
(13)

=

∫ ∞
−∞

exp

[
−β 1

2
mω2x2

]
dx

∫ ∞
−∞

exp

[
−β p

2

2m

]
dp (14)

=

√
2π

mβω2

√
2πm

β
=

2π

βω
, (15)

and the thermal average energy becomes

Ēcl = − ∂

∂β
lnZcl = − 1

Zcl

∂

∂β
Zcl = −βω

2π

(−2π)

ωβ2
=

1

β
=

1

kT
. (16)
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2.3 Quantum Oscillator.

The energy of a quantum harmonic oscillator in state n is En = (n + 1
2)~ω. Thus the quantum

partition function is

Zqu =
∞∑
n=0

e−β(n+
1
2
)~ω = e−β~ω/2

∞∑
n=0

e−βn~ω = e−β~ω/2
∞∑
n=0

1

eβn~ω
= e−β~ω/2

∞∑
n=0

1

An
, (17)

where A = exp(β~ω). The final sum converges to 1/(1−A−1), so the partition function becomes

Zqu = e−β~ω/2
1

1−A−1
= e−β~ω/2(1− e−β~ω)−1 . (18)

The quantum average thermal energy is

Ēqu = − ∂

∂β
lnZqu = − 1

Zqu

∂

∂β
Zqu = − 1

Zqu

∂

∂β
e−β~ω/2(1− e−β~ω)−1 (19)

= − 1

Zqu

[
(−~ω/2)

e−β~ω/2

1− e−β~ω
+ e−β~ω/2

(−1)ω~eβω~)

(1− e−β~ω)2

]
(20)

= − 1

Zqu

[
−~ω

2
Zqu + e−β~ω/2

(−1)ω~eβω~)

(1− e−β~ω)2

]
(21)

= − 1

Zqu

[
−~ω

2
Zqu − Zqu

ω~eβω~)

(1− e−β~ω)

]
(22)

= ~ω
[

1

2
+

eβ~ω

1− e−β~ω

]
= ~ω

[
1

2
+

1

eβ~ω − 1

]
(23)

2.4 Large T Limit.

It is intuitively clear that as the temperature T increases (and β = 1/kT decreases) the oscillator
will get more and more excited and eventually (from the correspondence principle) Ēqu → Ēcl as
T → ∞. As β drops the exponential term becomes closer to one, the Taylor series representation
of the exponential, to first order is ex ' 1 + x. This makes the quantum average thermal energy

Ēqu ' ~ω
[

1

2
+

1

1 + β~ω − 1

]
= ~ω

[
β~ω
2β~ω

+
2

2β~ω

]
, (24)

in the limit T →∞, β → 0, so 2� β~ω, so the average thermal energy becomes

Ēqu ' ~ω
2

2β~ω
=

1

β
= Ēcl . (25)

Specifically, in this limit ”large T” means T � ~ω/k, because in order to expand the exponential,
the argument must be small, which occurs for the condition stated.

2.5 Crystal Structure.

Consider a crystal with N0 atoms, which for small oscillations, is equivalent to 3N0 decoupled
oscillators. The mean thermal energy of the crystal Ēcrystal is Ēqu or Ēcl summed over all the
normal modes. If the oscillators are treated classically, the specific heat per atom is

Ccl(T ) =
1

N0

∂Ēcrystal
∂T

. (26)
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The classical energy of the crystal is given by Ēcrystal = 3N0Ēcl, the specific heat per atom,
classically is then,

Ccl(T ) =
1

N0

∂

∂T
3N0Ēcl = 3k

∂

∂T
T = 3k , (27)

which is independent of T and the parameters of the oscillators and hence the same for all crystals
whose atoms behave as point particles with no internal degrees of freedom. This agrees with
experiment at high temperatures but not as T → 0. Empirically,

C(T )→

{
3k (T large)

0 (T → 0)
. (28)

When the oscillators are treated quantum mechanically, as Einstein did, and assuming for simplicity
that they all have the same frequencyω, the specific heat per atom is

Ccl(T ) =
1

N0

∂

∂T
3N0~ω

[
1

2
+

1

eβ~ω − 1

]
= 3~ω

∂

∂T
(e~ω/kT − 1)−1 (29)

= 3~ω
[
(−1)(e~ω/kT − 1)−2

~ω
k

(−T−2)e~ω/kT
](

k

k

)
(30)

= 3k

(
~ω
kT

)2 e~ω/kT

(e~ω/kT − 1)2
= 3k

(
θE
T

)2 eθE/T

(eθE/T − 1)2
, (31)

where θE = ~ω/k is called the Einstein temperature and varies from crystal to crystal.

The high temperature limit, T � θE , reduces to the classical specific heat,

lim
θE/T�1

3k

(
θE
T

)2 eθE/T

(eθE/T − 1)2
= 3k

(
θE
T

)2 eθE/T

(eθE/T − 1)2
, (32)

for small τ = θE/T , the exponentials can be expanded in a first order Taylor series,

3kτ2
1 + τ

(1 + τ − 1)2
= 3k(1 + τ) ' 3k , (33)

because τ is negligible compared to one. The high temperature limit of the quantum mechanical
specific heat per atom reduces to the classical value.

The low temperature limit, T � θE , so

lim
θE/T�1

3k

(
θE
T

)2 eθE/T

(eθE/T − 1)2
= 3k

(
θE
T

)2 eθE/T

(eθE/T )2
= 3k

(
θE
T

)2

e−θE/T . (34)

Although Cqu(T )→ 0, the exponential falloff disagrees with the observed C(T )→T→0 T
3 behavior.

This discrepancy arises from assuming that the frequencies of all normal modes are equal, which
is of course not generally true. [Recall that in the case of two coupled masses we get ωI =

√
k/m

and ωII =
√

3k/m.] This discrepancy was eliminated by Debye.
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3 Problem #3: Matrix Hamiltonians

3.1 Functional Forms of Operators.

Consider the operators A and A†:

A =
d

dx
+W (x), A† = − d

dx
+W (x) . (35)

For specific forms of W (x), these operators will satisfy the commutation relations for the raising
and lowering operators of the quantum harmonic oscillator. The commutation relation for the
harmonic oscillator raising and lowering operators is [a, a†] = 1, so for these operators

AA† =

(
d

dx
+W (x)

)(
− d

dx
+W (x)

)
= − d

dx2
−W (x)

d

dx
+

d

dx
W (x) +W (x)2 , (36)

these are all operators, so the third term is a chain rule. Consider the third term acting on a
function ζ(x),

d

dx
W (x)ζ(x) = ζ(x)

d

dx
W (x) +W (x)

d

dx
ζ(x), (37)

using this operator property, Equation 36 becomes

AA† = − d

dx2
−W (x)

d

dx
+

d

dx
W (x) +W (x)

d

dx
+W (x)2 = − d

dx2
+

d

dx
W (x) +W (x)2 . (38)

The other half of the commutator [A,A†] is

A†A =

(
− d

dx
+W (x)

)(
d

dx
+W (x)

)
= − d

dx2
+W (x)

d

dx
− d

dx
W (x) +W (x)2 , (39)

which, using Equation 37, becomes

A†A = − d

dx2
+W (x)

d

dx
− d

dx
W (x)−W (x)

d

dx
+W (x)2 = − d

dx2
− d

dx
W (x) +W (x)2 . (40)

The commutator is then

[A,A†] =

(
− d

dx2
+

d

dx
W (x) +W (x)2

)
−
(
− d

dx2
− d

dx
W (x) +W (x)2

)
= 2

d

dx
W (x) = 1 , (41)

so the form of W (x) can be found by solving

W ′(x) =
1

2
⇒ W (x) =

x

2
+ α , (42)

where α is an arbitrary constant, which will be set to zero. Now the other commutation relations
can be verified for this for of W (x), [a, a] = [a†, aa†] = 0,

[A,A] =

(
− d2

d2x
− d

dx

x

2
− x

2

d

dx
+
x2

4

)
−
(
− d2

d2x
− d

dx

x

2
− x

2

d

dx
+
x2

4

)
= 0 (43)

[A†, A†] =

(
d2

d2x
+

d

dx

x

2
+
x

2

d

dx
+
x2

4

)
−
(

+
d2

d2x
+

d

dx

x

2
+
x

2

d

dx
+
x2

4

)
= 0 , (44)

because all terms cancel identically. The final commutator relations are

[H1, A
†] = A† = [A†A,A†] = A†[A,A†] + [A†, A†]A = A†(1) + 0 (45)

[H1, A] = −A = [A†A,A] = A†[A,A] + [A†, A]A = 0 + (−1)A , (46)

using the commutator identity [AB,C] = A[B,C] + [A,C]B. Therefore all commutation relations
for the harmonic oscillator raising and lowering operators are satisfied by this form of W (x).
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3.2 First Hamiltonian.

Now consider the Hamiltonian H1 = A†A, assume a ground state ψ0(x) exists. Acting on this state
with the lowering operator A, will give zero,

A |ψ0〉 = 0 ⇒
(
d

dx
+
x

2

)
|ψ0〉 = 0 ⇒ d

dx
ψ0(x) = −x

2
ψ0(x) . (47)

For the derivative of a function to equal itself times a polynomial, solutions should be exponentials
of polynomials. Since there is only a linear term in x, there must only be an x2 term in the
exponential. To get the factors of 2 to work out the ground state must be

ψ0(x) = Ce−x
2/4 , (48)

where C is a constant that can be determined through normalization. The normalization condition
is

1 =

∫ ∞
−∞
|ψ0(x)|2dx = |C|2

∫ ∞
−∞

e−x
2/2dx = |C|2

√
2π, (49)

so the complete ground state wave function is

ψ0(x) =
1

(2π)1/4
e−x

2/4 . (50)

The energy of this state can be found by acting the Hamiltonian on the state,

H1 |ψ0〉 = E
(1)
0 |ψ0〉 ⇒

(
− d

dx
+
x

2

)(
d

dx
+
x

2

)
|ψ0〉 = E

(1)
0 |ψ0〉 , (51)

the left hand side is(
− d

dx
+
x

2

)(
d

dx

e−x
2/4

(2π)1/4
+
x

2

e−x
2/4

(2π)1/4

)
=

(
− d

dx
+
x

2

)(
−x

2

e−x
2/4

(2π)1/4
+
x

2

e−x
2/4

(2π)1/4

)
= 0 , (52)

which means that E
(1)
0 = 0. For higher energy eigenstates, the relationship is H1 |ψn〉 = E

(1)
n |ψn〉,

but from the commutator relations, [H1, A] = H1A−AH1 = −A, so that

H1A |ψn〉 = −A |ψn〉+AH1 |ψn〉 ⇒ H1A |ψn〉 = −A |ψn〉+A(E(1)
n ) |ψn〉 (53)

= (E(1)
n − 1)A |ψn〉 , (54)

which corresponds to a state with a lower energy, by a value 1. The energy of the ground state

is zero, and A |ψ1〉 → |ψ0〉, so (E
(1)
n − 1) = 0, or E

(1)
n = 1. Generalizing this to higher energy

eigenstates, E
(1)
n = n.

The remaining eigenstates can be found by acting A† on the ground, and subsequent states. Acting
A† on the ground state n times will result in the functional form of ψn(x), up to a normalization
factor. Consider the action of a† on a state |n〉 of the harmonic oscillator

a† |n〉 =
√
n+ 1 |n+ 1〉 , (55)

and according to Shankar Equation 7.4.35, the action of a†, n times on the ground state is

(a†)n |0〉 =
√
n! |n〉 . (56)

Page 7 of 11



Dylan J. Temples Shankar : Solution Set Four

Therefore, with the operator A†, and the ground state |ψ0〉, any eigenstate can be found using the
formula

|ψn〉 =
1√
n!

(a†)n |ψ0〉 . (57)

This gives the Schrödinger equation to be

H1 |ψn〉 = n |ψn〉 , n = 0, 1, 2, 3 . . . (58)
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3.3 Second Hamiltonian.

This process can be repeated for a second Hamiltonian,

H2 = AA† = 1 +H1 , (59)

which can be shown through the commutator relation

[A,A†] = AA† −A†A = H2 −H1 = 1 . (60)

To find the eigenstates of H2, consider the commutator

[H1, H2] = [A†A,AA†] = A†AAA† −AA†A†A , (61)

so from Equation 60, this becomes

[H1, H2] = A†A(1 +A†A)− (1 +A†A)A†A = A†A+ (A†A)2 −A†A− (A†A)2 = 0 , (62)

and therefore H1 and H2 have the same eigenstates (because their commutator is zero). The
eigenvalues of H2 are related to those of H1 by

H2 |ψn〉 = E(2)
n |ψn〉 ⇒ (H1 + 1) |ψn〉 = E(2)

n |ψn〉 ⇒ H1 |ψn〉 = (E(2)
n − 1) |ψn〉 , (63)

so E
(2)
n = 1 + E

(1)
n = n + 1. Therefore the nth state of H2 has the same energy as the (n − 1)th

state of H1. This gives the Schrödinger equation to be

H2 |ψn〉 = n+ 1 |ψn〉 , n = 0, 1, 2, 3 . . . (64)

3.4 Action of A and A†.

Now would be a good time to stop and compute the action of the operators on a state |ψn〉. First
consider the action of A, the lowering operator: A |ψn〉 = Bn |ψn−1〉. To find Bn, each side can be
multiplied by its complex conjugate (note that if x = y then x∗ = y∗),

|Bn|2 〈ψn−1|ψn−1〉 = 〈ψn|A†A|ψn〉 = 〈ψn|H1|ψn〉 , (65)

so that Bn =
√
n by noting that the inner product of an eigenstate with itself is one. Now consider

the action of A†, the raising operator: A† |ψn〉 = Cn |ψn+1〉. To find Cn, each side can be multiplied
by its complex conjugate,

|Cn|2 〈ψn+1|ψn+1〉 = 〈ψn|AA†|ψn〉 = 〈ψn|H2|ψn〉 , (66)

so that Cn =
√
n+ 1. This gives the actions for A and A†:

A |ψn〉 =
√
n |ψn−1〉 (67)

A† |ψn〉 =
√
n+ 1 |ψn+1〉 (68)

(69)
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3.5 Third Hamiltonian.

Now consider the Hamiltonian

H =

[
A†A 0

0 AA†

]
=

[
H1 0
0 H2

]
, (70)

whose eigenstates can be determined from the eigenstates of H1 and H2. The Schrödinger equation
says

ĤΨ = εΨ ⇒
[
H1 0
0 H2

] [
φ
ϕ

]
= ε

[
φ
ϕ

]
, (71)

but for the eigenstates of H1 and H2 to both have the same energy ε, they must be the eigenstates
found before, but one energy level apart from each other (according to the relation in the last line
of section 2.3). This makes the Schrödinger equation[

H1 0
0 H2

] [
|ψn+1〉
|ψn〉

]
= ε

[
|ψn+1〉
|ψn〉

]
= (n+ 1)

[
|ψn+1〉
|ψn〉

]
. (72)

This lets the eigenstates of this Hamiltonian be defined as

|n〉 =

[
|ψn+1〉
|ψn〉

]
with energy εn = n+ 1 . (73)

3.6 Q Operators.

Consider the operators

Q =

[
0 0
A 0

]
Q† =

[
0 A†

0 0

]
, (74)

with [H,Q] = 0 and [H,Q†] = 0. The action of Q on the eigenstates of H is

Q |n〉 =

[
0 0
A 0

] [
|ψn+1〉
|ψn〉

]
=

[
0

A |ψn+1〉

]
=
√
n+ 1

[
0
|ψn〉

]
, (75)

and similarly for Q†,

Q† |n〉 =

[
0 A†

0 0

] [
|ψn+1〉
|ψn〉

]
=

[
A† |ψn〉

0

]
=
√
n+ 1

[
|ψn+1〉

0

]
. (76)

Clearly these operators do not raise or lower the |ψ〉 states in |n〉, but do destroy one of the
components of |n〉. Now, consider the repeated action of Q and Q† on a state |n〉,

QQ |n〉 =

[
0 0
A 0

]√
n+ 1

[
0
|ψn〉

]
=
√
n+ 1

[
0
0

]
(77)

Q†Q |n〉 =

[
0 A†

0 0

]√
n+ 1

[
0
|ψn〉

]
=
√
n+ 1

[
A† |ψn〉

0

]
= (n+ 1)

[
|ψn+1〉

0

]
(78)

QQ† |n〉 =

[
0 0
A 0

]√
n+ 1

[
|ψn+1〉

0

]
=
√
n+ 1

[
0

A |ψn+1〉

]
= (n+ 1)

[
0
|ψn〉

]
(79)

Q†Q† |n〉 =

[
0 A†

0 0

]√
n+ 1

[
|ψn+1〉

0

]
=
√
n+ 1

[
0
0

]
(80)
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From this, repeated action of the same operator on a state |n〉 destroys the state and results in zero.
However, alternating actions of Q and Q† flips the state of the previous action and adds a factor
of
√
n+ 1. Therefore no matter how many alternating actions of either operator are performed on

a state |n〉, the only states that can result are[
0
|ψn〉

]
or

[
|ψn+1〉

0

]
(81)

times a factor of (n + 1)k/2, where k is an integer that denotes how many times the alternating
actions of Q and Q† were performed. The matrix elements of Q can be calculated:

〈m|Q|n〉 = (〈ψm+1| 〈ψm|)
[

0 0
A 0

] [
|ψn+1〉
|ψn〉

]
= (〈ψm+1| 〈ψm|)

√
n+ 1

[
0
|ψn〉

]
(82)

=
√
n+ 1 〈ψm|ψn〉 =

√
n+ 1δmn , (83)

where δmn is the Kronecker delta function. This implies that Q is a diagonal matrix in the basis
for which H is diagonal. Similarly, for Q†:

〈m|Q†|n〉 = (〈ψm+1| 〈ψm|)
[
0 A†

0 0

] [
|ψn+1〉
|ψn〉

]
= (〈ψm+1| 〈ψm|)

√
n+ 1

[
|ψn+1〉

0

]
(84)

=
√
n+ 1 〈ψm+1|ψn+1〉 =

√
n+ 1δmn . (85)

The matrix elements of Q and Q† were calculated for the {|n〉} basis (eigenbasis of H) and are
only nonzero for matrix indeces m = n. Therefore in this basis, both matrices are diagonal, so
the eigenvalues of these matrices are the values of the diagonal entries. The eigenvalues are then√
n+ 1 for n = 0, 1, 2, 3, . . ..

Additionally, it can be noted the sum of these operators is

(Q+Q†) |n〉 =

[
0 A†

A 0

] [
|ψn+1〉
|ψn〉

]
=
√
n+ 1

[
|ψn+1〉
|ψn〉

]
, (86)

and taking the square of the sum,

(Q+Q†)2 =

[
0 A†

A 0

] [
0 A†

A 0

]
=

[
A†A 0

0 AA†

]
= H . (87)
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