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1 Shankar 12.2.4.

Consider a point in the x − y plane that will be subjected to the following four transformations:
an infinitesimal translation ε = εxî + εy ĵ, with εy = 0,[

x
y

]
T (~ε)−−−→

[
x+ εx
y

]
; (1)

an infitesimal rotation by εzk̂, expanded to second order in εz,[
x+ εx
y

]
U [R(εz k̂)]−−−−−−→

[
−1

2 (εx + x)
(
ε2z − 2

)
− yεz

(εx + x) εz − 1
2yε

2
z + y

]
; (2)

by noting that to second order, for small θ

cos θ = 1− θ2

2
sin θ = θ U [R(εzk̂)] =

[
1− ε2z

2 −εz
εz 1− ε2z

2

]
; (3)

an infinitesimal translation −ε = −εxî− εy ĵ,[
−1

2 (εx + x)
(
ε2z − 2

)
− yεz

(εx + x) εz − 1
2yε

2
z + y

]
T (−~ε)−−−−→

[
−1

2 (εx + x) ε2z + x− yεz
(εx + x) εz − 1

2yε
2
z + y

]
; (4)

and finally, an infinitesimal rotation by −εzk̂, expanded to second order in εz,(εx + x)
(

1− ε2z
2

)
− εx − yεz

(εx + x) εz + y
(

1− ε2z
2

)  U [R(−εz k̂)]−−−−−−−→

[
1
4 (εx + x) ε4z + 1

2εxε
2
z + x

εxεz + yε4z
4 + y

]
. (5)

Furthermore, dropping any terms of order ε4` , the final state simplifies to[
x
y

]
T (~ε) U [R(εz k̂)] T (−~ε) U [R(−εz k̂)]−−−−−−−−−−−−−−−−−−−−−→

[
x+ 1

2εxε
2
z

y + εxεz

]
. (6)

Therefore the transformation operator is equal to a translation:

U [R(−εzk̂)]) T (−~ε) U [R(εzk̂)]) T (~ε) = T

(
1

2
εxε

2
z î + εxεz ĵ

)
P̂x , (7)

note the swap in the listing of the operators from how they were performed. This is due to the
rightmost operator acting on a state first. By changing each of these transofrmations into their
generating functions (maintaining εy = 0) this becomes(
I +

i

~
εzL̂z −

1

2~2
ε2zL̂

2
z

)[
I +

i

~
(εxP̂x)

](
I − i

~
εzL̂z −

1

2~2
ε2zL̂

2
z

)[
I − i

~
(εxP̂x)

]
=

(
I − i

~
1

2
εxε

2
zP̂x −

i

~
εxεzPy

)
, (8)

where I is the identity operator. Note the generator for rotations (and its second order Taylor
expansion):

U [R(θ)] = exp[− i
~
θL̂z] = I − i

~
(θ)L̂z −

1

2~2
(θ)2L̂2

z . (9)
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By expanding out the transformation operators and matching coefficients (in terms of εaxε
b
z), the

εxε
2
z term can be investigated. Let each term on the left hand side of Equation 8 be denoted by a

letter A to J, starting from the left. Doing the multiplication out and only looking at powers of εx
and εy gives

(A+B + C) [D + E] (F +G+H) [I + J ] ∼
(
1 + εz + ε2z

)
[1 + εx]

(
1 + εz + ε2z

)
[1 + εx]

=

{
1 + (εz) + (ε2z) + (εx) + (εzεx) + (ε2zεx)

}(
1 + εz + ε2z

)
[1 + εx]

=

{
AD +BD + CD +AE +BE + CE

}
(F +G+H) [I + J ]

=

{
1 + (εz) + (ε2z) + (εx) + (εzεx) + (ε2zεx) + (εz) + (ε2z) + (ε3z) + (εxεz) + (ε2zεx) + (ε3zεx) + (ε2z)

+ (ε3z) + (ε4z) + (εxε
2
z) + (ε3zεx) + (ε4zεx)

}
[1 + εx]

=

{
ADF +BDF + CDF +AEF +BEF + CEF +ADG+BDG+ CDG+AEG+BEG

+ CEG+ADH +BDH + CDH +AEH +BEH + CEH

}
[I + J ] .

Before carrying on the multiplication, it is useful to note we are only interested in terms with εxε
2
z.

Therefore terms linear or lower order in εi can be dropped as well as any terms that are of third
or higher order in εz. Furthermore, the εi that can be picked up in the final multiplication is εx
so terms that are linear in both εx and εz can be dropped as well. The only surviving terms with
εxε

2
z dependence are

− i

2~
P̂x = CEFI +BEGI +AEHI + CDFJ +BDGJ +ADHJ , (10)

which when the multiplication of the coefficients is performed becomes

− i

2~
P̂x =

(
− 1

2~2
L̂2
z

)(
i

~
P̂x

)
II +

(
i

~
L̂z

)(
i

~
P̂x

)(
− i
~
L̂z

)
I + I

(
i

~
P̂x

)(
− 1

2~2
L̂2
z

)
I

+

(
− 1

2~2
L̂2
z

)
II
(
− i
~
P̂x

)
+

(
i

~
L̂z

)
I
(
− i
~
L̂z

)(
− i
~
P̂x

)
+ II

(
− 1

2~2
L̂2
z

)(
− i
~
P̂x

)
= − i

2~3
L̂2
zP̂x −

i3

~3
L̂zP̂xL̂z −

i

2~3
P̂xL̂

2
z +

i

2~3
L̂2
zP̂x +

i3

~3
L̂2
zP̂x +

i

2~3
L̂2
zP̂x

h2P̂x = L̂2
zP̂x + 2(i2)L̂zP̂xL̂z + P̂xL̂

2
z − L̂2

zP̂x − L̂2
zP̂x − 2(i2)L̂2

zP̂x

h2P̂x = L̂2
zP̂x − 2L̂zP̂xL̂z + P̂xL̂

2
z .

This may seem to contradict the statement that “every consistency test will reduce to just another
relation between the commutators of the generators”, but using the commutator identity −ΛΩΛ +
ΩΛ2 + Λ2Ω ≡ [Λ[Λ,Ω] the above consistency constraint becomes

h2P̂x = [L̂z, [L̂z, P̂x]] = L̂z[L̂z, P̂x]− [L̂z, P̂x]L̂z = [P̂x, L̂z]L̂z − L̂z[P̂x, L̂z] , (11)

which is satisfied using the commutation relations given by Shankar Equation 12.2.17:

h2P̂x = (−i~P̂y)L̂z − Lz(−i~P̂y) = (−i~)(P̂yL̂z − L̂zP̂y) ⇒ i~P̂x = [P̂y, L̂z] . (12)
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2 Shankar 12.3.6.

Consider a particle of mass µ constrained to move on a circle of radius a. The two dimensional,
zero potential, problem can be solved in the polar coordinates ρ and φ, due to it being rotationally
invariant. The Hamiltonian operator for this particle is

Ĥ = − ~2

2µ
∇2 = − ~2

2µ

[
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂φ2

]
, (13)

using the Laplacian in polar coordinates given by Shankar Equation 12.3.11. However, the radial
component of the particle’s motion is fixed to a value a, so all radial derivatives vanish:

Ĥ = − ~2

2µ

[
1

a2
∂2

∂φ2

]
=

1

2µa2

[
−~2 ∂

2

∂2φ

]
=

1

2µa2

[
i~
∂

∂φ

]2
=

1

2µa2
L̂2
z . (14)

The eigenvalue equation for this operator then becomes

ĤΦm = EΦm ⇒ 1

2µa2
L̂2
zΦm = EΦm , (15)

where Φm(φ) are the nondegenerate eigenfunctions of L̂z (because the ρ coordinate is fixed, see
Shankar Equation 12.3.9). The eigenvalues of these eigenfunctions are given by Shankar Equation
12.3.8, so that Equation 15 becomes

ĤΦm =
1

2µa2
(~m)2Φm = EΦm , (16)

so the eigenvalues of the Hamiltonian operator are Em = (~2/2µa2)m2. Note that Em = E−m, so
the states are two-fold degenerate. This corresponds to the particle moving clockwise around the
circle or counterclockwise around the circle.
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3 Shankar 12.3.7.

Consider the isotropic oscillator Hamiltonian

H =
P 2
x + P 2

y

2µ
+

1

2
µω2(X2 + Y 2) . (17)

3.1 The Eigenvalue Problem.

The commutator of this Hamiltonian with the angular momentum projection operator is, up to
factors of constants

[H,Lz] ' [P 2
x + P 2

y +X2 + Y 2, XPy − Y Px]

= [P 2
x , XPy] + [P 2

x ,−Y Px] + [P 2
y , XPy] + [P 2

y ,−Y Px]

+ [X2, XPy] + [X2,−Y Px] + [Y 2, XPy] + [Y 2,−Y Px]

= [P 2
x , XPy] + 0 + 0 + [P 2

y ,−Y Px] + 0 + [X2,−Y Px] + [Y 2, XPy] + 0 ,

because every operator commutes with itself, and position operators and momentum operators
commute if they are not along the same axis, i.e. [X,Py] = 0. Continuing,

[H,Lz] ' [P 2
x , XPy] + [P 2

y ,−Y Px] + [X2,−Y Px] + [Y 2, XPy]

= [P 2
x , X]Py +X[P 2

x , Py] + [P 2
y ,−Y ]Px − Y [P 2

y , Px]

+ [X2,−Y ]Px − Y [X2, Px] + [Y 2, X]Py +X[Y 2, Py] ,

using the identity [A,BC] = [A,B]C +B[A,C]. Noting that momentum operators along different
axes commute (as well as position) this becomes

[H,Lz] ' [P 2
x , X]Py + 0 + [P 2

y ,−Y ]Px − 0 + 0 +−Y [X2, Px] + 0 +X[Y 2, Py]

= X[Y 2, Py] = X(Y [Y, Py] + [Y, Py]Y )

= 0 ,

by noticing the first two nonzero commutators are the same form, but differ by a negative sign, these
exactly cancel. Same for the last two nonzero commutators. Therefore, this Hamiltonian commutes
with the angular momentum projection operator Lz. This Hamiltonian can be transformed to polar
coordinates by noting that

ρ2 = X2 + Y 2 P 2
ρ = P 2

x + P 2
y , (18)

which implies there is no angular dependence for this Hamiltonian, and it can be reduced to a
purely radial differential equation. Using Shankar Equation 12.3.13, the Hamiltonian becomes

H =
P 2
ρ

2µ
+

1

2
µω2ρ2 = − ~2

2µ

[
d2

dρ2
+

1

ρ

d

dρ
− m2

ρ2

]
+

1

2
µω2ρ2 , (19)

which gives the differential equation for the radial equation R(ρ):

HREm(ρ) = − ~2

2µ

[
d2R

dρ2
+

1

ρ

dR

dρ
− m2

ρ2
R

]
+

1

2
µω2ρ2R = ER . (20)
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3.2 Small Radius Limit, ρ→ 0.

In the small ρ limit, the terms with the highest negative power of ρ dominate, but all derivatives
must remain in the expansion. This makes Equation 20 into

− ~2

2µ

[
d2R

dρ2
+

1

ρ

dR

dρ
− m2

ρ2
R

]
+ 0 = 0 (21)

Letting primes denote derivatives with respect to ρ, this is

R′′ +
1

ρ
R′ − m2

ρ2
R = 0 = ρ2R′′ + ρR′ −m2R , (22)

which has a form that is amenable to a solution of the form R = ρα, with α > 0. Plugging in this
ansatz yields

0 = ρ2(α)(α− 1)ρα−2 + ρ(α)ρ(α−1) −m2ρα = ρα[(α)(α− 1) + α−m2] = ρα[α2 −m2] , (23)

so α2 = m2. This fact, along with the restrictions on α from the ansatz, yields that α = |m|, so

REm(ρ)
ρ→0−−−→ ρ|m| . (24)

3.3 Large Radius Limit, ρ→∞.

In the large ρ limit, the terms that dominate the expansion have the highest positive powers of ρ.
Any terms with negative powers are negligible, so the differential equation becomes

− ~2

2µ

[
d2R

dρ2

]
+

1

2
µω2ρ2R = 0 ⇒ R′′ =

(µω
~

)2
ρ2R , (25)

which has a form amenable to solutions of the form exp[βργ ]+exp[−βργ ]. However, due to physical
constraints on this system, only the decaying exponential is allowed (otherwise the solution diverges
at infinity). The derivatives of this solution are

R′ = −βγργ−1e−βργ R′′ = β2γ2ρ2γ−2e−βρ
γ − β(γ − 1)γργ−2e−βρ

γ
, (26)

but because we are in the large ρ limit, the term with higher powers of ρ dominates and the other
is negligible, so

β2γ2ρ2γ−2e−βρ
γ

=
(µω

~

)2
ρ2e−βρ

γ
, (27)

clearly γ = 2 (by matching powers of ρ). The equation for β is then

β222 =

(
µ2ω2

~2

)2

⇒ 2β =
µω

~
, (28)

so in the large ρ limit

REm(ρ)
ρ→∞−−−→ exp[−µω

2~
ρ2] . (29)

Page 6 of 13



Dylan J. Temples Shankar : Solution Set Two

3.4 Change of Variables.

From the previous two sections, the form of REm(ρ) can be assumed to be

REm(ρ) = ρ|m| exp[−µω
2~
ρ2]UEm(ρ) . (30)

Now consider the dimensionless variables ε = E~/ω and y = (µω/~)1/2ρ. Changing to these
variables, the radial equation becomes (up to a constant)

R(y) = y|m| exp[−y2/2]U(y); R′ =
dR

dρ
=
dR

dy

dy

dρ
=

√
µω

~
R′y; R′′ =

µω

~
R′′y . (31)

The differential equation for R (Equation 20) becomes, after dividing through by ~ω,

− ~
2µω

[
R′′ +

1

ρ
R′ − m2

ρ2
R

]
+

1

2

µω

~
ρ2R = εR (32)

− ~
2µω

[
µω

~
R′′y +

(√
µω

~
1

y

)√
µω

~
R′y −m2µω

~
1

y2
Ry

]
+

1

2

µω

~
ρ2Ry = εRy (33)

−
[
R′′y +

1

y
R′y −

m2

y2
R

]
+ y2R = 2εR (34)

0 = [2ε− y2 −m2y−2]Ry + y−1R′y +R′′y . (35)

3.5 Differential Equation for UEm(y)

To turn the differential equation for Ry into one for U , the derivatives of Ry must be found. Note
the differentiation chain rule, expanded to three functions, states:

d

dx
[a(x){b(x)c(x)}] = b(x)c(x)[a′]+a(x)

d

dx
[b(x)c(x)] = a′bc+a(b′c+c′b) = a′bc+ab′c+abc′ . (36)

Using this, Ry and its derivatives are

Ry = y|m| exp[−y2/2]U(y) (37)

R′y = e−
y2

2 y|m|−1
(
U(y)

(
|m| − y2

)
+ yU ′(y)

)
(38)

R′′y = e−
y2

2 y|m|−2
[
y
(
2
(
|m| − y2

)
U ′(y) + yU ′′(y)

)
+ U(y)

(
|m|

(
|m| − 2y2 − 1

)
+ y4 − y2

)]
. (39)

Substituting these into Equation 35, and dividing through by y|m| exp[−y2/2], yields

0 = [2ε− y2 −m2y−2]U + y−1
(
U
(
|m| y−1 − y

)
+ U ′

)
+
[
2 |m|U ′y−1 + |m|2 Uy−2 − |m|Uy−2 − 2 |m|U + U ′′ − 2yU ′ + y2U − U

]
. (40)

Combining terms of each order derivative yields

0 = U ′′ + U ′[y−1 + 2|m|y−1 − 2y] + U [2ε− y2 −m2y−2 + |m|y−2 − 1 + |m|2y−2 − |m|y−2 − 2|m|+ y2 − 1]
(41)

0 = U ′′ + U ′
[

1 + 2|m|
y

− 2y

]
+ U [2ε− 2|m| − 2−m2y−2 + |m|2y−2] (42)

0 = U ′′ + U ′
[

1 + 2|m|
y

− 2y

]
+ U [2ε− 2|m| − 2] , (43)

by arguing that if m is real m2 = |m|2.
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3.6 Power Series Solution

. Assume the solution to the final differential equation for U is a power series,

U(y) =

∞∑
r=0

Cry
r . (44)

The first and second derivatives of which have powers yr−1 and yr−2, respectively. Noting that
the second derivative and the original function are both only multiplied by terms that have no y
dependence, these terms will contribute two different powers of y: yr and yr−2. The first derivative
is multiplied by a term linear in y and a term inversely proportional to y, so it will also contribute
two powers of y: yr and yr−2. Therefore there are only two different power series, with the same
coefficients, just paired with different powers of y. Performing a change of variables on the sum
index such that both power series have yi dependence with i being the sum index will result in terms
with Ci and Ci+2. This results in a two term recursion relation, with separate ladders corresponding
to C0 and C1.

3.7 Recursion Relation.

Substituting the ansatz from Equation 44 into Equation 43 yields

0 =

∞∑
r=0

Crr(r − 1)yr−2 +

[
1 + 2|m|

y
− 2y

] ∞∑
r=0

Crry
r−1 + [2ε− 2|m| − 2]

∞∑
r=0

Cry
r (45)

0 =
∞∑
r=0

Crr(r − 1)yr−2 +
∞∑
r=0

Crr(1 + 2|m|)yr − 2
∞∑
r=0

Crr(1 + 2|m|)yr−2 + [2ε− 2|m| − 2]
∞∑
r=0

Cry
r

(46)

0 =
∞∑
r=0

Crr(r − 1)yr−2 +
∞∑
r=0

Crr(1 + 2|m|)yr−2 − 2
∞∑
r=0

Crry
r + [2ε− 2|m| − 2]

∞∑
r=0

Cry
r (47)

0 =
∞∑
r=0

Cr[r(r − 1) + r(1 + 2|m|)]yr−2 +
∞∑
r=0

Cr[2ε− 2|m| − 2− 2r]yr . (48)

Performing a change of variables on the first sum such that the transformation is n = r− 2, makes
Equation 48

0 =

∞∑
n=−2

Cn+2[(n+ 2)((n+ 2)− 1) + (n+ 2)(1 + 2|m|)]yn +

∞∑
r=0

Cr[2ε− 2|m| − 2− 2r]yr (49)

0 =

∞∑
n=−2

Cn+2[(n+ 2)(2|m|+ n+ 2)]yn +

∞∑
r=0

Cr[2ε− 2|m| − 2− 2r]yr . (50)

We are now free to change the dummy variable n back to r, and pull out the first two terms,
yielding

0 = C0(0) + C1[(1)(2|m|+ 1)]y−1 +
∞∑
r=0

Cr+2[(r + 2)(2|m|+ r + 2)]yr +
∞∑
r=0

Cr[2ε− 2|m| − 2− 2r]yr

∞∑
r=0

Cr+2[2|m|+ 2r − 2ε+ 2]yr = C1(2|m|+ 1)y−1 +

∞∑
r=0

Cr[(r + 2)(2|m|+ r + 2)] .
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The coefficient C1 must be zero, so that the powers of y on each side of the equation match.
Therefore the two sums must be equivalent, implying their summands are equal,

Cr+2[2|m|+ 2r − 2ε+ 2] = Cr[(r + 2)(2|m|+ r + 2)] , (51)

which results in a two term recursion relation, as expected. Note that all other Ck = 0, for odd k,
because C1 is zero, and every Ck for higher odd k is just some factor times C1. In order to maintain
the proper behavior in REm(ρ) as y →∞, the series must go like ρ to some finite power to cancel
that factor in the numerator of R, so the function remains finite. In the large y limit, the term
with the highest power of ρ will dominate, so the power series must terminate at some value of r.
This means that at some point, there must be a Cr = 0, which would imply all terms with power
r or greater also vanish. To find the value of r which accomplishes this, set r = 0 in Equation 51,

2|m|+ 2r − 2ε+ 2 = 0 ⇒ r = ε− |m| − 1 , (52)

where r still must be even. So the point at which the power series terminates depends on the
dimensionless energy. Thusly, the power series will terminate if the energy is ε = r + |m|+ 1, but
because r must be even, a variable k can be introduced so that

E = ~ω(2k + |m|+ 1) k = 0, 1, 2, . . . (53)

A new variable n can be defined as n = 2k + |m|, which is also a positive definite integer, which
results in the energy spectrum

En = ~ω(n+ 1) . (54)

3.8 Energy Spectrum Degeneracy.

For any given value of n, there are specific allowed values for |m|,

n− 2k = |m| for k ≤ n/2 , (55)

where n, k are integers. Therefore for every n > 0 there are an integer value n/2 possible values for
k, which gives n/2 possible values for |m|. For nonzero values of m there are two values that have
the same value |m|, so m has n possible values for a given energy state n. This, plus the m = 0
possibility mean for any n the degeneracy is n + 1. This is the same degeneracy of states as in
Cartesian coordinates.

3.9 Normalized eigenfunctions.

In Section 3.4 the coefficients of the assumed eigenfunctions were dropped, with the intent of
normalizing them. Consider the n = 0 case, the radial eigenfunction with normalization constant
is

Rnm(ρ) = Aρ|m| exp[−µωρ2/2~]

rt∑
r=0

Cr

(√
−µω
~

ρ

)r
, (56)

with terminal r value rt, given by rt = n− |m|. Including the rotational part of the eigenfunction
Φm(φ) = eimφ/(

√
2π), the complete, unnormalized eigenfunctions are

ψnm = Aρ|m| exp[−µωρ2/2~]

n−|m|∑
r=0

Cr

(√
−µω
~

ρ

)r
eimφ√

2π
, (57)
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for which the normalization condition is the integral over all space (in ρ and φ) of the norm
squared of the eigenfunction is unity. Consider the n = 0 case, which makes m = 0 and rt = 0, the
normalization condition is

1 = |A|2
∫ 2π

0
(2π)−1

∫ ∞
0

C2
0 exp[−µωρ2/~]ρ dρ dφ = C2

0

~
2µω
|A|2 , (58)

and taking C0 = 1,

A =

[√
2µω

~

]1/2
. (59)

The n = 1 state still has m = ±1, still with rt = 0 so that

1 = |A|2
∫ 2π

0
(2π)−1

∫ ∞
0

C2
0ρ

2 exp[−µωρ2/~]ρ dρ dφ = C2
0

h2

2µ2ω2
|A|2 , (60)

note both ±m have the same normalization constant, which with C0 = 1 is

A =
√

2
µω

~
. (61)

Therefore the normalized eigenfunctions for the n = 0, 1 states are

ψ0,0(ρ, φ) =

[√
µω

~π

]1/2
exp[−µωρ2/2~] (62)

ψ1,±1(ρ, φ) =
µω√
π~
ρ exp[−µωρ2/2~]e±iφ . (63)

3.10 Relation with Cartesian Coordinates.

The n = 0 state must be equal in both Cartesian and polar coordinates because that state has no
degeneracy. Noting the form of the eigenfunctions, Equation 57, the only place where performing
the parity operator has an effect is the power series and the ρ|m| term, but only for even values
of r + |m| = n will the eigenstate pick up a negative sign. Therefore the parity eigenvalues are
(−1)n. Furthermore the two solutions for n = 1 in polar coordinates are simply linear combinations
of their counterparts in Cartesian coordinates. Using the Euler identities the n = 1 eigenstate in
polar coordinates is

ψ1,±1(ρ, φ) = α exp[−µωρ2/2~]ρ(cosφ± i sinφ) = α exp[−µω(x2 + y2)/2~](x± iy) , (64)

and the solutions for the n = 1 state in Cartesian coordinates are

x exp [−µω(x2 + y2)/(2~)] and y exp[−µω(x2 + y2)/(2~)] . (65)

So as claimed, the n = 1 eigenstate in polar coordinates is simply a linear combinations of the
n = 1 solutions in Cartesian coordinates.
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4 Shankar 12.3.8.

Consider a particle of mass µ and charge q in a vector potential given by

A =
B

2
(−yî + xĵ) . (66)

4.1 Magnetic Field.

This vector potential gives rise to a magnetic field B = ∇×A. This cross-product is given by the
determinant

B

2

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣ =
B

2

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

−y x 0

∣∣∣∣∣∣ =
B

2

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y 0

−y x 0

∣∣∣∣∣∣ , (67)

with ∂
∂z = 0 because A has no z dependence. Clearly the only terms that contribute are left in the

k̂ direction:

B =
B

2

(
∂

∂x
(x)− ∂

∂y
(−y)

)
k̂ = Bk̂ . (68)

4.2 Classical Circular Motion.

If the particle is treated classically, the force it feels (in CGS units) in this field is

F =
q

c
(v ×B) =

q

c
vB sin θn̂ , (69)

where c is the speed of light and θ is the angle between the directions of particle’s velocity and
the magnetic field, and n̂ is the unit vector normal to the plane created by the magnetic field and
velocity vectors. In the case the particle’s velocity is perpendicular to the magnetic field, the force
felt by the particle will always be perpendicular to the velocity (and magnetic field) and the particle
will move in a circle. Assuming the particle moves in the ĵ direction, it will feel a centripetal force
given by

F =
µv2

r
n̂ =

q

c
(v ×B) =

q

c
vB î , (70)

but velocity is the angular velocity of the circular orbit ω0 times the radius of the orbit r, so

µω2
0r =

q

c
ω0rB ⇒ ω0 =

qB

cµ
. (71)

Therefore the particle moves in a circular path with frequency ω0 = qB/µc.

4.3 Quantum Hamiltonian.

Consider the Hamiltonian for the corresponding quantum problem:

Ĥ =
[Px + qY B/2c]2

2µ
+

[Py − qXB/2c]2

2µ
, (72)

and the operators

Q =
cPx + 1

2qY B

qB
P = Py −

qXB

2c
. (73)
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These operators are canonical if they satisfy the constraints, corresponding to a quantum system,
set by Hamilton’s canonical equations (Shankar Equation 2.7.18). In this case the constraint is
that the commutator of the position and momentum is [Q,P ] = i~. The commutator for these
operators is

[Q,P ] =

[
cPx + 1

2qY B

qB
, Py −

qXB

2c

]
, (74)

which condensing constants (which do not effect commutator relations - it also should be clear
which constants have been condensed to what) becomes

[Q,P ] =

[
αPx +

1

2
Y, Py − βX

]
= [αPx, Py] +

[
1

2
Y, Py

]
+ [αPx,−βX] +

[
1

2
Y,−βX

]
. (75)

Noting that the independent components of velocity, and the independent components of position
commute with each other respectively, this is

[Q,P ] =

[
1

2
Y, Py

]
+ [αPx,−βX] =

1

2
[Y, Py]− αβ[Px, X] =

1

2
[Y, Py] + αβ[X,Px] , (76)

and the commutator of a position operator and its conjugate momentum operator is i~, so the
overall commutator is

[Q,P ] =
1

2
(i~) + αβ(i~) =

1

2
(i~) +

c

qB

qB

2c
(i~) = (i~) , (77)

so the operators P and Q are canonical.

The Hamiltonian can be rewritten in terms of these operators:

Ĥ =
[Px + qY B/2c]2

2µ
+

[Py − qXB/2c]2

2µ
=

1

2µ

[
qB

c

(cPx + qY B/2)

qB

]2
+

[Py − qXB/2c]2

2µ
(78)

=
1

2

q2B2

µc2
Q2 +

P 2

2µ
=
P 2

2µ
+

1

2
µω2

0Q
2 , (79)

using the definition of ω0 from the previous section. It is clear this Hamiltonian is that of an
equivalent one dimensional harmonic oscillator, and therefore the allowed energy levels are E =
(n+ 1

2)~ω0, where n is an integer.

4.4 Isotropic Harmonic Oscillator.

The form of the Hamiltonian in original variables can be expanded to

Ĥ =
1

2µ

[
P 2
x +

(
1

2c
qY B

)2

+
1

c
qY BPx

]
+

1

2µ

[
P 2
y +

(
1

2c
qXB

)2

− 1

c
qXBPy

]
(80)

=
P 2
x

2µ
+
P 2
y

2µ
+

1

2

1

µ

(
qB

c
/2

)2

Y 2 +
1

2

1

µ

(
qB

c
/2

)2

X2 +
1

2

qB

µc
(Y Px −XPy) (81)

=
P 2
x

2µ
+
P 2
y

2µ
+

1

2
µ

(
qB

µc
/2

)2

Y 2 +
1

2
µ

(
qB

µc
/2

)2

X2 − 1

2

qB

µc
(XPy − Y Px) (82)

=
P 2
x

2µ
+
P 2
y

2µ
+

1

2
µ
(ω0

2

)2
Y 2 +

1

2
µ
(ω0

2

)2
X2 − 1

2
ω0(XPy − Y Px) . (83)
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If the Hamiltonian for two-dimensional, isotropic harmonic oscillator is defined as

Ĥ2d(ω
′,M) =

P 2
x

2M
+
P 2
y

2M
+

1

2
M(ω′)2X2 +

1

2
M(ω′)2Y 2 , (84)

then Equation 83 can be written as

Ĥ = Ĥ2d

(ω0

2
, µ
)
− ω0

2
L̂z . (85)

The basis that diagonalizes Ĥ2d will diagonalize Ĥ because the isotropic two dimensional harmonic
oscillator Hamiltonian commutes with the angular momentum projection operator. Due to this,
and the fact that L̂z commutes with itself,

[Ĥ, L̂z] = [Ĥ2d, L̂z]−
ω0

2
[L̂z, L̂z] = 0 , (86)

so the operators Ĥ and L̂z share a common eigenbasis. Consider a state |n,m〉 in the eigenbasis,
which gives the allowed energies

E |n,m〉 = Ĥ |n,m〉 = Ĥ2d |n,m〉 −
ω0

2
L̂z |n,m〉 =

~ω0

2
(2k + |m|+ 1) |n,m〉 − ω

2
(~m) |n,m〉 (87)

using the energy of the two dimensional isotropic oscillator in terms of angular momentum, and
integer k = (n − |m|)/2 > 0, from Section 3.7. This implies E = ~ω0[k + 1

2 |m| −
1
2m + 1

2 ]. From
the definition of the energy of the isotropic two dimensional harmonic oscillator this is still equal
to E = ~ω0(n+ 1

2), so it agrees with the conclusion of Section 4.3.
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