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1 Shankar 12.5.3.

1.1 Expectation Values of Jx and Jy.

Consider a state |jm〉, and the operators J+ and J−, such that

J± |j m〉 = ~[(j ∓m)(j ±m+ 1)]1/2 |j m± 1〉 ≡ C± |j m± 1〉 , (1)

it is useful to note that J+ = J†−. In terms of J±, the angular momentum projection operators Jx
and Jy are

Jx =
1

2
(J+ + J−) and Jy = −1

2
(J+ − J−) . (2)

With this information, the expectation values of these operators can be found. Begin with the x
projection,

〈Jx〉 = 〈j m|Jx|j m〉 =
1

2
〈j m|J+ + J−|j m〉 =

1

2
[〈j m|J+|j m〉+ 〈j m|J−|j m〉] (3)

=
1

2
[C+ 〈j m|j m+ 1〉+ C− 〈j m|j m− 1〉] = 0 , (4)

because the states |j m〉 and |j m± 1〉 are orthogonal. Similarly for Jy,

〈Jy〉 = 〈j m|Jy|j m〉 = − i
2
〈j m|J+ − J−|j m〉 =

1

2
[〈j m|J+|j m〉 − 〈j m|J−|j m〉] (5)

=
1

2
[C+ 〈j m|j m+ 1〉 − C− 〈j m|j m− 1〉] = 0 . (6)

Note that 〈j m|(J±)n|j m〉 = 0 for all n 6= 0, because the resultant inner product is between two
orthogonal states.

1.2 Expectation Values of J2
x and J2

y .

Using the relations for J± and Jx,y,

J2
x =

1

4
[J2

+ + J+J− + J−J+ + J2
−]⇒ J2

x |j m〉 =
1

4
[J+J− + J−J+] |j m〉 (7)

J2
y = − i

4
[J2

+ − J+J− − J−J+ + J2
−]⇒ J2

x |j m〉 = −1

4
[−J+J− − J−J+] |j m〉 = J2

x |j m〉 , (8)

due to the orthonormality condition stated above. The expectation value for the x projection
operator squared is

4 〈J2
x〉 = 〈j m|J+J− + J−J |j m〉 = 〈j m|J+J−|j m〉+ 〈j m|J−J+|j m〉 (9)

= 〈J−j m|J−j m〉+ 〈J+j m|J+j m〉 , (10)

using the Hermiticity of the J± operators. Evaluating this,

4 〈J2
x〉 = (C−)2 〈j m− 1|j m− 1〉+ (C+)2 〈j m+ 1|j m+ 1〉 = (C−)2 + (C+)2 (11)

〈J2
x〉 =

~2

4
[(j +m)(j −m+ 1) + (j −m)(j +m+ 1)] (12)

=
~2

4
[j2 − jm+ j + jm−m2 +m+ j2 + jm+ j −mj −m2 −m] (13)

=
~2

4
[2j2 + j − 2m2] =

~2

2
[j(j + 1)−m2] = 〈J2

y 〉 . (14)
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1.3 Uncertainty Relation.

The variance of these operators is given by

(∆Jx)2 = 〈J2
x〉 − 〈Jx〉

2 =
~2

2
[j(j + 1)−m2] = (∆Jy)

2 . (15)

The uncertainty relation given by Shankar 9.2.9 is

(∆Ω)2(∆Λ)2 ≥ | 〈ψ|ΩΛ|ψ〉 |2 . (16)

So all that remains to be calculated to find the uncertainty relation is the norm squared of the
expectation value of JxJy,

〈JxJy〉 = − i
4
〈J2

+ − J+J− + J−J+ − J2
−〉 = − i

4
[−〈j m|J+J−|j m〉+ 〈j m|J−J+|j m〉] (17)

=
i

4
[〈J−j m|J−j m〉 − 〈J+j m|J+j m〉] =

i

4
(C2
− − C2

+) (18)

=
i

4
~2[j2 − jm+ j + jm−m2 +m− j2 − jm− j +mj +m2 +m] =

i~2

4
[2m] . (19)

Therefore the uncertainty relation is

~4m2

4
≤ ~4

4
[j(j + 1)−m2]2 ⇒ m2 ≤ [j2 + j −m2]2 , (20)

which is satisfied for any j,m because |m| ≤ j and j > 0.

1.4 Saturated Uncertainty.

Consider the state |j ± j〉, for which the uncertainty relation

(±j)2 ≤ [j2 + j − (±j)2]2 ⇒ j2 ≤ j2 , (21)

is saturated.
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2 Shankar 12.5.12.

The angular momentum operators L2 and Lz commute with the parity operator Π, so they all
share a common basis. The parity operator reverses the direction of a vector, Πr = −r, in spherical
coordinates this is

Πx→ −x = −r sin θ cosφ (22)

Πy → −y = −r sin θ sinφ (23)

Πz → −z = −r cos θ . (24)

However, because r ≥ 0 by definition, the parity operator cannot have any effect on it. Notice that
cos(π + α) = cos(π − α) = − cos(α) and − sin(π + α) = sin(π − α) = sin(α). For the parity of y
to hold, the signs of the transformed coordinates must not cancel, so one must be transformed to
π + α and the other π − α (where α is θ or φ). The cosine of either transform always results in a
negative sign, so by inspecting the parity of x, the sine term must be positive so θ is transformed
to π − θ and φ to π + φ. So in spherical coordinates the parity operator is

Π{r, θ, φ} → {r, π − θ, π + φ}. (25)

Furthermore, it can be shown that the angular momentum lowering operator Lz does not alter
parity. The definition of the angular momentum ladder operators in the spherical coordinate basis,
as given by Shankar Equation 12.5.57, are

L± = ±~e±iφ
(
∂

∂θ
± i cot θ

∂

∂φ

)
. (26)

Under parity, the partial differentials are

∂θ → ∂(π − θ) = −∂θ , ∂φ→ ∂(π + φ) = ∂φ , (27)

and using the transformed behavior of cosine and sine stated above, Π cot θ = − cot θ, due to
picking up a negative from the cosine but not the sine. Therefore the effect of parity,

ΠL− = −~e−i(π+φ)
(
− ∂

∂θ
+ i cot θ

∂

∂φ

)
= −~(−1)e−iφ(−1)

(
∂

∂θ
− i cot θ

∂

∂φ

)
= L− . (28)

has no effect on the L− operator (and therefore the L+ operator as well).

To determine the effect that the parity operator has on the spherical harmonic functions, only one
case of the spherical harmonics functional form must be verified. It has been shown that the L−
has no change under parity (they commute), so by finding the effect of parity on Y `

` will yield the
effect parity has on all states,

L−ΠY `
` = ΠL−Y

`
` = ΠY `−1

` , (29)

which can be repeated 2`+ 1 times to see the effect of parity on any spherical harmonic. Therefore
showing the behavior of ΠY `

` will prove the result for general Y m
` . The effect of parity on this state

(given by Shankar Equation 12.5.32) is

ΠY `
` = Π

[
(−1)`A``(sin θ)

`ei`φ
]

= (−1)`A``[sin(π − θ)]`ei`(π+φ) , (30)

where A`` is a positive constant that has no dependence on θ or φ. By separating the exponential
as done before another factor of (−1)` can be pulled out

ΠY `
` = (−1)`(−1)`A``[sin θ]

`ei`φ = (−1)`Y `
` . (31)

This proves the general result that Π |`m〉 = (−1)` |`m〉.

Page 4 of 10



Dylan J. Temples Shankar : Solution Set Two

3 Shankar 12.5.13.

Consider a particle in a state described by

ψ = N(x+ y + 2z)e−αr , (32)

where N is a normalization factor.

3.1 Spherical Harmonics in Cartesian Coordinates.

The ` = 1 spherical harmonics,

Y 0
1 = (3/4π)1/2 cos θ Y ±11 = ∓(3/8π)1/2 sin θe±iφ , (33)

can be expressed in Cartesian coordinates (and the radial magnitude r), by using the Euler identity
for the exponential,

Y ±11 = ∓(3/8π)1/2 sin θ(cosφ± i sinφ) = ∓(3/8π)1/2
(x
r
± iy

r

)
, (34)

using the standard transformation for spherical to Cartesian coordinates. The m = 0 case is even
simpler,

Y 0
1 = (3/4π)1/2

z

r
. (35)

3.2 Probabilities of ` = 1 States.

Using these forms, the state described by Equation 32, can be written in terms of the ` = 1 spherical
harmonics. The expression for z in terms of spherical harmonics is trivial to get from Equation 35,
while the expression for x + y must be found. The spherical harmonics for m = ± have the from
x± iy, so

(x+ y) = a(x+ iy) + b(x− iy) = (a+ b)x+ (ai− bi)y . (36)

This relationship implies that a = (1− i)/2 and b = (1 + i)/2. Solving the spherical harmonics for
x± iy, using the above results, and plugging in to Equation 32, gives

N(x+ y + 2z)e−αr = Ne−αr

{[
1− i

2

](
−
√

8π

3
rY 1

1

)
+

[
1 + i

2

](√
8π

3
rY −11

)
+ 2

√
4π

3
rY 0

1

}
.

(37)
Define constants C−1, C0, and C1 to be the constant coefficients of the corresponding spherical
harmonic, i.e.

N(x+ y + 2z)e−αr = Nre−αr
{
C1Y

1
1 + C−1Y

−1
1 + C0Y

0
1

}
. (38)

Now that the state is written as a linear combination of eigenstates of the Lz operator, the prob-
ability of measuring a specific eigenvalue of Lz can be read off. The probability of measuring a
specific m (note the eigenvalues of L− z are m~), is just the squared norm of the coefficient of the
corresponding eigenstate,

P (` = 1,m) = |Cm|2 . (39)

This fact, along with the definition of the Cm above, say that the probability of each state is as
follows

P (m = 1→ `z = +~) = 1/6 (40)

P (m = 0→ `z = 0) = 2/3 (41)

P (m = −1→ `z = −~) = 1/6 . (42)
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4 Shankar 12.6.8.

Consider the potential forming a spherical box of radius r0,

V =

{
0 r < r0

∞ r ≥ r0
, (43)

which gives rise to a rotationally invariant problem. Therefore the wavefunction for a particle of
mass µ in this potential can be represented as

ψE`m(r, θ, φ) =
UE`(r)

r
Y m
` (θ, φ) , (44)

where UE` is a function describing the radial behavior of the particle, which obeys the equation{
d2

dr2
+

2µ

~2

[
E − V (r)− `(`+ 1)~2

2µr

]}
UE` = 0 . (45)

In the ` = 0 sector, for the potential described in this problem, the differential equation above
reduces to {

d2

dr2
+

2µ

~2
E

}
UE` = 0 ⇒ U ′′E` = −k2UE` , (46)

with k =
√

2µE/~. Inside the spherical box, the particle behaves as a free particle. The solutions
of the above differential equation for V = 0 are spherical Bessel functions (note the spherical
Neumann functions are ignored because their behavior at the origin and infinity do not obey
physical constraints). In the ` = 0 sector, the solution is the zeroth spherical Bessel function,

jo(kr) =
sin kr

kr
(47)

is the solution to the radial equation inside the well. Outside the solution must be zero because the
potential is infinite, therefore the boundary condition on this system is ψE`m(r0, θ, φ) = 0, so that

UE`(r0) = 0 ⇒ sin kr0 = 0 ⇒ kr0 = nπ , (48)

where n is an integer. Using the definition of k and solving the final expression above for E yields
the energy spectrum of a particle of mass µ in a spherical box of radius r0,

En =
n2π2~2

2µr20
(49)
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5 Shankar 12.6.9

Consider a particle of mass µ in a potential given by

V =

{
−V0 r < r0

0 r ≥ r0
, (50)

which has bound states for −V0 < E < 0. As in the previous problem, in the ` = 0 sector, the
radial part of the wavefunction obeys{

d2

dr2
+

2µ

~2
[E − V (r)]

}
UE` = 0 . (51)

Due to the piecewise nature of the potential, there will be two solutions: one inside the well Ui and
one outside Uo. The differential equation becomes

U ′′i = −2µ

~2
(E + V0)Ui = −k2Ui (52)

U ′′o = −2µ

~2
(E)Uo = (iκ)2Uo , (53)

where k is the wavenumber inside the well and iκ is the complex wavenumber outside the well.
This equation has solutions of the form

Ui = A cos(kr) +B sin(kr) (54)

Uo = C ′ei(iκr) +D′e−i(iκr) = Ceκr +De−κr . (55)

For the solution to be normalizable, it must be that Uo(∞) is finite, so C = 0. Additionally, the
radial coordinate can never be negative so it must be that Ui(0) = 0 so A = 0. Furthermore, the
wavefunction and its first derivative must be continuous at the boundary of the potential well,

ψin(r0) = ψout(r0) → Ui(r0) = Uo(r0) → B sin(kr0) = De−κr0 (56)

ψ′in(r0) = ψ′out(r0) →
(
Ui
r

)′ ∣∣∣∣
ro

=

(
Uo
r

)′ ∣∣∣∣
ro

. (57)

The first equation implies that D = Beκr0 sin(kro). Note also that(
U

r

)′
= U ′r−1 + Ur−2 → [U ′ir

−1 + Uir
−2]r0 = [U ′or

−1 + Uor
−2]r0 , (58)

so multiplying the equation by r2 and evaluating at r = r0 yields

r0kB cos(kr0)−B sin(kr0) = r0(−κ)De−κr0 −De−κr0 (59)

= r0(−κ)Beκr0 sin(kro)e
−κr0 −Beκr0 sin(kro)e

−κr0 . (60)

Note that the exponentials multiply to 1. Dividing the entire equation by B sin(kr0) yields

r0k
cos(kro)

sin(kr0)
− 1 = −κr0 − 1 ⇒ k cot(kr) = −κ . (61)

Note that κ is defined to be greater than zero so that the term that remains in Uo is an exponential
decay. It is also known that k > 0 because for a bound state |E| < V0, so the only way to pick
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up a negative in the above equation is if cot(kr0) < 0, which first occurs in the second quadrant.
Therefore there are no solutions for this transcendental equation if kr0 < π/2, which implies it must
be that k > π/(2r0). However, from the definition of k, the following condition must be satisfied
for a bound state:

E =
(~k)2

2µ
− V0 < 0 ⇒ V0 >

(~k)2

2µ
. (62)

Since there is a lower bound on k and V0 > αk (with α > 0), then it must be the case that

V0 >
~2π2

2µ(4r20)
. (63)

By the combination of restrictions from the quantization condition (Equation 61) and the bound
state condition (above), it is true that for a bound state to exist, V0 > (~2π2)/(8µr20). Therefore,
no bound state can exist if V0 < (~2π2)/(8µr20).
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6 Shankar 12.6.10

Given the following expressions are true,

(1)

∫ 1

−1
Pl(cos θ)Pl′(cos θ)d(cos θ) = [2/(2l + 1)]δll′ (64)

(2) Pl(x) =
1

2ll!

dl(x2 − 1)l

dxl
(65)

(3)

∫ 1

0
(1− x2)mdx =

(2m)!!

(2m+ 1)!!
, (66)

Shankar Equation 12.6.41 can be proven as follows. The goal is to find the expression for Cl in the
expression

eikr cos θ =
∞∑
l=0

Cljl(kr)Pl(cos θ) . (67)

By multiplying both sides by a different associated Legendre polynomial Pl′ and integrating with
respect to cos θ, the above expression can be rewritten∫ 1

−1
d(cos θ)Pl′(cos θ)eikr cos θ =

∫ 1

−1
d(cos θ)Pl′(cos θ)

∞∑
l=0

Cljl(kr)Pl(cos θ) , (68)

and the integral can be moved inside the sum. So using the first given expression, exploiting the
orthonormality of the Legendre polynomials, this becomes∫ 1

−1
d(cos θ)Pl′(cos θ)eikr cos θ =

∞∑
l=0

Cljl(kr)[2/(2l + 1)]δll′ . (69)

The delta function kills off every term in the sum except l = l′, so∫ 1

−1
d(cos θ)Pl(cos θ)eikr cos θ = Cljl(kr)[2/(2l + 1)] , (70)

for simplicity let x = cos θ. Now both sides can be differentiated l times with respect to kr. Note
this does not effect the integral because the integral is over x, so∫ 1

−1
dxPl(x)

(
d

d(kr)

)l
eikrx = Cl[2/(2l + 1)]

(
d

d(kr)

)l
jl(kr) (71)

Now consider the limit as kr → 0, so Shankar Equation 12.6.33 can be used, and the complex
exponential vanishes, ∫ 1

−1
dxPl(x)ilxl = Cl

2

2l + 1

(
d

d(kr)

)l (kr)l

(2l + 1)!!
. (72)

Now noting that taking the nth derivative of (kr)l results in a coefficient of (l− n+ 1), so taking l
derivatives yields l!, and the final exponent is 0, so∫ 1

−1
dxPl(x)ilxl = Cl

2

2l + 1

l!

(2l + 1)!!
, (73)
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This can be solved for Cl and rewritten

Cl = il
2l + 1

2

(2l + 1)!!

l!

∫ 1

−1
dxPl(x)xl = il(2l + 1)

(2l + 1)!!

l!

∫ 1

0
dxPl(x)xl , (74)

by noting that the quantity xlPl(x) is always and even function. This is true because xl is odd
for odd l and even for even l, and likewise for Pl(x), therefore for any l they will always have the
same even/odd-ness and their product will always be even. Using the second given expression, this
becomes

Cl = il(2l + 1)
(2l + 1)!!

l!

∫ 1

0
dxxl

1

2ll!

dl

dxl
(x2 − 1)l , (75)

and noting 2ll! = (2l)!! gives the expression

Cl = il(2l + 1)
(2l + 1)!!

(l)!(2l)!!

∫ 1

0
dxxl

dl

dxl
(x2 − 1)l . (76)

The integral can be evaluated using integration by parts l times, with respect to x, using the
derivative part as the term to take the antiderivative of in IBP. Integration by parts once (the first
one) looks like∫ 1

0
dxxl

dl

dxl
(x2 − 1)l = xl

dl−1

dxl−1
(x2 − 1)l

∣∣∣∣1
0

−
∫ 1

0
(lxl−1)

dl−1

dxl−1
(x2 − 1)l . (77)

Note that each on the mth IBP a factor of l−m+1 is picked up so after l IBPs there is a coefficient
of l!, and the final exponent of the xl−m term is zero. Similarly, the order of the derivative is
reduced by one at each step, so after l steps, there is no derivative. At each step of IBP, there is an
additional factor of −1 picked up due to the subtraction of the integral from the boundary term,
which after l times is (−1)l. Therefore (ignoring the boundary term, which will be revisited later)
the integral is∫ 1

0
dxxl

dl

dxl
(x2 − 1)l = (−1)ll!

∫ 1

0
(x2 − 1)l = l!

∫ 1

0
(1− x2)l = l!

(2l)!!

(2l + 1)!!
(78)

using the third given expression. Plugging this back in to Equation 76 yields the final result

Cl = il(2l + 1)
(2l + 1)!!

(l)!(2l)!!
l!

(2l)!!

(2l + 1)!!
= il(2l + 1) . (79)

Now return to the boundary terms picked up through integration by parts. The series of these
terms is

xl
dl−1

dxl−1
(x2 − 1)l

∣∣∣∣1
0

− xl−1 d
l−2

dxl−2
(x2 − 1)l

∣∣∣∣1
0

+ xl−2
dl−3

dxl−3
(x2 − 1)l

∣∣∣∣1
0

. . . (80)

clearly the lower boundary does not contribute due to the xk terms. These factors also do not
contribute to the value of the expression at the x = 1 boundary either. Expanding out (x2 − 1)l

yields a polynomial with coefficients given by the lth row of Pascal’s triangle, with the sign of each
term alternating (the highest power of x is always positive). Taking the derivatives make the terms
with no x dependence (±1) drop out. At the x = 1 boundary, only the coefficients matter, and
they will always sum to zero when using alternating negative signs as shown in the series above.
This was additionally proved using Mathematica on a case-by-case basis. Therefore the boundary
terms do not contribute, as claimed previously.
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