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Dylan J. Temples Particle Physics : Tully Solutions

1 Tully 2.1.

Calculate dx̂/dt separately for the nonrelativistic Hamiltonian Ê = p̂2/2m and for the Dirac Hamil-
tonian Ê = α · p̂ + βm.

Heisenberg’s equation of motion tells us

d

dt
Ô = i

[
Ĥ, Ô

]
+
∂Ô
∂t

, (1)

in natural units. If the operator is not an explicit function of time, the second term on the right-
hand side of the above equation vanishes, and calculating the time rate of change of an operator
becomes an excercise of calculating commutators with the Hamiltonian Ĥ.

In the case of the nonrelativistic Hamiltonian, we have:

dx̂

dt
= i
[
Ĥ, x̂

]
=

i

2m
[p̂ · p̂, x̂] = − i

2m
[x̂, p̂ · p̂] . (2)

Using identities for commutators, we can express this as

dx̂

dt
= − i

2m
{[x̂, p̂] p̂ + p̂ [x̂, p̂]} , (3)

where the canonical commutation relation tells us [x̂, p̂] = i, in natural units. Therefore:

dx̂

dt
= − i

2m
{ip̂ + p̂i} =

p̂

m
, (4)

which we expect from a classical point of view: momentum and velocity (dx/dt) differ only by a
factor of the particle’s mass.

Things are slightly more difficult with Dirac’s Hamiltonian:[
Ĥ, x̂

]
= i [α · p̂ + βm, x̂] = −[x̂,α · p̂] +m[β, x̂] = −[x̂,α]p̂−α[x̂, p̂] +m[β, x̂] . (5)

If we set1 [α, x̂] = [β, x̂] = 0, we have

dx̂

dt
= i(−α[x̂, p̂]) = i(−iα) = α , (6)

which is in agreement with Tully equation 2.19.

1 Here I will argue that the commutators of the parameters α and β with the position and momentum operators
are all zero. Let us work in the position-space basis: x̂ = x̂ and p̂ = −i∇. The components of α and β are the
Pauli matrices σ and two-dimensional identities 12, which are all constants (of varying signs). For the commutators
with the momentum operator, it is easy to see that taking a derivative then multiplying by a constant is the same as
multiplying by a constant and taking a derivative, and thus the commutators must be zero. Similarly, the position
operator must commute with the identity, regardless of sign, and therefore [β, x̂] = 0. Additionally, the Pauli matrices
only act on spin-state vectors, not position-state vectors, and therefore [α, x̂] = 0.
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2 Tully 2.4.

Show that dL̂/dt = α× p̂ and that 1
2dΣ/dt = −α× p̂ for a free Dirac particle.

From the definition of the angular momentum, L̂ = x̂× p̂, and equation 1, we see

d

dt
L̂ = i [α · p̂ + βm, x̂× p̂] = i [α · p̂, x̂× p̂] + im [β, x̂× p̂] . (7)

Let us investigate the first term:

[α · p̂, x̂× p̂] = α[p̂, x̂]× p̂ + α · x̂[p̂, p̂] + [α, x̂]p̂× p̂ + x̂× [α, p̂]p̂ , (8)

and we can note the middle two terms vanish trivially, and the final term vanishes by the argument
presented in footnote 1, yielding

[α · p̂, x̂× p̂] = (−i)α× p̂ . (9)

By the same argument used above, the second term in equation 7 vanishes because it is the sum
of terms proportional to commutators of β with position and momentum. Therefore, we can insert
these results into Heisenberg’s equation to obtain:

d

dt
L̂ = i(−i)α× p̂ = α× p̂ , (10)

our desired result.

The total angular momentum,

Ĵ = L̂ +
1

2
Σ , (11)

is a constant of motion, and as such we require:

d

dt
Ĵ =

d

dt
L̂ +

1

2

d

dt
Σ = 0 , (12)

yielding the condition

1

2

d

dt
Σ = − d

dt
L̂ = −(α× p̂) , (13)

using the previous result. If this is unsatisfactory to you, it can be calculated directly using the
Heisenberg equation of motion and the explicit forms of Σ and α:

1

2

d

dt
Σ =

1

2i
[Σ,α · p̂ + βm] =

1

2i
{[Σk, αipjδij ] +m [Σk, β]} , (14)

where

Σk =

(
σk 0
0 σk

)
, αi =

(
0 σi
σi 0

)
, β =

(
12 0
0 −12

)
, (15)

we should also note the (anti) commutator relations for the Pauli matrices:

[σi, σj ] = 2iεijkσk , {σi, σj} = 0 , σiσj = iεijkσk . (16)
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First, we compute:

[Σk, β] =

(
σk 0
0 −σk

)
−
(
σk 0
0 −σk

)
= 0 , (17)

so the second term vanishes. The first term is proportional to

[Σk, αipjδij ] = pjδij [Σk, αi] , (18)

because the Pauli matrices do not effect the momentum operator. Inserting the explicit represen-
tations, we have

[Σk, αipjδij ] = pjδij

(
0 σkσi − σiσk

σkσi − σiσk 0

)
, (19)

from here, we have two routes: using the commutator, or using the anti-commutator. I will do
both, starting with the latter:

[Σk, αipjδij ] = 2pjδij

(
0 σkσi

σkσi 0

)
= 2pjδij

(
0 iεkijσj

iεkijσj 0

)
= 2ipjδijεkijαj , (20)

so

1

2

d

dt
Σ =

1

2i
2ipjδijεkijαj = piεkijαj = −α× p̂ , (21)

as expected. We now return to equation 19 and use the commutator:

[Σk, αipjδij ] = pjδij

(
0 [σk, σi]

[σk, σi] 0

)
= pjδij

(
0 2iεkijσj

2iεkijσj 0

)
= 2ipjδijεkijαj , (22)

and then we obtain the same result. (Compare this final expression to equation 21 to see they are
equivalent.)
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3 Tully 2.5.

Show that dα/dt = −2(Σ× p̂)− i2mαβ.

Again, Heisenberg’s equation of motion tells us

d

dt
α = i[α · p̂ + βm,α] = i[α · p̂,α] + im[β,α] = −i[α,α · p̂] + im[β,α] (23)

using our previous result. First, we investigate the second term:

[β,α] = βα−αβ , (24)

but α and β anticommute (Tully equation 2.8), so αβ = −βα, and thus:

[β,α] = −αβ −αβ = −2αβ , (25)

so we have

d

dt
α = −i[α,α · p̂]− 2imαβ . (26)

The first term (of the right-most expression) in equation 23 is, component-wise, proportional to

[αi, αjpkδjk] = pkδjk[αi, αj ] = pkδjk

(
[σi, σj ] 0

0 [σi, σj ]

)
= pkδjk

(
2iεijkσk 0

0 2iεijkσk

)
(27)

= 2ipkδjkεijkΣk = 2ipjεijkΣk , (28)

therefore:

[α,α · p̂] = 2ip̂×Σ = −2iΣ× p̂ =
2

i
Σ× p̂ , (29)

and inserting this result into equation 26 yields the result:

d

dt
α = −i2

i
Σ× p̂− 2imαβ = −2(Σ× p̂)− i2mαβ . (30)
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4 Tully 2.8.

Show that v(2)(p) = (iβα2)
[
u(2)(p)

]∗
.

First, we will investigate the quantity:

iβα2 = i

(
12 0
0 12

)(
0 σ2

σ2 0

)
= i

(
0 σ2

−σ2 0

)
=


1

−1
−1

1

 , (31)

and it is clear the action of this flips a four-component column vector and negates the middle two
components. Using the explicit representation of u(2)(p) (Tully 2.56) this is

(iβα2)
[
u(2)(p)

]∗
=


1

−1
−1

1




0
1

(p1 + ip2)/(E +m)
−p3/(E +m)

 , (32)

having taken the complex conjugate. Carrying out the multiplication yields

(iβα2)
[
u(2)(p)

]∗
=


−p3/(E +m)

−(p1 + ip2)/(E +m)
−1
0

 = v(2)(p) , (33)

from comparison with Tully 2.60.
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5 Tully 2.11.

Show that the matrix representation of the Lorentz group proposed by Dirac, Sµν = i
4 [γµ, γν ],

satisfies the commutation relations (Tully 2.94)

[Sµν , Sρσ] = i (gνρSµσ − gµρSνσ − gνσSµρ + gµσSνρ) . (34)

Sol.
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6 Tully 2.17.

Show that in the Weyl representation Ψ̄(iγµ∂µ−m)Ψ = ξ†iσ̄µ∂µξ+η†iσµ∂µη−m(ξ†η+η†ξ) where
ξ and η are left- and right- handed chirality two-component spinors.

Using Ψ̄ = Ψ†γ0, the Dirac Lagrangian becomes

Ψ̄(iγµ∂µ −m)Ψ = Ψ†(iγ0γµ∂µ −mγ0)Ψ , (35)

where

γµ =

(
0 σµ

σ̄µ 0

)
, with

{
σµ = (12,σ)

σ̄µ = (12,−σ)
. (36)

We can then identify β = γ0, and

γ0γµ =

(
0 12

12 0

)(
0 σµ

σ̄µ 0

)
=

(
σ̄µ 0
0 σµ

)
, (37)

so the spatial components give us

γ0γi =

(
−σi 0

0 σi

)
= αi , (38)

in the Weyl representation. If we define α0 = 14, then we have αµ = γ0γµ, so the Dirac Lagrangian
becomes

Ψ̄(iγµ∂µ −m)Ψ = Ψ†iαµ∂µΨ−Ψ†βmΨ , (39)

where

Ψ =

(
ξ
η

)
, so Ψ† =

(
ξ† η†

)
. (40)

We can investigate the first term:

Ψ†αµ∂µΨ =
(
ξ† η†

)
αµ∂µ

(
ξ
η

)
=
(
ξ† η†

)(σ̄µ 0
0 σµ

)(
∂µξ
∂µη

)
=
(
ξ† η†

)(σ̄µ∂µξ
σµ∂µη

)
(41)

= ξ†σ̄µ∂µξ + η†σµ∂µη , (42)

and the second:

Ψ†βΨ =
(
ξ† η†

)( 0 12

12 0

)(
ξ
η

)
=
(
ξ† η†

)(η
ξ

)
= ξ†η + η†ξ . (43)

Using these, we have the result:

Ψ̄(iγµ∂µ −m)Ψ = ξ†iσ̄µ∂µξ + η†iσµ∂µη −m(ξ†η + η†ξ) . (44)
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7 Tully 2.18.

Given an explicit form for the charge-conjugation operator C in the Weyl representation, compute
C[u(1)(p)]∗ and C[u(2)(p)]∗ explicitly using the matrix representation for C and the column-vector
Weyl solutions for u(1)(p) and u(2)(p).

In the Weyl representation, the charge conjugation operator is

iβα2 = i

(
0 12

12 0

)(
−σ2 0

0 σ2

)
= i

(
0 σ2

−σ2 0

)
=


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 , (45)

which simply flips the component order of the 4-component spinor and negates the central two
components. We begin with the Dirac equation, with ψ = (χ, φ), where χ, φ are 2-component
spinors:

E

(
χ
φ

)
= (α · p + βm)

(
χ
φ

)
=

(
−σ · p 0

0 σ · p

)(
χ
φ

)
+m

(
0 12

12 0

)(
χ
φ

)
, (46)

yielding the following coupled equations:

Eχ = −(σ · p)χ+mφ (47)

Eφ = (σ · p)φ+mχ , (48)

slight rearrangement yields

χ =
1

m
(E12 − σ · p)φ (49)

φ =
1

m
(E12 + σ · p)χ . (50)

The helicity operator is

σ · p =

(
0 1
1 0

)
p1 +

(
0 −i
i 0

)
p2 +

(
1 0
0 −1

)
p3 =

(
p3 p1 − ip2

p1 + ip2 −p3

)
, (51)

so

χ =
1

m

(
E − p3 −p1 + ip2
−p1 − ip2 E + p3

)
φ (52)

φ =
1

m

(
E + p3 p1 − ip2
p1 + ip2 E − p3

)
χ . (53)

We can now write the particle spinors as

u(s)(p) =

(
χ(s)

φ(s)

)
=

 χ(s)

1
m

(
E + p3 p1 − ip2
p1 + ip2 E − p3

)
χ(s)

 , (54)

where the condition on χ(s) is

χ(s)†χ(r) = δrs , (55)
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so we make the choice:

χ(1) =

(
1
0

)
, χ(2) =

(
0
1

)
, (56)

so we have the spinors (and their conjugates)

u(1)(p) =


1
0

(E + p3)/m
(p1 + ip2)/m

 ⇒ [u(1)(p)]∗ =


1
0

(E + p3)/m
(p1 − ip2)/m

 (57)

u(2)(p) =


0
1

(p1 − ip2)/m
(E − p3)/m

 ⇒ [u(2)(p)]∗ =


0
1

(p1 + ip2)/m
(E − p3)/m

 . (58)

Acting the charge conjugation operator on these spinors yields

C[u(1)(p)]∗ = iβα2[u(1)(p)]∗ =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0




1
0

(E + p3)/m
(p1 − ip2)/m

 =


(p1 − ip2)/m
−(E + p3)/m

0
1

 (59)

C[u(2)(p)]∗ = iβα2[u(2)(p)]∗ =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0




0
1

(p1 + ip2)/m
(E − p3)/m

 =


(E − p3)/m
−(p1 + ip2)/m

−1
0

 . (60)
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